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Abstract 

The paper investigates optimizing form accuracy in Al6061 spherical surface (SS) machining through single-point diamond 
turning (SPDT) with the swarm optimization (PSO) algorithm. The optimization problem is implemented on the basis of 
building the relationship between profile accuracy or form error (FE) with cutting parameters including spindle speed  
(n-rev/min), feed rate (f-mm/min), and depth of cut  (ap-µm). Based on the data collection from 15 experiments in the  
Box-Behnken (BB) model with the specialized software DESIGN EXPERT support, the modeling results show a high 
agreement between the predicted data and the actual measured values with high reliability (R2 = 0.9428). By using the PSO 
algorithm, the optimal FE value of 0.95 µm was found corresponding to the technological parameter set of n equal 1746 
rev/min, f equal 5 mm/min, and ap equal 8 µm. This research significantly lays the foundation for controlling, predicting, 
and optimizing the FE factor of SS, particularly for Al6061 material and generally for other materials. Moreover, these 
results will further enhance the SPDT machining of more complex surfaces and reduce optical errors. 
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1. Introduction* 

Ultra-precision machining (UPM) is a mechanical 
machining technology that achieves extremely high 
precision and surface finish. The roughness values 
typically reach a few nanometers or less. This 
technology is mainly applied in industries that require 
high surface quality and strict tolerances, such as 
aerospace, electronics, medical, and optics. Some UPM 
methods include ultra-precision grinding [1], ultra-
precision milling [2], and ultra-precision laser 
machining [3]. Ultra-precision turning (UPT) [4] is a 
typical method for machining lens surfaces and molds 
for lenses in the field of optics. UPT technology can 
process various types of rotationally symmetric and 
asymmetric surfaces and can handle difficult-to-
machine optical materials such as glass, Ge crystals, 
ZnSe, CaF2, or Silicon, as well as non-ferrous metals like 
aluminum and copper alloys. In addition, UPT can create 
surfaces with roughness in the range of a few 
nanometers, with form error (FE) of less than a few 
micrometers. UPT can also process lenses with complex 
shapes, such as aspheric lenses, diffractive lenses, or 
freeform surfaces. 

In optics, surfaces play a crucial role in the 
transmission and control of light. The FE and roughness 
of these surfaces directly affect the performance and 
quality of optical devices such as lenses, mirrors, prisms, 
and optical sensors. Typical optical surface types such 
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as spherical surfaces [5], aspherical surfaces [6], and 
diffraction surfaces [7]. Research on spherical lens 
surfaces is crucial for controlling and optimizing optical 
properties like convergence, divergence, and light 
transmission. The accuracy and quality of the SS directly 
affect the performance of the optical system, especially 
in devices that require high precision such as telescopes, 
microscopes, and medical equipment.  

Assessing surface machining quality, especially in 
the fields of optics and precision mechanics, requires 
several important technical criteria. The FE is the most 
important factor. It is the error that measures the 
deviation between the actual surface of the lens and the 
ideal surface it is designed to be, which can be a 
spherical, aspherical, diffractive, or flat surface. This 
error greatly affects the lens optical performance, as it 
causes aberrations, reducing the image or light quality 
obtained. Using the SPDT method with aluminum 
material for the SS, the author in [8] demonstrated that 
the FE of the sphere was reduced by half compared to 
previously used methods. The research results controlled 
by the STS (Slow Tool Servo) technique in SPDT [9] 
show that the form accuracy has reached the µm level.  

There are many optimization algorithms such as the 
artificial bee colony (ABC) algorithm [10], ant colony 
optimization (ACO) algorithm [11], particle swarm 
optimization (PSO) algorithm [12]. PSO has advantages 
over other algorithms such as its simple structure and 
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much easier implementation compared to other 
optimization algorithms. PSO parameters are usually 
few and not too complex to adjust. PSO has the ability 
to find optimal solutions efficiently thanks to the 
cooperation between individuals in the search space. 
This algorithm typically converges quickly to the 
optimal solution vicinity. It can also be adjusted to 
enhance exploration capability (searching new areas) or 
exploitation (detailed search within an area) by tuning 
the parameters. This algorithm is used [13] to optimize 
energy consumption, and [14] to optimize the structural 
parameters of the Fiber Bragg Grating accelerometer. 

This article focuses on constructing a regression 
equation for Al6061 sphere FE using response surface 
methodology (RSM) and the Box-Berken (BB) model. 
PSO algorithm is used to optimize the FE and find the 
corresponding set of cutting parameter values. The paper 
structure is presented with the introduction section. 
Next, the model and research method are described in 
Section 2, in which the actual model along with the 
processing and measurement equipment system is 
considered together with a set of 15 experiments to 
collect the necessary information. Accordingly, some 
results were found and analyzed in detail in Section 3. 
Finally, the research results and their significance are 
summarized and presented in Section 4. 

2. Model and Research Method 

2.1. Research Model 

The research was conducted on a super-precision 
lathe using diamond cutting tools to machine the Al6061 
SS, employing the BB method and the PSO algorithm to 
achieve optimal FE based on optimizing the input 
technological parameters. The steps are described in the 
following steps: 

Step 1: Problem Identification 

Input: Three factors technological parameters 
consisting: spindle speed n (rev/min) feed  
rate f (mm/min), and depth of cut ap (µm). 

Process: Define the problem and establish the 
relationship between cutting parameters and FE.  

Output: Build a regression model and find the cutting 
parameter set corresponding to the optimal FE value. 
From there, each parameters pair influence on the FE is 
also considered.  

Step 2: Experimental Model Construction 

Input: Defined ranges (upper and lower limits) for 
technological parameters. 

Process: Construct the coding table for the 
parameters and develop the experimental matrix using 
the BB method. 

Output: Experimental design matrix for subsequent 
machining tests. 

Step 3: Experimental Machining and Data Collection 

Input: Experimental matrix from Step 2. 

Process: Machine Al6061 spherical samples with 15 
sets of cutting parameters on the SPDT machine. 
Measure the FE for each experiment. 

Output: Dataset of FE values corresponding to each 
parameter set. 

Step 4: Regression Model Development based on 
ANOVA 

Input: Dataset obtained from Steps 2 and 3. 

Process: Perform regression analysis and ANOVA to 
construct a mathematical model representing the 
relationship between cutting parameters and FE. Define 
the objective function. 

Output: Regression model (objective function) 
describing FE. 

Step 5: Optimization Using Particle Swarm 
Optimization 

Input: the objective function from step 4, the limits 
of the parameters, and the algorithm parameters (MaxIt, 
npop, w, C1, C2). 

Process: Initialize population; evaluate objective 
function for each individual; update velocity and 
position of individuals; identify the global best solution.  

Output: Optimal cutting parameter set, 
corresponding minimum FE, and quantified influence of 
parameters on FE. The steps are described in Fig. 1. 

 
Fig. 1. Steps to implement the research content 
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Table 1. Chemical composition of Al6061 

Element Mg Si Mn Cu Fe Al Other 
wt.% 1.38 0.19 0.49 4.04 0.15 93.62 0.13 

 
Table 2. Cutting tool specifications 

Specifications Cutting edge 
radius Front angle Cutting 

height Rear angle Included 
angle Waviness 

Dimensions 0.684 mm -25o 7.475 mm 12o 60o 120o 
 

 
Fig. 2. Form Talysurf measuring machine 

 
Fig. 3. Spherical workpieces 

 
Fig.4. Cutting tool 

 
Fig. 5. Ultra-precision lathe system 

 

2.2. Experiments and Measurements 

The experiment was conducted on the ultra-precision 
lathe Nanoform®X. The FE was measured on the Form 
Talysurf® PGI Optics PRO profilometer (Fig. 2), which 
measures FE with high precision on the lens various 
surface types with a measurement range 20 mm and a 
resolution 0.2 nm. The experiment was conducted on an 
Al6061 billet (Fig. 3) with a diameter ∅30, a height is 
20 mm, and a spherical radius is 19.5 mm, with the 
chemical composition shown in Table 1. 

The cutting tool is the diamond turning  
tool NN60R0635mWGC-MS0454 (Fig. 4) with      
specifications shown in Tab. 2. The technology system 
(Fig. 5) includes a vacuum chuck, Al6061 workpiece, 
fixture, diamond turning tool, and mist cooling system.  

The experiments are designed based on three input 
technological parameters suitable for the machine 
system and the tool's machining range. The chuck is 
adjusted so that the runout is less than 0.005 μm for the 
most stable system. 

 

 
Fig. 6. The BB model experimental point distribution 
diagram 
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2.3. Experimental Planning Model 

The experiment was conducted based on the BB 
matrix, a type of experimental design in the field of 
RSM. This model was developed by George E. P. Box 
and Donald Behnken in 1960 [15], primarily used to 
construct a mathematical model describing the 
relationship between input factors (variables) and an 
output (response) to optimize the process. BB main 
characteristic is that it does not include points at the 
design space corners but focuses on the midpoints or the 
design space edges surfaces, helping to reduce the 
number of experiments compared to full factorial 
designs (Fig. 6). 

The equation has the form: 
2

0
1 1

k k

i i ii i ij i j
i i i j

y x x x xβ β β β
= = <

= + + +∑ ∑ ∑  (1) 

where y  is the response, ix  is the independent variables, 
β  is the regression coefficients. 

Since BB saves time and resources compared to 
other designs, especially when variables number is large, 
and due to not using experiments at the vertex points, 
BB reduces variables risk exceeding experimental 
limits. This model is ideal when the relationship between 
input and output factors is nonlinear, and BB allows for 
the estimation of quadratic and interaction coefficients 
with accuracy equivalent to or better than CCD, while 
requiring fewer runs. Therefore, the BB model is used to 
find the optimal value for the FE. The cutting parameters 
are divided into 3 levels with the coding levels shown in 
Table 3. 

Through the machining and measurement process, 
the deformation error results corresponding to each set 
of input technological parameters are obtained. The BB 
model experimental matrix corresponding to the three 
parameters n (rev/min), f (mm/min), ap (µm) and the 
corresponding results are presented in Table 4.

Table 3. Values the experimental variables coding levels 

Symbol Parameters Unit 
Levels 

1 (-1) 2 (0) 3 (1) 
x1 Spindle speed (n) rev/min 1000 1500 2000 
x2 Feed rate (f) mm/min 5 15 25 
x3 Depth of cut (ap) µm 2 5 8 

 
Table 4. Experiment matrix and experimental results 

No 
Encryption value Result 

n (rev/min) f (mm/min) ap (µm) FE (µm) 

1 -1 -1 0 1.0011 

2 1 -1 0 1.003 

3 -1 1 0 1.0388 

4 1 1 0 1.0232 

5 -1 0 -1 1.0156 

6 1 0 -1 1.0781 

7 -1 0 1 1.0743 

8 1 0 1 0.9739 

9 0 -1 -1 0.9592 

10 0 1 -1 1.0025 

11 0 -1 1 0.9611 

12 0 1 1 0.9502 

13 0 0 0 1.0087 

14 0 0 0 1.0087 

15 0 0 0 0.9743 
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2.4. PSO Swarm Algorithm 

PSO is an optimization method based on 
evolutionary algorithms, proposed by Eberhart and 
Kennedy in 1995 [16]. PSO is inspired by the behavior 
of bird flocks and fish schools when they forage or move 
together. This is a global optimization algorithm, widely 
used in artificial intelligence field and computer science 
to solve non-linear and non-smooth optimization 
problems. PSO simulates the behavior of a individuals 
group in the search space to find the optimal solution. 
Each individual represents a potential solution and has 
key attributes including: position, velocity, personal best 
position history, and swarm best position history. The 
steps to implement the PSO algorithm are as follows: 

Step 1: Start (initialize the algorithm) 

Step 2: Initialize the population  

Build the population size I (number of individuals), 
algorithm iterations maximum number (T), search space 
dimensions’ number. 

Step 3: Calculate the objective function 

For each individual, calculate the objective function 
value at the current position.  

Step 4:  Create a search loop 

Step 5: Update velocity and position 

In each iteration, the individual updates its velocity 
based on the trajectory towards the best position it has 
ever achieved and the trajectory towards the best 
position the entire swarm has ever achieved. Each 
individual velocity is updated based on its own best 
position ( pBest ) and the swarm best position ( gBest ). 
The formula for the individual velocity i at iteration  
t + 1 is: 

1 1

2 2

( 1) . ( ) . .( ( ))
. .( ( ))

i i i i

i

v t v t c r pBest x t
c r gBest x t

ω+ = + −
+ −

  (2) 

where ( )iv t  is velocity of individual i at time t; ω  is 
inertia weight, usually ranging from 0.4 to 0.9, helps 
control the previous velocity influence; 1c  is cognitive 
coefficient, adjusting the personal best position 
influence level pBest ; 2c  is social coefficient, adjusting 
the best position influence level in the herd gBest ; 1r , 

2r  are random numbers in the range [0,1] which help 
create randomness in the velocity update process; 
pBest  is the best personal position of individual i up to 

the present time; gBest  is the best position in the herd 
among all individuals; ( )ix t  is current position of 
individual i at time t. 

The position of each individual is updated by adding 
its new velocity to the current position: 

( 1) ( ) ( 1)i i ix t x t v t+ = + +  (3) 

where: 

( )ix t : current position of individual i at time t  

( 1)iv t + : speed of individual i after the update at 
time 1t +  

Step 6: Update pBest  và gBest  best value 

Compare the current position objective function 
value with pBest . If better, update pBest  to the current 
position. Compare the pBest  to update, if any pBest  is 
better than gBest , then update gBest . 

Step 7: Check stop conditions 

Step 8: Stop searching and output the results 

The PSO algorithm will stop when the final result is 
achieved (maximum number of iterations).  

The algorithm diagram is described in Fig. 7. 

 
Fig. 7. PSO algorithm diagram 

 
3. Results and Discussion 

3.1. ANOVA Analysis and Regression Model 

Using the specialized software DESIGN EXPERT to 
construct the regression equation and observe the 
model's fit analysis results with the experiment, 

2 0.9428R =  (R-Squared) close to 1 indicates high 
reliability, proving that the experimental results are close 
to the model's predicted values. Adeq Precision equal 
10.3, which is greater than 4, indicates that the model 
has reliable predictive capability.  

Table 5 describes the ANOVA analysis results and 
the regression equation coefficients. The F-value 
column indicates the regression model fit goodness, 
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showing the differences in variance among mean values 
groups. A high F-value indicates that the model has a 
better ability to explain the variation in the data 
compared to a model without any influencing factors. If 
the F-value is large and the P-value is less than 0.05, the 
model is considered significant. With an F-value of 9.16 
and the model being statistically significant with high 
reliability (p-value equal 0.0126 is less than 0.05), this 
proves that the model is fully compatible with the 
experiment. The FE column shows the regression 

equation coefficients. Corresponding to the significant 
values in the P-value column are the coefficients that 
have a large influence on the form accuracy, the 
remaining values have little or no influence on the form 
accuracy. The FE regression equation is obtained as 
follows: 

3 1 3
2 2
1 2

0,9972 0,0139 0,0407

           0,0414 0,0221   ( m)

FE x x x

x x µ

= − −

+ −
          

(4) 

 
Table 5. ANOVA analysis results and the regression coefficients 

Source Sum of 
Squares df Mean 

Square F-value P-value Significance Form error = 

Model 0.0184 9 0.0020 9.16 0.0126 Significant +0.9972 

A-n 0.0003 1 0.0003 1.49 0.2769 Not Significant -0.0065× A 

B-F 0.0007 1 0.0007 3.16 0.1356 Not Significant +0.0094× B 

C-ap 0.0015 1 0.0015 6.89 0.0469 Significant -0.0139× C 

AB 0.0001 1 0.0001 0.3424 0.5839 Not Significant -0.0044× AB 

AC 0.0066 1 0.0066 29.67 0.0028 Significant -0.0407× AC 

BC 0.0004 1 0.0004 1.71 0.2480 Not Significant -0.0098× BC 

A2 0.0063 1 0.0063 28.26 0.0032 Significant +0.0414× A2 

B2 0.0018 1 0.0018 8.05 0.0364 Significant -0.0221× B2 

C2 0.0000 1 0.0000 0.1617 0.7042 Not Significant -0.0031× C2 

Residual 0.0011 5 0.0002     

Lack of Fit 0.0003 3 0.0001 0.2782 0.8402 Not Significant  

Pure Error 0.0008 2 0.0004     

Cor Total 0.0196 14      

 

 
Fig. 8. Technological parameters' influence on FE 
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3.2. Results of Establishing the Prediction Model and 
Optimal Value 

The objective function is a mathematical equation 
that represents the relationship between technological 
parameters and FE, finding the optimal technological 
parameters for optimal FE. The regression equation (2) 
has been constructed from the BB model.  

The technological limits are 1 2 31 , , 1x x x− ≤ ≤   
corresponding to 1000 2000n≤ ≤  (rev/min), 
5 25f≤ ≤  (mm/min), 2 8ap≤ ≤  (µm). The PSO main 
parameters establish in MATLAB software are shown in 
Table 6. 

The FE optimal result is described in Fig. 9. The 
optimal FE value achieved is 0.95 µm with the encoded 
technological parameter set as x1 equal 0.4915,  

x2 equal to -1, x3 equal 1 corresponding to the input 
parameters n equal 1746 (rev/min), f equal 5 (mm/min), 
ap equal 8 (µm). 

Table 6. PSO algorithm parameters 

No Parameters Symbol Value 

1 Search iterations 
number MaxIt 100 

2 Swarm population size npop 100 

3 Inertia coefficient w 1 

4 Individual acceleration 
coefficient C1 2 

5 Population acceleration 
coefficient C2 2 

 
 

 

 
Fig. 9. The optimal FE value 

 

 

 

 
Fig. 10. The influence of n and f 

 
 

 
Fig. 11. The influence of ap and f 

 
Fig. 12. The influence of ap and n 
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Machining Al6061 under varying input parameters 
produces different FE. Fig. 10, Fig. 11, and Fig. 12 show 
how the three parameters influence FE. The cutting 
speed at f equal to 15 mm/min (Fig. 10, Fig. 11) has the 
largest FE, the FE decreases as the cutting speed 
becomes smaller or larger (parabol). When using UPT 
on the lens surface, low feed speed should be selected to 
reduce vibration, increase accuracy, improve surface 
quality while the FE still reaches a small value. The 
depth of cut increases, the FE decreases (Fig. 11) 
because a low depth of cut (the micrometer range) 
results in low cutting forces, causing sliding on the 
surface without actual cutting, leading to wear and 
deformation. Low cutting force may not exceed the 
elastic limit of the workpiece, causing it to bounce 
during cutting and resulting in FE. However, with a 
small depth of cut and low spindle speed, the tool 
interacts with the workpiece for a longer time, allowing 
the cutting force to be more effective in material removal 
rather than causing sliding (Fig. 12). The spindle speed 
depends on the depth of cut and the feed rate, for each 
pair of feed rates and depth of cut, there will be different 
optimal spindle speeds due to UPT with very small 
cutting parameters f and ap. 

It can be seen that in UPT, it is necessary to consider 
many factors such as the workpiece material to choose 
an appropriate depth of cut to avoid tool slipping, along 
with the spindle speed and feed rate to achieve the best 
form accuracy. In cases where it is necessary to choose 
a depth of cut that is too small, which may cause 
slipping, the spindle speed should be reduced 
appropriately to achieve the best form accuracy. 
However, the spindle speed should not be reduced too 
much, as it may not generate enough kinetic energy to 
overcome the initial cutting resistance of the workpiece, 
still resulting in significant FE. 

4. Conclusion 

The research applied the BB method to construct the 
experimental model, while also using the PSO algorithm 
to optimize the input technological parameters for the 
UPT Al6061 SS. Through analysis and optimization, the 
parameters including spindle speed, feed rate, and depth 
of cut have been determined with optimal values, 
helping to minimize FE. The results show the following: 

 1. The actual model established using the BB 
method has high accuracy, showing that the predicted 
and actual results are not significantly different, 
demonstrating the reliability of the model.  

 2. The PSO algorithm has optimized the input 
parameters effectively, a quick convergence time and the 
ability to achieve global optimal results. The FE reached 
an optimal value 0.95 (µm) corresponding to the 
technological parameters n equal 1746 (rev/min), f equal 
5 (mm/min), ap equal 8 (µm), indicating the method 
great potential in improving the quality of SS UPM.  

3. The influence of technological parameters is 
analyzed in detail, attention to the workpiece material to 
select an appropriate depth of cut to avoid slipping that 
causes significant FE. A low feed rate selection should 
be prioritized, which in turn determines the spindle 
speed to match the depth of cut and feed rate. 
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