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Abstract

The paper investigates optimizing form accuracy in Al6061 spherical surface (SS) machining through single-point diamond
turning (SPDT) with the swarm optimization (PSO) algorithm. The optimization problem is implemented on the basis of
building the relationship between profile accuracy or form error (FE) with cutting parameters including spindle speed
(n-rev/min), feed rate (f-mm/min), and depth of cut (ap-um). Based on the data collection from 15 experiments in the
Box-Behnken (BB) model with the specialized software Design Expert support, the modeling results show a high agreement
between the predicted data and the actual measured values with high reliability (R’ = 0.9428). By using the PSO algorithm,
the optimal FE value of 0.95 um was found, corresponding to the technological parameter set of n equal 1746 rev/min,
fequal 5 mm/min, and ap equal 8 um. This research significantly lays the foundation for controlling, predicting, and
optimizing the FE factor of SS, particularly for AI6061 material and generally for other materials. Moreover, these results

will further enhance the SPDT machining of more complex surfaces and reduce optical errors.
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1. Introduction

Ultra-precision machining (UPM) is a mechanical
machining technology that achieves extremely high
precision and surface finish. The roughness values
typically reach a few nanometers or less. This
technology is mainly applied in industries that require
high surface quality and strict tolerances, such as
aerospace, electronics, medical, and optics. Some UPM
methods include ultra-precision grinding [1], ultra-
precision milling [2], and ultra-precision laser
machining [3]. Ultra-precision turning (UPT) [4] is a
typical method for machining lens surfaces and molds
for lenses in the field of optics. UPT technology can
process various types of rotationally symmetric and
asymmetric surfaces and can handle difficult-to-
machine optical materials such as glass, Ge crystals,
ZnSe, CaF,, or Silicon, as well as non-ferrous metals like
aluminum and copper alloys. In addition, UPT can create
surfaces with roughness in the range of a few
nanometers, with form error (FE) of less than a few
micrometers. UPT can also process lenses with complex
shapes, such as aspheric lenses, diffractive lenses, or
freeform surfaces.

In optics, surfaces play a crucial role in the
transmission and control of light. The FE and roughness
of these surfaces directly affect the performance and
quality of optical devices such as lenses, mirrors, prisms,
and optical sensors. Typical optical surface types such
as spherical surfaces [5], aspherical surfaces [6], and
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diffraction surfaces [7]. Research on spherical lens
surfaces is crucial for controlling and optimizing optical
properties like convergence, divergence, and light
transmission. The accuracy and quality of the SS directly
affect the performance of the optical system, especially
in devices that require high precision such as telescopes,
microscopes, and medical equipment.

Assessing surface machining quality, especially in
the fields of optics and precision mechanics, requires
several important technical criteria. The FE is the most
important factor. It is the error that measures the
deviation between the actual surface of the lens and the
ideal surface it is designed to be, which can be a
spherical, aspherical, diffractive, or flat surface. This
error greatly affects the lens optical performance, as it
causes aberrations, reducing the image or light quality
obtained. Using the SPDT method with aluminum
material for the SS, the author in [8] demonstrated that
the FE of the sphere was reduced by half compared to
previously used methods. The research results controlled
by the STS (Slow Tool Servo) technique in SPDT [9]
show that the form accuracy has reached the um level.

There are many optimization algorithms such as the
artificial bee colony (ABC) algorithm [10], ant colony
optimization (ACO) algorithm [11], particle swarm
optimization (PSO) algorithm [12]. PSO has advantages
over other algorithms such as its simple structure and
much easier implementation compared to other
optimization algorithms. PSO parameters are usually
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few and not too complex to adjust. PSO has the ability
to find optimal solutions efficiently thanks to the
cooperation between individuals in the search space.
This algorithm typically converges quickly to the
optimal solution vicinity. It can also be adjusted to
enhance exploration capability (searching new areas) or
exploitation (detailed search within an area) by tuning
the parameters. This algorithm is used [13] to optimize
energy consumption, and [14] to optimize the structural
parameters of the Fiber Bragg Grating accelerometer.

This article focuses on constructing a regression
equation for Al6061 sphere FE using response surface
methodology (RSM) and the Box-Behnken (BB) model.
PSO algorithm is used to optimize the FE and find the
corresponding set of cutting parameter values. The paper
structure is presented with the introduction section.
Next, the model and research method are described in
Section 2, in which the actual model along with the
processing and measurement equipment system is
considered together with a set of 15 experiments to
collect the necessary information. Accordingly, some
results were found and analyzed in detail in Section 3.
Finally, the research results and their significance are
summarized and presented in Section 4.

2. Model and Research Method
2.1. Research Model

The research was conducted on a super-precision
lathe using diamond cutting tools to machine the
Al6061 SS, employing the BB method and the PSO
algorithm to achieve optimal FE based on optimizing the
input technological parameters. The steps are described
in the following steps:

Step 1: Problem Identification

Input: Three factors technological parameters
consisting: spindle speed n (rev/min) feed rate
f (mm/min), and depth of cut ap (um).

Process: Define the problem and establish the
relationship between cutting parameters and FE.

Output: Build a regression model and find the cutting
parameter set corresponding to the optimal FE value.
From there, each parameters pair influence on the FE is
also considered.

Step 2: Experimental Model Construction

Input: Defined ranges (upper and lower limits) for
technological parameters.

Process: Construct the coding table for the
parameters and develop the experimental matrix using
the BB method.

Output: Experimental design matrix for subsequent
machining tests.

Step 3: Experimental Machining and Data Collection

Input: Experimental matrix from Step 2.
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Process: Machine Al6061 spherical samples with 15
sets of cutting parameters on the SPDT machine.
Measure the FE for each experiment.

Output: Dataset of FE values corresponding to each
parameter set.

Step 4: Regression Model Development based on
ANOVA

Input: Dataset obtained from Steps 2 and 3.

Process: Perform regression analysis and ANOVA to
construct a mathematical model representing the
relationship between cutting parameters and FE. Define
the objective function.

Output: Regression model (objective function)
describing FE.

Step 5: Optimization Using Particle Swarm

Optimization
Input: the objective function from step 4, the limits

of the parameters, and the algorithm parameters
(MaxIt, npop, w, C1, C2).

Process: Initialize population; evaluate objective
function for each individual; update velocity and
position of individuals; identify the global best solution.

Output: ~ Optimal  cutting  parameter  set,
corresponding minimum FE, and quantified influence of
parameters on FE. The steps are described in Fig. 1.

Technology Form error
(FE)

parameters

Identify the
problem

Build an experimental
model with the Box-
Behnken method

Machining
(f,n, ap)

}

Build a regression

[

model
n, f, ap and Apply PSO Effect of n,
FE optimal algorithm f,ap on FE

Fig. 1. Steps to implement the research content
2.2. Experiments and Measurements

The experiment was conducted on the ultra-precision
lathe Nanoform®X. The FE was measured on the Form
Talysurf® PGI Optics PRO profilometer (Fig. 2), which
measures FE with high precision on the lens various
surface types with a measurement range 20 mm and a
resolution 0.2 nm. The experiment was conducted on an
A16061 billet (Fig. 3) with a diameter @30, a height is
20 mm, and a spherical radius is 19.5 mm, with the
chemical composition shown in Table 1.
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Table 1. Chemical composition of Al16061

Element Mg Si Mn Cu Fe Al Other
wt.% 1.38 0.19 0.49 4.04 0.15 93.62 0.13
Table 2. Cutting tool specifications
Specifications Cuttmg edge Front angle Cu‘thg Rear angle Included Waviness
radius height angle
Dimensions 0.684 mm -25° 7.475 mm 12° 60° 120°

Fig.4. Cutting tool

The cutting tool is the diamond turning
tool NN60R0635mWGC-MS0454 (Fig. 4) with
specifications shown in Tab. 2. The technology system
(Fig. 5) includes a vacuum chuck, Al6061 workpiece,
fixture, diamond turning tool, and mist cooling system.

The experiments are designed based on three input
technological parameters suitable for the machine
system and the tool's machining range. The chuck is
adjusted so that the runout is less than 0.005 pm for the
most stable system.

2.3. Experimental Planning Model

The experiment was conducted based on the BB
matrix, a type of experimental design in the field of
RSM. This model was developed by George E. P. Box
and Donald Behnken in 1960 [15], primarily used to
construct a mathematical model describing the
relationship between input factors (variables) and an
output (response) to optimize the process. BB main
characteristic is that it does not include points at the
design space corners but focuses on the midpoints or the
design space edges surfaces, helping to reduce the
number of experiments compared to full factorial
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Fig. 5. Ultra-precision lathe system

designs (Fig. 6).
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Fig. 6. The BB model experimental point distribution
diagram
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The equation has the form:

Z Bix.x,

i<j

y= Byt Y B Y B+ (1)

where y is the response, x, is the independent

variables, [ is the regression coefficients.

Since BB saves time and resources compared to
other designs, especially when variables number is large,
and due to not using experiments at the vertex points,
BB reduces variables risk exceeding experimental
limits. This model is ideal when the relationship between

Table 3. Values the experimental variables coding levels

input and output factors is nonlinear, and BB allows for
the estimation of quadratic and interaction coefficients
with accuracy equivalent to or better than CCD, while
requiring fewer runs. Therefore, the BB model is used to
find the optimal value for the FE. The cutting parameters
are divided into 3 levels with the coding levels shown in
Table 3.

Through the machining and measurement process,
the deformation error results corresponding to each set
of input technological parameters are obtained. The BB
model experimental matrix corresponding to the three
parameters n (rev/min), f (mm/min), ap (um) and the
corresponding results are presented in Table 4.

Symbol Parameters Unit Levels
1(-1) 2(0) 3
X1 Spindle speed (n) rev/min 1000 1500 2000
X2 Feed rate (f) mm/min 5 15 25
X3 Depth of cut (ap) pm 2 5 8
Table 4. Experiment matrix and experimental results
Encryption value Result
No
n (rev/min) f (mm/min) ap (um) FE (um)

1 -1 -1 0 1.0011

2 1 -1 0 1.003

3 -1 1 0 1.0388

4 1 1 0 1.0232

5 -1 0 -1 1.0156

6 1 0 -1 1.0781

7 -1 0 1 1.0743

8 1 0 1 0.9739

9 0 -1 -1 0.9592

10 0 1 -1 1.0025

11 0 -1 1 0.9611

12 0 1 1 0.9502

13 0 0 0 1.0087

14 0 0 0 1.0087

15 0 0 0 0.9743
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2.4. PSO Swarm Algorithm

PSO is an optimization method based on
evolutionary algorithms, proposed by Eberhart and
Kennedy in 1995 [16]. PSO is inspired by the behavior
of bird flocks and fish schools when they forage or move
together. This is a global optimization algorithm, widely
used in artificial intelligence field and computer science
to solve non-linear and non-smooth optimization
problems. PSO simulates the behavior of a individuals
group in the search space to find the optimal solution.
Each individual represents a potential solution and has
key attributes including: position, velocity, personal best
position history, and swarm best position history. The
steps to implement the PSO algorithm are as follows:

Step I: Start (initialize the algorithm)
Step 2: Initialize the population

Build the population size I (number of individuals),
algorithm iterations maximum number (T), search space
dimensions’ number.

Step 3: Calculate the objective function

For each individual, calculate the objective function
value at the current position.

Step 4: Create a search loop
Step 5: Update velocity and position

In each iteration, the individual updates its velocity
based on the trajectory towards the best position it has
ever achieved and the trajectory towards the best
position the entire swarm has ever achieved. Each
individual velocity is updated based on its own best
position ( pBest ) and the swarm best position ( gBest ).

The formula for the individual velocity i at iteration
t+1is:
v.(t+1) = wv,(t) +c .1.(pBest, — x,(1))
+c,.1,.(gBest — x,(1))

)

where v,(f) is velocity of individual i at time #; @ is

inertia weight, usually ranging from 0.4 to 0.9, helps
control the previous velocity influence; ¢, is cognitive

coefficient, adjusting the personal best position
influence level pBest ; c, is social coefficient, adjusting

the best position influence level in the herd
gBest; r, r, are random numbers in the range [0,1]

which help create randomness in the velocity update
process;, pBest is the best personal position of

individual 7 up to the present time; gBest is the best
position in the herd among all individuals; x,(f) is
current position of individual 7 at time ¢.

The position of each individual is updated by adding
its new velocity to the current position:

€)

x,(t+)=x()+v,(t+])
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where:
x,(t) : current position of individual i at time ¢
v,(t+1) : speed of individual i after the update at time
t+1

Step 6: Update pBest va gBest best value

Compare the current position objective function
value with pBest . If better, update pBest to the current

position. Compare the pBest to update, if any pBest is
better than gBest , then update gBest .

Step 7: Check stop conditions

Step 8: Stop searching and output the results

The PSO algorithm will stop when the final result is
achieved (maximum number of iterations).

The algorithm diagram is described in Fig. 7.

[ Initialize the population ]

Population

assessment, objective t=t+1

function calculation
No
e P
results
Yes
[ Update pBest, gBest ]
— No
i=itl

l Yes
—[ Update v;(t+1) and x;(t+1) ]

Fig. 7. PSO algorithm diagram

3. Results and Discussion
3.1. ANOVA Analysis and Regression Model

Using the specialized software Design Expert to
construct the regression equation and observe the
model's fit analysis results with the experiment,
R*=0.9428 (R-Squared) close to 1 indicates high
reliability, proving that the experimental results are close
to the model's predicted values. Adeq Precision equal
10.3, which is greater than 4, indicates that the model
has reliable predictive capability.

Table 5 describes the ANOVA analysis results and
the regression equation coefficients. The F-value
column indicates the regression model fit goodness,
showing the differences in variance among mean values
groups. A high F-value indicates that the model has a



JST: Engineering and Technology for Sustainable Development
Volume 35, Issue 4, October 2025, 043-051

better ability to explain the variation in the data
compared to a model without any influencing factors. If
the F-value is large and the P-value is less than 0.05, the
model is considered significant. With an F-value 0of 9.16
and the model being statistically significant with high
reliability (p-value equal 0.0126 is less than 0.05), this
proves that the model is fully compatible with the

values in the P-value column are the coefficients that
have a large influence on the form accuracy, the
remaining values have little or no influence on the form
accuracy. The FE regression equation is obtained as
follows:

FE =0,9972-0,0139x, —0,0407x,x,

experiment. The FE column shows the regression +0,0414x] —0,0221x; (um) “4)
equation coefficients. Corresponding to the significant
Table 5. ANOVA analysis results and the regression coefficients
Source Sum of df Mean F-value  P-value Significance Form error =
Squares Square
Model 0.0184 9 0.0020 9.16 0.0126 Significant +0.9972
A-n 0.0003 1 0.0003 1.49 0.2769  Not Significant -0.0065x A
B-F 0.0007 1 0.0007 3.16 0.1356  Not Significant +0.0094 x B
C-ap 0.0015 1 0.0015 6.89 0.0469 Significant -0.0139x C
AB 0.0001 1 0.0001 0.3424  0.5839  Not Significant -0.0044x AB
AC 0.0066 1 0.0066 29.67 0.0028 Significant -0.0407x AC
BC 0.0004 1 0.0004 1.71 0.2480  Not Significant -0.0098 x BC
A2 0.0063 1 0.0063 28.26 0.0032 Significant +0.0414x A2
B2 0.0018 1 0.0018 8.05 0.0364 Significant -0.0221x B2
C2 0.0000 1 0.0000 0.1617  0.7042  Not Significant -0.0031x C2
Residual 0.0011 5 0.0002
Lack of Fit 0.0003 3 0.0001 0.2782  0.8402  Not Significant
Pure Error 0.0008 2 0.0004
Cor Total 0.0196 14
1.08 1.08 1.08
1.06 1.06 1.06
1.04 1.04 1.04
E B B S,
3102 | 3102 ] 3102 - -
5 1 5 1 5 1
£ 1 £ 1 £ 7
< 098 | 20,98 | < 008 |
0.96 0.96 0.96 .,
0.94 094 094

1000 1200 1400 1600

A: n (rev/min)

1800 2000 5 10

B: f (mm/min)

15 20 25 2 3 4 5 6 7 8

Fig. 8. Technological parameters' influence on FE
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3.2. Results of Establishing the Prediction Model and
Optimal Value

The objective function is a mathematical equation
that represents the relationship between technological
parameters and FE, finding the optimal technological
parameters for optimal FE. The regression equation (2)
has been constructed from the BB model.

The technological limits are -1<ux,x,,x, <1

corresponding  to 1000 < n <2000 (rev/min),
5< f <25 (mm/min), 2 <ap <8 (um). The PSO main

parameters establish in MATLAB software are shown in
Table 6.

The FE optimal result is described in Fig. 9. The
optimal FE value achieved is 0.95 um with the encoded
technological parameter set as x; equal 0.4915, x; equal
-1, x3 equal 1 corresponding to the input parameters

0.957

0.956

0.955

Best Costin PSO
o o
[{=] [{=]
(5]} [
w Py

0.952

0.951 ' - - '
0 20 40 60 80 100
Iteration

Fig. 9. The optimal FE value

Form error (pm)

30
20

10 .
8 o f (mm/min)

Fig. 11. The influence of ap and f

n equal 1746 (rev/min), fequal 5 (mm/min), ap equal
8 (um).
Table 6. PSO algorithm parameters

No  Parameters Symbol  Value
1 Search iterations Maxlt 100
number
2 Swarm population size npop 100
3 Inertia coefficient W 1
4 Inleld}lal acceleration Cl 5
coefficient
5 PopulaFlon acceleration o) )
coefficient
1.06
T 1.04
=2
= 1.02
e
g 1
£
5 0.98
('S
0.96
30
20 2000
.10 1500
f (mm/min) 0 1000 n (rev/min)
Fig. 10. The influence of # and f
11
€
=
5
©
E
[}
(19
2000

1500
n (rev/imin)

2 1000

Fig. 12. The influence of ap and n
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Machining Al6061 under varying input parameters
produces different FE. Fig. 10, Fig. 11, and Fig. 12 show
how the three parameters influence FE. The cutting
speed at f'equal to 15 mm/min (Fig. 10, Fig. 11) has the
largest FE, the FE decreases as the cutting speed
becomes smaller or larger (parabola). When using UPT
on the lens surface, low feed speed should be selected to
reduce vibration, increase accuracy, improve surface
quality while the FE still reaches a small value. The
depth of cut increases, the FE decreases (Fig. 11)
because a low depth of cut (the micrometer range)
results in low cutting forces, causing sliding on the
surface without actual cutting, leading to wear and
deformation. Low cutting force may not exceed the
elastic limit of the workpiece, causing it to bounce
during cutting and resulting in FE. However, with a
small depth of cut and low spindle speed, the tool
interacts with the workpiece for a longer time, allowing
the cutting force to be more effective in material removal
rather than causing sliding (Fig. 12). The spindle speed
depends on the depth of cut and the feed rate, for each
pair of feed rates and depth of cut, there will be different
optimal spindle speeds due to UPT with very small
cutting parameters f and ap.

It can be seen that in UPT, it is necessary to consider
many factors such as the workpiece material to choose
an appropriate depth of cut to avoid tool slipping, along
with the spindle speed and feed rate to achieve the best
form accuracy. In cases where it is necessary to choose
a depth of cut that is too small, which may cause
slipping, the spindle speed should be reduced
appropriately to achieve the best form accuracy.
However, the spindle speed should not be reduced too
much, as it may not generate enough kinetic energy to
overcome the initial cutting resistance of the workpiece,
still resulting in significant FE.

4. Conclusion

The research applied the BB method to construct the
experimental model, while also using the PSO algorithm
to optimize the input technological parameters for the
UPT Al6061 SS. Through analysis and optimization, the
parameters including spindle speed, feed rate, and depth
of cut have been determined with optimal values,
helping to minimize FE. The results show the following:

1. The actual model established using the BB
method has high accuracy, showing that the predicted
and actual results are not significantly different,
demonstrating the reliability of the model.

2. The PSO algorithm has optimized the input
parameters effectively, a quick convergence time and the
ability to achieve global optimal results. The FE reached
an optimal value 0.95 (um) corresponding to the
technological parameters n equal 1746 (rev/min),
fequal 5 (mm/min), ap equal 8 (um), indicating the
method great potential in improving the quality of SS
UPM.
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3. The influence of technological parameters is
analyzed in detail, attention to the workpiece material to
select an appropriate depth of cut to avoid slipping that
causes significant FE. A low feed rate selection should
be prioritized, which in turn determines the spindle
speed to match the depth of cut and feed rate.
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