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Abstract

This study introduces a novel predator-prey model that integrates the effects of predator intraspecific competition, prey group
defense mechanisms, wind flow, and harvesting effort. The model employs a modified Holling type Il functional response to
capture the complexity of prey-predator interactions under environmental and anthropogenic influences. We establish the
model’s positivity and boundedness and derive conditions for the local and global stability of equilibrium points. Hopf
bifurcation analysis reveals that both wind intensity and harvesting effort significantly affect system stability. Numerical
simulations demonstrate that while mild wind flow can stabilize the system with minimal group defense, increased wind
intensity enhances overall system stability. Furthermore, harvesting pressure and intraspecific competition contribute to
stability regardless of wind strength. The analysis also shows that intraspecific competition and harvesting effort are positively
correlated with prey density and negatively correlated with predator density at equilibrium.

Keywords: Group defense, harvesting effort, hopf bifurcation, intraspecific competition, stability analysis, prey-predator

model, wind flow.

1. Introduction

In recent decades, the study of predator-prey
dynamics has advanced considerably, with a growing
emphasis on both biotic and abiotic factors that influence
ecological interactions. Traditional models have
primarily focused on biological mechanisms such as
foraging behavior, group defense, and interspecific and
intraspecific competition. However, there is increasing
recognition of the significant role played by abiotic
elements and anthropogenic activities in shaping
ecosystem behavior.

Abiotic factors—including temperature, precipitation,
light availability, and wind flow—exert profound effects
on species distribution, movement, and interaction
patterns [1-3]. Wind flow has emerged as a particularly
influential variable due to its capacity to alter dispersal
routes, migration behavior, and foraging efficiency.
Despite its ecological relevance, the integration of wind
dynamics into predator-prey models remains limited.
Notable contributions by Barman et al. and Takyi ef al.
have begun to address this gap by incorporating wind
effects and prey refuge into dynamical systems [4—6].

In parallel, human activities such as harvesting have
become dominant forces in ecological systems, often
surpassing natural biotic and abiotic influences.
Incorporating harvesting effort into population models is
essential for understanding the broader implications of
human intervention on species persistence and
ecosystem stability [7-9].
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Wind flow dynamics can influence resource
availability and accessibility, affecting human
harvesting practices. Conversely, human harvesting
activities may cause population declines, leading to
changes in ecological dynamics and ultimately
impacting resource distribution and ecosystem structure.

This study extends previous work by developing a
comprehensive predator-prey model that incorporates
wind flow as an abiotic factor and harvesting effort as a
human influence. The model also accounts for prey
group defense and predator intraspecific competition,
offering a more holistic view of ecological dynamics.
Through mathematical analysis and numerical
simulations, we aim to elucidate the complex interplay
between environmental forces, biological traits, and
anthropogenic pressures.

The remainder of this paper is organized as follows:
Section 2 introduces the mathematical model and
underlying ecological assumptions. Section 3 presents
the analytical results, including positivity, boundedness,
and stability analyses, as well as Hopf bifurcation
conditions. Section 4 provides numerical simulations to
support the theoretical findings and discusses their
ecological implications. Finally, Section 5 concludes the
study with key insights and potential directions for
future research.

2. The Mathematical Model

To investigate the combined effects of wind flow,
intraspecific competition among predators, prey group
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defense, and harvesting effort, we propose a system of
nonlinear ordinary differential equations. The model
captures the dynamics of prey and predator populations
over time and is formulated as follows:

(du (1 u) auv
—=rul(1=2)=-
de k 1+w+bu+1bwu
dv a,uv 5
Py Bl —dv—hv— yv
1+w+bx+1
+w

with initial conditions:
u(0) > 0,v(0) >0 (2)

Here, all parameters are assumed to be non-negative.
The variables and parameters are defined in Table 1.
This model incorporates a modified Holling type II
functional response, adjusted to reflect the influence of
wind flow and group defense on predation efficiency.
The prey population grows logistically, while the
predator population is subject to natural mortality,
harvesting, and density-dependent competition. The
interaction terms are modulated by environmental and
behavioral factors, making the model suitable for
analyzing complex ecological dynamics under both
natural and anthropogenic influences.

Table 1. Model parameters with ecological descriptions

Parameters Description
/Variables
u(t) Prey population density at time ¢
v(t) Predator population density at time ¢
r Intrinsic growth rate of the prey
k Carrying capacity of the prey
w Intensity of wind flow
aq Predation rate coefficient
a, Conversion efficiency of prey into
predator biomass
b Group defense coefficient of the prey
d Natural mortality rate of the predator
h Harvesting effort on the predator
population
y Intraspecific competition coefficient

among predators

3. Model Analysis

This section presents a comprehensive analysis of the
proposed predator-prey model, focusing on the
positivity and boundedness of solutions, the existence

and stability of equilibrium points, and the conditions
under which Hopf bifurcation may occur.

3.1. Positivity and Boundedness of Solutions

To ensure biological feasibility, it is essential to
demonstrate that the solutions of the system remain
non-negative and bounded for all time t > 0.

Theorem 3.1: All solutions of the system with initial
conditions u(0) > 0, v(0) > 0 remain non-negative for
allt > 0.

Proof:

The right-hand side of the system is continuous and
locally  Lipschitz in  the  first quadrant
P ={(u,v):u,v =0}, ensuring the existence and
uniqueness of solutions. By integrating the system, it can
be shown that both u(t) and v(t) remain non-negative
forall t > 0.

u(t)
= u(0)exp j I 1 —@
B a,v(s) ds 3)
1+w+bu(s) + bf’i(;)
=0
v(e) = v(0)exp {fo [ﬁ 0

d—h—yv(s)

ds}ZO

Theorem 3.2: All solutions of the system are bounded

forallt > 0.

Proof:
Let Q(t) = u(t) + v(t) t>0 5)

By differentiating O along the trajectories of the
system, we obtain:

ag du(t) a;dv(t)
dt dt @ a, dt
u
=ru (1 - E) (6)
(d+ h)a,
_ -

Choosing § € R™, such that § < d + h, we get,

9 s0=(+0) ru?
q Toe = Hou——

a,v
— o, @Rt o

k(r+6)%

< o<
= TS 4r



Journal of Science and Technology — Engineering and Technology for Sustainable Development
Volume 36, Issue 1, March 2026, 087-096

Therefore,

dg 00 <M
E-'_ Q<M Q(t)

< % + Q(ug, vy)e % ®

=0<9 S%+ Q(ug, vy)e %t

O(?) is bounded above by % when t — oo, therefore, both
u(t)and v(t) are bounded.

3.2. Equilibrium Points and Stability Analysis

The equilibrium points of the system are obtained by
setting the right-hand sides of the differential equations
to zero:

auv

u(l_%)_1+ +bu 2% -
1+w ©)
a,uv
2 il —dv—hv—yv? =0
1+w+bx+1+w

Solving the system of equations (9) yields three
potential equilibrium points:

1. The trivial equilibrium point E, = (0,0) which
always exists, represents the situation where both
species will go extinct.

2. The axial equilibrium point E; = (k,0) always
exists. This equilibrium represents the situation in which
the prey grows to the environment's carrying capacity,
and the predator goes extinct.

= (u',v"),

3. Coexistence equilibrium point E*
where
* T " bwu* . - .
v =— (1 +bu"+w+ —) and u* is the solution of
aq 1+w
the following equation:

A1u3 + Azuz + A3u + A4=0 (10)

where
_yr b2(1+ 2w)?
Tk +w)?

22w b2 2wy
Z‘W[ Kk (d+w? |
(1 +w)?
Az =yr [T —-2b(1 + 2w)] +a,a, —a;b(d
(14 2w)
AT
Ay =—[yr@ +w)? + a;(d + R)(1 + w)].

E™* exists if u* is positive. This equilibrium represents
the situation where both species exist.
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3.2.1. Local stability analysis

We begin by examining the local stability of the
equilibrium points through the system’s Jacobian
matrix. The right-hand side expression of system (1) is
expressed separately as the following function:

u a,uv
F(u,v)zru(l—E)— B
1+w+bu+1+w
a,uv
G(u,v) = T dv — hv — yv2.
1+w+bu+1
+w

The Jacobian matrix of the system (1) is as follows
Bll

_ BlZ
B(u,v) = (321 Bzz)' (In
where
oF (1 Zu) a,(1+w)v
1mn=7_=r\l—-—J- 2
Jdu k bwu
(1 +but+w+ 1+ )
JoF au
12 =373 =—
ov 1+w+bu+1b_‘?_/1;/
_0G a,(1+w)v
21 = 5 &
ou bwu
(1 +w+bu+ 1+ )
aG au d—h—2
o =T = — — ol yv.
ov 1+w+bu+1b_V:1$V

Theorem 3.3 The trivial equilibrium points E, = (0,0)
is always unstable.

Proof:
The Jacobian matrix corresponding to the
equilibrium point Ej,:
(T 0
B(O,O)_(0 _d_h) (11)
The Jacobian matrix B(0,0) have 2 eigenvalues:
/11 =r > 0;
Ay = —=d — h <0.

Thus, using the first Lyapunov method, E; is always
unstable; therefore, system (1) exhibits unstable
behavior around the trivial equilibrium point E,.

Theorem 3.4 The axial equilibrium point E; = (k,0) is
locally asymptotically stable if the following condition
holds:

ak<(d+h)1+w)

+bk(d +h) (1 +L)

1+w (12)
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Proof:
AtE; = (k,0), the associated Jacobian matrix
- __ wmk
. r Thw+bk+22E
is:B(k,0) = aoke (13)
0 —2——7—d—nh
1+W+bk+m
The Jacobian matrix has 2 eigenvalues:
2,1 =—1r < 0,
p iz —d—h
2 = wk ¢
14+w+ bk ++—7F— i+w
Using the first Lyapunov method, the condition for
E; to Dbe locally asymptotically stable is

A, < 0 then we have the condition (12).

Theorem 3.5. The coexistence equilibrium point
= (u*,v") is locally asymptotically stable if

(1 2u*) a,(1+w)v* <0 (14)
)=
k N2
(1+w+bu +f“_£uw)

Proof:

At equilibrium point E*, the associated Jacobian

matrix is:
Bi, Bj
B(u*,v*) =( 11 12) (15)
BZl BZZ
where By, Bi,,B;;B;, are the corresponding
expression of By;,By,,By1,B;; at  coexistence

equilibrium point E*. The characteristic equation of this
Jacobian matrix is:

z - (Bik1 + Bgz)'1 + BB, — B{;B3; =0 (16)
where
i 2u* a,(1+w)v*
Bi=v (1 h T) h bwu* 2
(1+w+bu +1+w)
au
By, = 7
1+w+bu* + f"f‘
i a,(1 +w)v*
Bz = bwu*
(1+w+bur +1+W)
B; @ d—h— 2yv°
22— bwur T T AV
1+w+bu*+—— T+w
= —yv".

Equation (4) has two roots with negative real parts if

*

{ Bi;+ B3, <0
Bi1Bz, — Biz Bz; > 0.
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It is obvious that Bj, < 0,B;, < 0 and B3; > 0.
Hence, if B{; < 0 or we have the condition (14), then
the following inequalities will be satisfied:

Bi; + B3, <0, B{1B;, — B, B;; > 0. Using the first
Lyapunov method, we obtain conditions under which
E™ is locally asymptotically stable.

3.2.2. Global stability of the coexistence equilibrium

Theorem 3.6 Coexistence  equilibrium  point
E* = (u*,v*) is globally asymptotically stable if
u>u,v>v (17)
and the following condition is satisfied:
r> ba1(1+1+w)v* 18
k w1 Y
A+w[t+w+b(1+—)w]
Proof:
Firstly, a Lyapunov function is constructed as
follows:
L(uv)—alf ( )du+a2f ( )dv (19)

where @, and a, are properly chosen positive constants.

By differentiating C(u,v) with respect to t, we

obtain:
dL_ (u—u )du+ (v—v*)dv
ac Uy Jae T2y e
_ ~[ldu 1 /du
= (=) | = (G e )|+
1dv 1
taw =) [ = (G )]
O] LR
v’ _ N U
+ 1+w+bu* +bww] +a-v )[ 1+bu+w+i’fx
T ) (20)
1+w+bu* + w
Let
(u)—1+w+bu+bw—u 21D
from which we derive:
aL c *)( r( *) a1v+a1v>
T AN S A T R ICD
+ay *)(azu N azu*)
a,(v—v .
2 gw) g
TRV EITR
=aq(u—u)|{—-——(wu—-u*)—
! gw) g
alv alv*)
(u) (u")
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au  aut aut aut X|w=w* = 007 a3 |y=y+ =0, (29)
+a,(v—v") - + - -
gw) g g gw) and
d
—y(w— ﬁ) S e E 00T S|y 0. (30)
3.4. 0ptimal Harvesting Effort
=a,(u—u) [ “Duw—-u) —a == LA To determine the optimal level of harvesting that
gw) .. . . [N
maximizes yield without destabilizing the system, we
bay(1+m o w—uw)| | apayew) - w-v") _ analyze the Maximum Sustainable Yield (MSY) under
gwgw®) gwg) the assumption that intraspecific competition among
—ayy (v — v*)? predators is negligible.
— _ _ a2 |r ba1(1+1+w) ’ 1
= -y (u—u) [k gw)gw*) + 09t
(u—-u*)(v—v*) N\ _ 08}
Tywaa a2 (l+w) —aagw)] ol
—ay(v —v*)? (22) 06}
Choosing Sost
(1+w) |
1+
oy = 222204 23)
a19u*) 0.2}
we get: o017
0 I R S I SR S
d_L _ e P ba1(1+1+w) * 0 001 002 003 D.:‘M 005 0.06 007 008
A [k gWgw”) (24) ‘ ‘ o
Fig. 1: Graph of Y (h) with the parameters provided in
Imposing the condition Table 2
r bay (1475 )v" Table 2. Parameter sets for the stable of each equilibrium
-> 1w ,t (25) .
k (1+w)[1+w+b(1+m)u*] point
we have % < 0 . Using Lyapunov’s second method
along with LaSalle’s invariance principle, the Parameter E, E*
equilibrium point E* is globally asymptotically stable.
The proof is complete. r 0.8 0.8
3.3, Honf Bi . k 10 10
.3. Hopf Bifurcation w 20 20
To explore the emergence of periodic solutions in the b 6 2
system, we analyze the conditions under which a Hopf « 0.9 0.9
bifurcation occurs at the coexistence equilibrium ! ' '
N a, 0.6 0.6
point E”*.
d 0.02 0.02
Theorein. 2.7: ”A ' Hopfd'b'ifurcation ‘ ocz’urs at h 0.03 0.03
w = w" if the following conditions are satisfied.: 0.002 0.002
i.B{; + B;, =0; (26)
ii. Bj1B5, — Bi, B;; > 0; 27 Theorem 3.8: The MSY is achieved when the harvesting
P effort h reaches the value:
i, 2Pt Baa) o (28)
o p=la 31)
Proof: By substituting a complex eigenvalue he
A=x+iyinto the characteristic equation and where:
separating real and imaginary parts, we derive the .
conditions under which a pair of purely imaginary hy = klaz(1 +w) = bd(1 + 2w)]
eigenvalues emerges, indicating the onset of a Hopf —d(1+w)*[ay(1+ w) —bd(1 +2w)], (32)
bifurcation.
a hy =[kb(1 +2w) + 2(1 + w)?][a,(1 +w) -
x = _71_ bd(1 + 2w)] + bd(1 +2w)(1 + w)2. (33)
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Proof:

By expressing the equilibrium predator density
E* = (u*,v"), as a function of &, the yield function
Y(h) = hv* is derived.
. (d+h(1+w)?
Cay,(1+w) —bd(1+2w)

. ray(1+w)?k[a,(1+w) — b(d + h)(1 + 2w)]
- a k[a,(1+w) —b(d + h)(1 + 2w)]?

ray,(1+w)*(d + h)
akla,(1+w) —b(d + h)(A + 2w)]?

Y(h) = hv*

ray,(1+ w)?k[a,(1 +w) —b(d + h)(1 + 2w)]

akla,(1+w) —b(d+ h)(1 + 2w)]?
ray,(1+w)*(d + h)

ajklay,(1+w) —b(d +h)(1 + 2w)]%

Differentiating Y (h) with  respect to  hand
solving Y '(h) = 0, yields the optimal harvesting
effort.

dvY  ray(1+w)?
dh ka,
k N kbh(1+ 2w) — (1 + w)?(2d + h)
N E
2b(1 + 2w)(1 + w)?(d + h)h
- 3 )
where N = a,(1+w)—>b(d+ h)(1+2w). The

behavior of the function Y (h) is illustrated in Fig. 1.
ra,(1+w)?k N kbh(1 + 2w)

Y'(h) =
(h) ka, N N2
1+ w)?2d +h)
- T
12 T T T
—Prey
10k’—
8
g
e
H
4
2}
00 2(;0 400 600 800 1000

Time t

a) Time evolution of population densities

2b(1 4+ 2w)(1 + w)?(d + h)h
— 3 =0
& kN? + [kbh(1 + 2w) — (1 + w)?(2h + d)]N
— 2bh(d + K)(1 + 2w)(1 + w)?
= 0.
Replacing N = a,(1 +w) —b(d + h)(1 + 2w), we
obtain:

hq
h= (34)
where:
hy = k[ay(1 +w) — bd(1 + 2w)]?
—d(1+w)?[a,(1+ w)

—bd(1 + 2w)], (35)
hy, = [kb(1 + 2w) +2(1 + w)?][a,(1 + w)

— bd(1 + 2w)]

+bd(1+2w)(1 +w)? (36)

From the equations (34), (35), (36), we obtain the
equation (31).

4. Numerical Simulations and Discussion

To validate the theoretical results and explore the
dynamic behavior of the system under various parameter
settings, we conducted numerical simulations using the
parameter values listed in Table 2. These simulations
illustrate the stability of the axial equilibrium E; and the
coexistence equilibrium E*, as well as the effects of key
ecological and environmental factors. Although the
conditions of Theorem (3.4, 3.5, and 3.6) are complex,
it is still possible to select a set of parameters that satisfy
these conditions, as presented in Table 2. This
demonstrates that the parameter set is non-empty. The
chosen parameter sets satisfy the local stability
conditions of the equilibrium points E; and E*, and are
used to conduct simulations with varying population
sizes for each species (see Fig. 2 and Fig. 3).

K

Predator (y)

L " " L L L
2 4 6 8 10 12 14 16 18
Prey (x)

b) Phase portrait of the dynamical system

Fig. 2: The behavior of the system (1) in case of stable equilibrium point E;
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a) Time evolution of population densities

Predator (y)
-
N

-
o

@

Prey (x)

b) Phase portrait of the dynamical system

Fig. 3: The behavior of the system (1) in case of stable equilibrium point E*
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0.01 0.015

v

0 0.005 0.02

a) Prey population density

Predator

0.015

0 0.005

0.02

b) Predator population density

Fig. 4. Hopf bifurcation diagram with changing intensity of intraspecific competition y at different intensity of wind

flow w

4.1. Effect of Intraspecific Competition

Fig. 4 illustrates the dynamical system's behavior as
the predator's intraspecific competition rate varies under
different wind flow intensities. When the wind flow
intensity is set to w be equal to5 and the value of

predator intraspecific competitive
y is less than 0.0065, the dynamical system exhibits a
limit cycle around coexistence equilibrium

point E*. When v is greater than 0.0065, the system
transitions from stability at the coexistence equilibrium
point to stability at the boundary equilibrium point.
When the value of w is increased, the instability of the
dynamical system is reduced, and the population density
of prey increases while the population density of
predator decreases. When w is equal to 20, we can see
that the system transitions from stability at the
coexistence equilibrium point to stability at the
boundary equilibrium point without Hopf bifurcation.

4.2. Effect of Harvesting Effort

Fig. 5 shows the dynamical system's behavior when
the harvesting effort value changes at different
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intensities of wind flow. When the wind flow intensity
w is set to value 5, the dynamical system exhibits
population instability when the harvesting effort
satisfies  hisless than0.075 and stability when
h is greater than 0.075. When h is greater than 0.12,
the system transitions from stability around the
equilibrium point to stability around the boundary
equilibrium point. It can be observed that humans’
excessive hunting of animal species can drive the species
to extinction. The dynamical system exhibits analogous
behavior when the value of w is increased to 10.
However, the range of values for /4 that cause instability
is reduced, and the amplitude of population oscillations
for both species decreases accordingly. When the wind
flow  strength w  takes the value of
20, the system becomes stable and no longer affected
by h.

4.3. Effect of Wind Flow

In Fig. 6, simulations show the critical role of the
wind factor in the dynamical system. Unstable behavior
of the model system is observed as w increases from 0
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to 10.9, and the oscillations in prey and predator
populations become progressively damped. When the
strength of wind flow w is low, predators exhibit typical
predator patterns, occasionally consuming a large
amount of prey. Over time, this leads to a reduction in
prey offspring, causing food shortages for predators and
resulting in oscillatory dynamics in both populations.
However, as w increases, predators find it increasingly
difficult to detect prey, leading to smaller oscillations in
the population dynamics. When w surpasses the critical
point 10.9, the model system exhibits stable behavior
around the coexistence equilibrium point. However, if
the wind flow strength becomes excessively high, the
system’s stability shifts from the coexistence
equilibrium to the axial equilibrium point. This occurs
because, under high wind flow conditions, predators
cannot detect prey, leading to the eventual extinction of
the predator population. Consequently, the prey
population  grows  unchecked, reaching the
environmental carrying capacity.

4.4. Effect of Prey Group Defense

Fig. 7 shows the dynamical systems behavior when the
value of prey group defense changes at different intensities

3
nonon
83"

0.1 0.15

a) Prey population density

of wind flow. When the strength of wind flow is fixed at
w be equal to 5, the dynamical system exhibits stability
around the equilibrium point while the value of the
parameter b varies in the range from 0 to 0.45. However,
once the value of b surpasses the threshold of 0.45, the
dynamical system becomes unstable, leading to the
emergence of limit cycles with large amplitude oscillations
for each species. If the value of b continues to increase
beyond 3.2, the dynamical system regains stability. The
system remains stable as the value of b increases; however,
when b is greater than 6.3, instead of being stable around
the equilibrium point, the dynamical system stabilizes
around the axial equilibrium point. This means that the
predator species becomes extinct, while the prey population
grows to reach the environment's maximum carrying
capacity. This scenario aligns with natural dynamics, as
excessive defensive capabilities in prey can hinder
successful predation, ultimately leading to the predator’s
extinction. When we fix w be equal to 10, the dynamical
system exhibits similar behavior as when w is equal to5.
However, the range of values for b that causes instability is
reduced, and the amplitude of oscillations for both species
during instability decreases significantly. When w is equal
to 20, the dynamical system remains stable, and its behavior
becomes independent of the parameter b.

w=5
w=10
w =20

_15

S

1]

Ew

0 0.05 0.1 0.15

h

b) Predator population density

Fig. 5. Hopf bifurcation diagram with changing harvesting effort h at different intensity of wind flow w

40 60 80 100
w

a) Prey population density

Predator

20 40 60 80 100
w

b) Predator population density

Fig. 6. Hopf bifurcation diagram with changing the intensity of wind flow w
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Fig. 7: Hopf bifurcation diagram with changing prey group defense b at different intensity of wind flow w

5. Conclusion

In this study, we developed and analyzed a nonlinear
predator-prey model that incorporates the effects of
wind flow, prey group defense, predator intraspecific
competition, and harvesting effort. The model extends
classical predator-prey dynamics by integrating both
environmental and anthropogenic factors, offering a
more realistic representation of ecological interactions.
We established the model’s mathematical well-
posedness by proving the positivity and boundedness of
solutions. Local and global stability conditions for the
system’s equilibria were derived, and the occurrence of
Hopf bifurcation was analyzed to identify conditions
under which periodic oscillations emerge. Furthermore,
we explored the optimal harvesting strategy by deriving
the Maximum Sustainable Yield under simplified
assumptions. Numerical simulations confirmed the
theoretical findings and demonstrated the significant
influence of wind intensity, harvesting effort, and group
defense on system stability. Notably, strong wind flow
and moderate harvesting can stabilize the system, while
excessive prey defense or harvesting may lead to
predator extinction. These results highlight the delicate
balance required to maintain biodiversity and ecosystem
stability. The model has practical implications for
ecological management and conservation, particularly in
systems where environmental variability and human
exploitation are prominent. Our model can be applied to
study real-world predator-prey systems, such as bison
and wolves or lions and wildebeest , etc [11-14]. In
these relationships, bison serve as prey for wolves;
wildebeest serve as prey for lions. Research indicates
that bison utilize a group defense strategy to help
mitigate wolf attacks. On the other hand, wolves,
functioning as predators, face intraspecific competition,
which can lead to behaviors like cannibalism within their
species. Simultaneously, windy conditions can
significantly impact predation success across various
species [4,5]. Lion hunting is less successful in capturing
wildebeest during windy conditions. Future research
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could extend this model by incorporating periodic
environmental fluctuations, spatial heterogeneity, or
alternative functional responses to further enhance its
ecological relevance.
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