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Abstract 

This study introduces a novel predator-prey model that integrates the effects of predator intraspecific competition, prey group 

defense mechanisms, wind flow, and harvesting effort. The model employs a modified Holling type II functional response to 

capture the complexity of prey-predator interactions under environmental and anthropogenic influences. We establish the 

model’s positivity and boundedness and derive conditions for the local and global stability of equilibrium points. Hopf 

bifurcation analysis reveals that both wind intensity and harvesting effort significantly affect system stability. Numerical 

simulations demonstrate that while mild wind flow can stabilize the system with minimal group defense, increased wind 

intensity enhances overall system stability. Furthermore, harvesting pressure and intraspecific competition contribute to 

stability regardless of wind strength. The analysis also shows that intraspecific competition and harvesting effort are positively 

correlated with prey density and negatively correlated with predator density at equilibrium. 

Keywords: Group defense, harvesting effort, hopf bifurcation, intraspecific competition, stability analysis, prey-predator 

model, wind flow. 

 

1. Introduction*  

In recent decades, the study of predator-prey 

dynamics has advanced considerably, with a growing 

emphasis on both biotic and abiotic factors that influence 

ecological interactions. Traditional models have 

primarily focused on biological mechanisms such as 

foraging behavior, group defense, and interspecific and 

intraspecific competition. However, there is increasing 

recognition of the significant role played by abiotic 

elements and anthropogenic activities in shaping 

ecosystem behavior. 

Abiotic factors–including temperature, precipitation, 

light availability, and wind flow–exert profound effects 

on species distribution, movement, and interaction 

patterns [1–3]. Wind flow has emerged as a particularly 

influential variable due to its capacity to alter dispersal 

routes, migration behavior, and foraging efficiency. 

Despite its ecological relevance, the integration of wind 

dynamics into predator-prey models remains limited. 

Notable contributions by Barman et al. and Takyi et al. 

have begun to address this gap by incorporating wind 

effects and prey refuge into dynamical systems [4–6]. 

In parallel, human activities such as harvesting have 

become dominant forces in ecological systems, often 

surpassing natural biotic and abiotic influences. 

Incorporating harvesting effort into population models is 

essential for understanding the broader implications of 

human intervention on species persistence and 

ecosystem stability [7–9].  
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Wind flow dynamics can influence resource 

availability and accessibility, affecting human 

harvesting practices. Conversely, human harvesting 

activities may cause population declines, leading to 

changes in ecological dynamics and ultimately 

impacting resource distribution and ecosystem structure. 

This study extends previous work by developing a 

comprehensive predator-prey model that incorporates 

wind flow as an abiotic factor and harvesting effort as a 

human influence. The model also accounts for prey 

group defense and predator intraspecific competition, 

offering a more holistic view of ecological dynamics. 

Through mathematical analysis and numerical 

simulations, we aim to elucidate the complex interplay 

between environmental forces, biological traits, and 

anthropogenic pressures. 

The remainder of this paper is organized as follows: 

Section 2 introduces the mathematical model and 

underlying ecological assumptions. Section 3 presents 

the analytical results, including positivity, boundedness, 

and stability analyses, as well as Hopf bifurcation 

conditions. Section 4 provides numerical simulations to 

support the theoretical findings and discusses their 

ecological implications. Finally, Section 5 concludes the 

study with key insights and potential directions for 

future research. 

2. The Mathematical Model 

To investigate the combined effects of wind flow, 

intraspecific competition among predators, prey group 
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defense, and harvesting effort, we propose a system of 

nonlinear ordinary differential equations. The model 

captures the dynamics of prey and predator populations 

over time and is formulated as follows: 

 

{
 
 

 
 
d𝑢

d𝑡
= 𝑟𝑢 (1 −

𝑢

𝑘
) −

𝛼1𝑢𝑣

1 + 𝑤 + 𝑏𝑢 +
𝑏𝑤𝑢
1 + 𝑤

           

d𝑣

d𝑡
=

𝛼2𝑢𝑣

1 + 𝑤 + 𝑏𝑥 +
𝑏𝑤𝑢
1 + 𝑤

 −  𝑑𝑣 − ℎ𝑣 −  𝛾𝑣2

                              

 

 

 

(1) 

with initial conditions:   

                       𝑢(0) > 0, 𝑣(0) > 0     (2) 

Here, all parameters are assumed to be non-negative. 

The variables and parameters are defined in Table 1. 

This model incorporates a modified Holling type II 

functional response, adjusted to reflect the influence of 

wind flow and group defense on predation efficiency. 

The prey population grows logistically, while the 

predator population is subject to natural mortality, 

harvesting, and density-dependent competition. The 

interaction terms are modulated by environmental and 

behavioral factors, making the model suitable for 

analyzing complex ecological dynamics under both 

natural and anthropogenic influences.  

Table 1. Model parameters with ecological descriptions 

Parameters

/Variables 

Description 

𝑢(𝑡) Prey population density at time t 

𝑣(𝑡) Predator population density at time t 

𝑟 Intrinsic growth rate of the prey 

𝑘 Carrying capacity of the prey 

𝑤 Intensity of wind flow 

𝛼1 Predation rate coefficient 

𝛼2 Conversion efficiency of prey into 

predator biomass 

𝑏 Group defense coefficient of the prey 

𝑑 Natural mortality rate of the predator 

ℎ Harvesting effort on the predator 

population 

𝛾 Intraspecific competition coefficient 

among predators 

3. Model Analysis 

This section presents a comprehensive analysis of the 

proposed predator-prey model, focusing on the 

positivity and boundedness of solutions, the existence 

and stability of equilibrium points, and the conditions 

under which Hopf bifurcation may occur. 

3.1. Positivity and Boundedness of Solutions 

To ensure biological feasibility, it is essential to 

demonstrate that the solutions of the system remain     

non-negative and bounded for all time 𝑡 > 0. 

Theorem 3.1: All solutions of the system with initial 

conditions 𝑢(0) > 0, 𝑣(0) > 0 remain non-negative for 

all 𝑡 > 0. 

Proof:  

The right-hand side of the system is continuous and 

locally Lipschitz in the first quadrant   

𝑃 = {(𝑢, 𝑣): 𝑢, 𝑣 ≥ 0}, ensuring the existence and 

uniqueness of solutions. By integrating the system, it can 

be shown that both 𝑢(𝑡) and 𝑣(𝑡) remain non-negative 

for all 𝑡 > 0.

𝑢(𝑡)

= 𝑢(0)𝑒𝑥𝑝 {∫ [𝑟 (1 −
𝑢(𝑠)

𝑘
)

𝑡

0

−
𝛼1𝑣(𝑠)

1 + 𝑤 + 𝑏𝑢(𝑠) +
𝑏𝑤𝑢(𝑠)
1 + 𝑤

] 𝑑𝑠}  

≥ 0                                              

   

 

 

   (3) 

  𝑣(𝑡) = 𝑣(0)𝑒𝑥𝑝 {∫ [
𝛼2𝑢(𝑠)

1+𝑏𝑢(𝑠)+𝑤+
𝑏𝑤𝑢(𝑠)

1+𝑤

−
𝑡

0

𝑑 − ℎ − 𝛾𝑣(𝑠)] 𝑑𝑠} ≥ 0                       

          

(4) 

Theorem 3.2: All solutions of the system are bounded 

for all 𝑡 > 0. 

Proof:  

Let 𝒬(𝑡) = 𝑢(𝑡) +
𝛼1

𝛼2
𝑣(𝑡), 𝑡 ≥ 0                           (5) 

By differentiating Q along the trajectories of the 

system, we obtain: 

𝑑𝒬

𝑑𝑡
=
𝑑𝑢(𝑡)

𝑑𝑡
+
𝛼1
𝛼2

𝑑𝑣(𝑡)

𝑑𝑡

= 𝑟𝑢 (1 −
𝑢

𝑘
)

− 
(𝑑 + ℎ)𝛼1

𝛼2
𝑣        

 

 

(6) 

Choosing 𝛿 ∈ ℝ+, such that 𝛿 ≤ 𝑑 + ℎ, we get, 

d𝒬

d𝑡
+ 𝛿𝒬 = (𝑟 + 𝛿)𝑢 −

r𝑢2

𝑘

−
𝛼1𝑣

𝛼2
(𝑑 + ℎ + 𝛿) 

            ≤  (𝑟 + 𝛿)𝑢 −
r𝑢2

𝑘
≤
𝑘(𝑟 + 𝛿)2

4𝑟
= 𝑀 

 

 

     (7) 
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Therefore, 

d𝒬

d𝑡
+ 𝛿𝒬 ≤ 𝑀 ⟺ 𝒬(𝑡)

≤
𝑀

𝛿
+ 𝒬(𝑢0, 𝑣0)𝑒

−𝛿𝑡 

⟺ 0 ≤ 𝒬 ≤
𝑀

𝛿
+ 𝒬(𝑢0, 𝑣0)𝑒

−𝛿𝑡                                

 
 

(8) 

Q(t) is bounded above by 
𝑀

𝛿
 when 𝑡 → ∞, therefore, both 

𝑢(𝑡)and 𝑣(𝑡) are bounded. 

3.2. Equilibrium Points and Stability Analysis 

The equilibrium points of the system are obtained by 

setting the right-hand sides of the differential equations 

to zero:  

{
 
 

 
 𝑟𝑢 (1 −

𝑢

𝑘
) −

𝛼1𝑢𝑣

1 + 𝑤 + 𝑏𝑢 +
𝑏𝑤𝑢
1 + 𝑤

= 0          

𝛼2𝑢𝑣

1 + 𝑤 + 𝑏𝑥 +
𝑏𝑤𝑢
1 + 𝑤

 −  𝑑𝑣 − ℎ𝑣 −  𝛾𝑣2 = 0

                              

       (9) 

Solving the system of equations (9) yields three 

potential equilibrium points: 

1. The trivial equilibrium point 𝐸0 = (0,0)  which 

always exists, represents the situation where both 

species will go extinct. 

2. The axial equilibrium point 𝐸1 = (𝑘, 0) always 

exists. This equilibrium represents the situation in which 

the prey grows to the environment's carrying capacity, 

and the predator goes extinct. 

3. Coexistence equilibrium point 𝐸∗ = (𝑢∗, 𝑣∗), 
where 

𝑣∗ =
𝑟

𝛼1
(1 + 𝑏𝑢∗ + 𝑤 +

𝑏𝑤𝑢∗

1+𝑤
)  and 𝑢∗ is the solution of 

the following equation: 

 𝐴1𝑢
3 + 𝐴2𝑢

2 + 𝐴3𝑢 + 𝐴4=0                            (10) 

where 

 𝐴1 =
𝛾𝑟

𝑘

𝑏2(1 + 2𝑤)2

(1 + 𝑤)2
, 

  𝐴2 = 𝛾𝑟 [
2𝑏(1 + 2𝑤)

𝑘
−
𝑏2(1 + 2𝑤)2

(1 + 𝑤)2
], 

  𝐴3 = 𝛾𝑟 [
(1 + 𝑤)2

𝑘
− 2𝑏(1 + 2𝑤)] + 𝛼1𝛼2 − 𝛼1𝑏(𝑑

+ ℎ)
(1 + 2𝑤)

1 + 𝑤
, 

  𝐴4 = −[𝛾𝑟(1 + 𝑤)
2 + 𝛼1(𝑑 + ℎ)(1 + 𝑤)]. 

𝐸∗ exists if 𝑢∗ is positive. This equilibrium represents 

the situation where both species exist.  

 

 

3.2.1. Local stability analysis 

We begin by examining the local stability of the 

equilibrium points through the system’s Jacobian 

matrix. The right-hand side expression of system (1) is 

expressed separately as the following function: 

𝐹(𝑢, 𝑣) = 𝑟𝑢 (1 −
𝑢

𝑘
) −

𝛼1𝑢𝑣

1 + 𝑤 + 𝑏𝑢 +
𝑏𝑤𝑢
1 + 𝑤

, 

𝐺(𝑢, 𝑣) =
𝛼2𝑢𝑣

1 + 𝑤 + 𝑏𝑢 +
𝑏𝑤𝑢
1 + 𝑤

 −  𝑑𝑣 − ℎ𝑣 −  𝛾𝑣2. 

The Jacobian matrix of the system (1) is as follows 

𝐵(𝑢, 𝑣) = (
𝐵11 𝐵12
𝐵21 𝐵22

),                                             (11) 

where 

  𝐵11 =
𝜕𝐹

𝜕𝑢
= 𝑟 (1 −

2𝑢

𝑘
) −

𝛼1(1 + 𝑤)𝑣

(1 + 𝑏𝑢 + 𝑤 +
𝑏𝑤𝑢
1 + 𝑤

)
2, 

  𝐵12 =
𝜕𝐹

𝜕𝑣
= −

𝛼1𝑢

1 + 𝑤 + 𝑏𝑢 +
𝑏𝑤𝑢
1 + 𝑤

, 

  𝐵21 =
𝜕𝐺

𝜕𝑢
=

𝛼2(1 + 𝑤)𝑣

(1 + 𝑤 + 𝑏𝑢 +
𝑏𝑤𝑢
1 + 𝑤

)
2, 

  𝐵22 =
𝜕𝐺

𝜕𝑣
=

𝛼2𝑢

1 + 𝑤 + 𝑏𝑢 +
𝑏𝑤𝑢
1 + 𝑤

− 𝑑 − ℎ − 2𝛾𝑣. 

Theorem 3.3 The trivial equilibrium points 𝐸0 = (0,0) 
is always unstable. 

Proof:  

The Jacobian matrix corresponding to the 

equilibrium point 𝐸0: 

𝐵(0,0) = (
𝑟 0
0 −𝑑 − ℎ

)                                          (11) 

The Jacobian matrix 𝐵(0,0) have 2 eigenvalues: 

              𝜆1 =  𝑟 >  0;  

 𝜆2  =  −𝑑 −  ℎ <  0.  

Thus, using the first Lyapunov method, 𝐸0 is always 

unstable; therefore, system (1) exhibits unstable 

behavior around the trivial equilibrium point 𝐸0. 

Theorem 3.4 The axial equilibrium point 𝐸1 = (𝑘, 0) is 

locally asymptotically stable if the following condition 

holds: 

𝛼2𝑘 < (𝑑 + ℎ)(1 + 𝑤)

+ 𝑏𝑘(𝑑 + ℎ) (1 +
𝑤

1 + 𝑤
)          (12) 
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Proof:  

At 𝐸1 = (𝑘, 0), the associated Jacobian matrix 

is:𝐵(𝑘, 0) = (

−r 0 −
𝛼1𝑘

1+𝑤+𝑏𝑘+
𝑏𝑤𝑘

1+𝑤

0
𝛼2𝑘

1+𝑤+𝑏𝑘+
𝑏𝑤𝑘

1+𝑤

− 𝑑 − ℎ
)              (13) 

The Jacobian matrix has 2 eigenvalues:  

𝜆1 = − 𝑟 <  0,  

𝜆2  =  
𝛼2𝑘

1 + 𝑤 + 𝑏𝑘 +
𝑏𝑤𝑘
1 + 𝑤

− 𝑑 − ℎ. 

Using the first Lyapunov method, the condition for 

𝐸1 to be locally asymptotically stable is  
𝜆2 < 0 then we have the condition (12). 

Theorem 3.5. The coexistence equilibrium point  

𝐸∗ = (𝑢∗, 𝑣∗) is locally asymptotically stable if 

(1 −
2𝑢∗

𝑘
) 𝑟 −

𝛼1(1 + 𝑤)𝑣
∗

(1 + 𝑤 + 𝑏𝑢∗ +
𝑏𝑤𝑢∗

1 + 𝑤
)
2 < 0         (14) 

Proof:  

At equilibrium point 𝐸∗, the associated Jacobian 

matrix is: 

𝐵(𝑢∗, 𝑣∗) = (
𝐵11
∗ 𝐵12

∗

𝐵21
∗ 𝐵22

∗ )                                    (15) 

where 𝐵11
∗ , 𝐵12

∗ , 𝐵21,
∗ 𝐵22

∗  are the corresponding 

expression of 𝐵11, 𝐵12, 𝐵21, 𝐵22 at coexistence 

equilibrium point  𝐸∗. The characteristic equation of this 

Jacobian matrix is: 

𝜆2  − (𝐵11
∗ + 𝐵22

∗ )𝜆 + 𝐵11
∗ 𝐵22

∗ − 𝐵12
∗ 𝐵21

∗ = 0           (16) 

where 

 𝐵11
∗ = 𝑟 (1 −

2𝑢∗

𝑘
) −

𝛼1(1 + 𝑤)𝑣
∗

(1 + 𝑤 + 𝑏𝑢∗ +
𝑏𝑤𝑢∗

1 + 𝑤
)
2, 

      𝐵12
∗ = −

𝛼1𝑢
∗

1 + 𝑤 + 𝑏𝑢∗ +
𝑏𝑤𝑢∗

1 + 𝑤

, 

      𝐵21
∗ =

𝛼2(1 + 𝑤)𝑣
∗

(1 + 𝑤 + 𝑏𝑢∗ +
𝑏𝑤𝑢∗

1 + 𝑤
)
2, 

      𝐵22
∗ =

𝛼2𝑢
∗

1 + 𝑤 + 𝑏𝑢∗ +
𝑏𝑤𝑢∗

1 + 𝑤

 −  𝑑 − ℎ −  2𝛾𝑣∗

= −𝛾𝑣∗. 

Equation (4) has two roots with negative real parts if  

{
 𝐵11
∗ + 𝐵22

∗ < 0

𝐵11
∗ 𝐵22

∗ − 𝐵12
∗  𝐵21

∗ > 0.

∗

  

 It is obvious that 𝐵12
∗ < 0, 𝐵22

∗ < 0 and 𝐵21
∗ > 0.  

Hence, if 𝐵11
∗ < 0 or we  have the  condition (14),  then 

the following inequalities will be satisfied: 

𝐵11
∗ + 𝐵22

∗ < 0, 𝐵11
∗ 𝐵22

∗ − 𝐵12
∗  𝐵21

∗ > 0. Using the first 

Lyapunov method, we obtain conditions under which  

𝐸∗ is locally asymptotically stable. 

3.2.2. Global stability of the coexistence equilibrium 

Theorem 3.6 Coexistence equilibrium point  

𝐸∗ = (𝑢∗, 𝑣∗) is globally asymptotically stable if  

                              𝑢 > 𝑢∗, 𝑣 > 𝑣∗                                    (17) 

𝑎𝑛𝑑 the following condition is satisfied: 

  
𝑟

𝑘
>

𝑏𝛼1 (1 + 
𝑤

1 + 𝑤
) 𝑣∗

(1 + 𝑤) [1 + 𝑤 + 𝑏 (1 +
𝑤

1 + 𝑤
)𝑢∗]

         (18) 

Proof:  

Firstly, a Lyapunov function is constructed as 

follows: 

𝐿(𝑢, 𝑣) = 𝛼1 ∫ (
𝑢−𝑢∗

𝑢
)

𝑢

𝑢∗
𝑑𝑢 + 𝛼2 ∫ (

𝑣−𝑣∗

𝑣
) 𝑑𝑣

𝑣

𝑣∗
        (19) 

where 𝛼1 and 𝛼2 are properly chosen positive constants. 

By differentiating 𝐶(𝑢, 𝑣) with respect to 𝑡, we 

obtain: 

𝑑𝐿

𝑑𝑡
= 𝛼1 (

𝑢 − 𝑢∗

𝑢
)
𝑑𝑢

𝑑𝑡
+ 𝛼2 (

𝑣 − 𝑣∗

𝑣
)
𝑑𝑣

𝑑𝑡
 

       = 𝛼1(𝑢 − 𝑢
∗) [

1

𝑢

𝑑𝑢

𝑑𝑡
−
1

𝑢∗
(
𝑑𝑢

𝑑𝑡
|𝑢=𝑢∗)] + 

       +𝛼2(𝑣 − 𝑣
∗) [

1

𝑣

𝑑𝑣

𝑑𝑡
−

1

𝑣∗
(
𝑑𝑣

𝑑𝑡
|𝑣=𝑣∗)]  

  = 𝛼1(𝑢 − 𝑢
∗) [(−

𝑟

𝑘
) (𝑢 − 𝑢∗) −

𝛼1𝑣

1+𝑏𝑢+𝑤+
𝑏𝑤𝑢

1+𝑤

+

+
𝛼1𝑣

∗

1+𝑤+𝑏𝑢∗+
𝑏𝑤𝑢∗

1+𝑤

] + 𝛼2(𝑣 − 𝑣
∗) [−

𝛼2𝑢

1+𝑏𝑢+𝑤+
𝑏𝑤𝑢

1+𝑤

 −

−
𝛼2𝑢

∗

1+𝑤+𝑏𝑢∗+
𝑏𝑤𝑢∗

1+𝑤

− 𝛾(𝑣 − 𝑣∗)]                                      (20) 

Let  

𝑔(𝑢) = 1 + 𝑤 + 𝑏𝑢 +
𝑏𝑤𝑢

1+𝑤
                                     (21)   

from which we derive: 

𝑑𝐿

𝑑𝑡
= 𝛼1(𝑢 − 𝑢

∗) (−
𝑟

𝑘
(𝑢 − 𝑢∗) −

𝛼1𝑣

𝑔(𝑢)
+
𝛼1𝑣

∗

𝑔(𝑢∗)
)

+ 𝛼2(𝑣 − 𝑣
∗) (

𝛼2𝑢

𝑔(𝑢)
+
𝛼2𝑢

∗

𝑔(𝑢∗)
). 

      = 𝛼1(𝑢 − 𝑢
∗) (−

𝑟

𝑘
(𝑢 − 𝑢∗) −

𝛼1𝑣

𝑔(𝑢)
+
𝛼1𝑣

∗

𝑔(𝑢)

−
𝛼1𝑣

∗

𝑔(𝑢)
+
𝛼1𝑣

∗

𝑔(𝑢∗)
) 
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+𝛼2(𝑣 − 𝑣
∗) (

𝛼2𝑢

𝑔(𝑢)
−
𝛼2𝑢

∗

𝑔(𝑢)
+
𝛼2𝑢

∗

𝑔(𝑢)
−
𝛼2𝑢

∗

𝑔(𝑢∗)

− 𝛾(𝑣 − 𝑣∗)) 

= 𝛼1(𝑢 − 𝑢
∗) [(−

𝑟

𝑘
) (𝑢 − 𝑢∗) − 𝛼1

𝑣−𝑣∗

𝑔(𝑢)
+

         +
𝑏𝛼1(1+

𝑤

1+𝑤
)𝑣∗(𝑢−𝑢∗)

𝑔(𝑢)𝑔(𝑢∗)
] +

𝛼2𝛼2(1+𝑤)(𝑢−𝑢
∗)(𝑣−𝑣∗)

𝑔(𝑢)𝑔(𝑢∗)
−

         −𝛼2𝛾(𝑣 − 𝑣
∗)2  

    = −𝛼1(𝑢 − 𝑢
∗)2 [

𝑟

𝑘
−

𝑏𝛼1(1+
𝑤

1+𝑤
)𝑣∗

𝑔(𝑢)𝑔(𝑢∗)
] +

             +
(𝑢−𝑢∗)(𝑣−𝑣∗)

𝑔(𝑢)𝑔(𝑢∗)
[𝛼2𝛼2(1 + 𝑤) − 𝛼1𝛼1𝑔(𝑢

∗)] −

             −𝛼2𝛾(𝑣 − 𝑣
∗)2                                             (22) 

Choosing 

𝛼1 = 
𝛼2𝛼2(1+𝑤)

𝛼1𝑔(𝑢∗)
                                                 (23) 

we get: 

𝑑𝐿

𝑑𝑡
= −𝛼1(𝑢 − 𝑢

∗)2 [
𝑟

𝑘
−

𝑏𝛼1(1+
𝑤

1+𝑤
)𝑣∗

𝑔(𝑢)𝑔(𝑢∗)
]                (24) 

Imposing the condition 

 
𝑟

𝑘
>

𝑏𝛼1(1+
𝑤

1+𝑤
)𝑣∗

(1+𝑤)[1+𝑤+𝑏(1+
𝑤

1+𝑤
)𝑢∗]

, t                               (25) 

we have 
𝑑𝐶

𝑑𝑡
< 0 . Using Lyapunov’s second method 

along with LaSalle’s invariance principle, the 

equilibrium point 𝐸∗ is globally asymptotically stable. 

The proof is complete.  

3.3. Hopf Bifurcation 

To explore the emergence of periodic solutions in the 

system, we analyze the conditions under which a Hopf 

bifurcation occurs at the coexistence equilibrium 

point 𝐸∗. 

Theorem 3.7: A Hopf bifurcation occurs at 

 𝑤 = 𝑤∗ if the following conditions are satisfied: 

 𝑖. 𝐵11
∗ + 𝐵22

∗ = 0;                                                       (26)  

𝑖𝑖. 𝐵11
∗ 𝐵22

∗ − 𝐵12
∗  𝐵21

∗ > 0;                                         (27)   

𝑖𝑖𝑖.
𝜕( 𝐵11

∗ + 𝐵22
∗ )

𝜕𝑡
≠ 0.                                                           (28) 

Proof: By substituting a complex eigenvalue                  
𝜆 = 𝑥 + 𝑖𝑦 into the characteristic equation and 

separating real and imaginary parts, we derive the 

conditions under which a pair of purely imaginary 

eigenvalues emerges, indicating the onset of a Hopf 

bifurcation. 

𝑥 = −
𝑎1
2
,  

𝑥|𝑤=𝑤∗ = 0 𝑜𝑟 𝑎1|𝑤=𝑤∗ = 0,                           (29) 

and 

𝑑𝑥

𝑑𝑤
|𝑤=𝑤∗ ≠ 0 𝑜𝑟 

𝑑𝑎1

𝑑𝑤
|𝑤=𝑤∗ ≠ 0.                      (30)  

3.4. Optimal Harvesting Effort 

To determine the optimal level of harvesting that 

maximizes yield without destabilizing the system, we 

analyze the Maximum Sustainable Yield (MSY) under 

the assumption that intraspecific competition among 

predators is negligible. 

 

Fig. 1: Graph of 𝑌 (ℎ) with the parameters provided in 

Table 2 

Table 2. Parameter sets for the stable of each equilibrium 

point 

 

Parameter 𝐸1 𝐸∗ 

𝑟 0.8 0.8 

𝑘 10 10 

𝑤 20 20 

𝑏 6 2 

𝛼1 0.9 0.9 

𝛼2 0.6 0.6 

𝑑 0.02 0.02 

ℎ 0.03 0.03 

𝛾 0.002 0.002 

 

Theorem 3.8: The MSY is achieved when the harvesting 

effort h reaches the value: 

                                 ℎ =
ℎ1

ℎ2
                                         (31) 

where: 

  ℎ1 = 𝑘[𝛼2(1 + 𝑤) − 𝑏𝑑(1 + 2𝑤)]
2  

            − 𝑑(1 + 𝑤)2[𝛼2(1 +  𝑤) − 𝑏𝑑(1 + 2𝑤)],   (32) 

ℎ2 = [𝑘𝑏(1 + 2𝑤) + 2(1 + 𝑤)
2][𝛼2(1 + 𝑤)        −

 𝑏𝑑(1 + 2𝑤)] +  𝑏𝑑(1 + 2𝑤)(1 + 𝑤)2.                   (33) 
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Proof:  

By expressing the equilibrium predator density 

  𝐸∗ = (𝑢∗, 𝑣∗), as a function of h, the yield function  
𝑌(ℎ) = ℎ𝑣∗ is derived. 

𝑢∗ =
(𝑑 + ℎ)(1 + 𝑤)2

𝛼2(1 + 𝑤) − 𝑏𝑑(1 + 2𝑤)
, 

                            

𝑣∗ =
𝑟𝛼2(1 + 𝑤)

2𝑘[𝛼2(1 + 𝑤) − 𝑏(𝑑 + ℎ)(1 + 2𝑤)]

𝛼1𝑘[𝛼2(1 + 𝑤) − 𝑏(𝑑 + ℎ)(1 + 2𝑤)]
2

 

          −
𝑟𝛼2(1 + 𝑤)

4(𝑑 + ℎ)

𝛼1𝑘[𝛼2(1 + 𝑤) − 𝑏(𝑑 + ℎ)(1 + 2𝑤)]
2
. 

𝑌(ℎ) = ℎ𝑣∗ 
                            

= ℎ
𝑟𝛼2(1 + 𝑤)

2𝑘[𝛼2(1 + 𝑤) − 𝑏(𝑑 + ℎ)(1 + 2𝑤)]

𝛼1𝑘[𝛼2(1 + 𝑤) − 𝑏(𝑑 + ℎ)(1 + 2𝑤)]
2

 

− ℎ
𝑟𝛼2(1 + 𝑤)

4(𝑑 + ℎ)

𝛼1𝑘[𝛼2(1 + 𝑤) − 𝑏(𝑑 + ℎ)(1 + 2𝑤)]
2
. 

Differentiating 𝑌(ℎ) with respect to ℎ and 

solving 𝑌 ′(ℎ)  =  0, yields the optimal harvesting 

effort. 

d𝑌

dℎ
=
𝑟𝛼2(1 + 𝑤)

2

𝑘𝛼1
 

[
𝑘

𝑁
+
𝑘𝑏ℎ(1 + 2𝑤) − (1 + 𝑤)2(2𝑑 + ℎ)

𝑁2

−
2𝑏(1 + 2𝑤)(1 + 𝑤)2(𝑑 + ℎ)ℎ

𝑁3
], 

where 𝑁 =  𝛼2(1 + 𝑤) − 𝑏(𝑑 + ℎ)(1 + 2𝑤). The 

behavior of the function 𝑌(ℎ) is illustrated in Fig. 1. 

𝑌′(ℎ) =
𝑟𝛼2(1 + 𝑤)

2

𝑘𝛼1

𝑘

𝑁
+
𝑘𝑏ℎ(1 + 2𝑤)

𝑁2
 

−
(1 + 𝑤)2(2𝑑 + ℎ)

𝑁2
 

−
2𝑏(1 + 2𝑤)(1 + 𝑤)2(𝑑 + ℎ)ℎ

𝑁3
= 0. 

⇔ 𝑘𝑁2 + [𝑘𝑏ℎ(1 + 2𝑤) − (1 + 𝑤)2(2ℎ + 𝑑)]𝑁
−  2𝑏ℎ(𝑑 + ℎ)(1 + 2𝑤)(1 + 𝑤)2

= 0.  

Replacing 𝑁 = 𝛼2(1 + 𝑤) − 𝑏(𝑑 + ℎ)(1 + 2𝑤), we 

obtain: 

ℎ =
ℎ1

ℎ2
                                                                  (34) 

where: 

ℎ1 = 𝑘[𝛼2(1 + 𝑤) − 𝑏𝑑(1 + 2𝑤)]
2

− 𝑑(1 + 𝑤)2[𝛼2(1 +  𝑤)
− 𝑏𝑑(1 + 2𝑤)],                              (35) 

ℎ2 = [𝑘𝑏(1 + 2𝑤) + 2(1 + 𝑤)
2][𝛼2(1 + 𝑤)

−  𝑏𝑑(1 + 2𝑤)]                       
+ 𝑏𝑑(1 + 2𝑤)(1 + 𝑤)2               (36) 

From the equations (34), (35), (36), we obtain the 

equation (31).  

4. Numerical Simulations and Discussion 

To validate the theoretical results and explore the 

dynamic behavior of the system under various parameter 

settings, we conducted numerical simulations using the 

parameter values listed in Table 2. These simulations 

illustrate the stability of the axial equilibrium 𝐸1 and the 

coexistence equilibrium 𝐸∗, as well as the effects of key 

ecological and environmental factors. Although the 

conditions of Theorem (3.4, 3.5, and 3.6) are complex, 

it is still possible to select a set of parameters that satisfy 

these conditions, as presented in Table 2. This 

demonstrates that the parameter set is non-empty. The 

chosen parameter sets satisfy the local stability 

conditions of the equilibrium points 𝐸1 and 𝐸∗, and are 

used to conduct simulations with varying population 

sizes for each species (see Fig. 2 and Fig. 3). 

           

a) Time evolution of population densities                       b) Phase portrait of the dynamical system 

Fig. 2: The behavior of the system (1) in case of stable equilibrium point 𝐸1 
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a) Time evolution of population densities                       b) Phase portrait of the dynamical system 

Fig. 3: The behavior of the system (1) in case of stable equilibrium point 𝐸∗ 

 

 

                       a) Prey population density                                         b) Predator population density 

Fig. 4. Hopf bifurcation diagram with changing intensity of intraspecific competition 𝛾 at different intensity of wind 

flow w 
 

4.1. Effect of Intraspecific Competition 

Fig. 4 illustrates the dynamical system's behavior as 

the predator's intraspecific competition rate varies under 

different wind flow intensities. When the wind flow 

intensity is set to 𝑤 be equal to5 and the value of  

predator intraspecific competitive 

𝛾 is less than 0.0065, the dynamical system exhibits a 

limit cycle around coexistence equilibrium 

point 𝐸∗. When  𝛾 is greater than 0.0065, the system 

transitions from stability at the coexistence equilibrium 

point to stability at the boundary equilibrium point. 

When the value of w is increased, the instability of the 

dynamical system is reduced, and the population density 

of prey increases while the population density of 

predator decreases. When 𝑤 is equal to 20, we can see 

that the system transitions from stability at the 

coexistence equilibrium point to stability at the 

boundary equilibrium point without Hopf bifurcation. 

4.2. Effect of Harvesting Effort 

Fig. 5 shows the dynamical system's behavior when 

the harvesting effort value changes at different 

intensities of wind flow. When the wind flow intensity 

w is set to value  5, the dynamical system exhibits 

population instability when the harvesting effort 

satisfies ℎ is less than0.075 and stability when 

ℎ is greater than 0.075. When ℎ is greater than 0.12, 

the system transitions from stability around the 

equilibrium point to stability around the boundary 

equilibrium point. It can be observed that humans’ 

excessive hunting of animal species can drive the species 

to extinction. The dynamical system exhibits analogous 

behavior when the value of w is increased to 10. 

However, the range of values for h that cause instability 

is reduced, and the amplitude of population oscillations 

for both species decreases accordingly. When the wind 

flow strength w takes the value of  

 20, the system becomes stable and no longer affected 

by ℎ. 

4.3. Effect of Wind Flow 

In Fig. 6, simulations show the critical role of the 

wind factor in the dynamical system. Unstable behavior 

of the model system is observed as w increases from 0   
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to  10.9, and the oscillations in prey and predator 

populations become progressively damped. When the 

strength of wind flow 𝑤 is low, predators exhibit typical 

predator patterns, occasionally consuming a large 

amount of prey. Over time, this leads to a reduction in 

prey offspring, causing food shortages for predators and 

resulting in oscillatory dynamics in both populations. 

However, as w increases, predators find it increasingly 

difficult to detect prey, leading to smaller oscillations in 

the population dynamics. When 𝑤 surpasses the critical 

point  10.9, the model system exhibits stable behavior 

around the coexistence equilibrium point. However, if 

the wind flow strength becomes excessively high, the 

system’s stability shifts from the coexistence 

equilibrium to the axial equilibrium point. This occurs 

because, under high wind flow conditions, predators 

cannot detect prey, leading to the eventual extinction of 

the predator population. Consequently, the prey 

population grows unchecked, reaching the 

environmental carrying capacity.  

4.4. Effect of Prey Group Defense 

Fig. 7 shows the dynamical systems behavior when the 

value of prey group defense changes at different intensities 

of wind flow. When the strength of wind flow is fixed at     

w be equal to  5, the dynamical system exhibits stability 

around the equilibrium point while the value of the 

parameter b varies in the range from 0 to 0.45. However, 

once the value of b surpasses the threshold of 0.45, the 

dynamical system becomes unstable, leading to the 

emergence of limit cycles with large amplitude oscillations 

for each species. If the value of b continues to increase 

beyond 3.2, the dynamical system regains stability. The 

system remains stable as the value of b increases; however, 

when b is greater than 6.3, instead of being stable around 

the equilibrium point, the dynamical system stabilizes 

around the axial equilibrium point. This means that the 

predator species becomes extinct, while the prey population 

grows to reach the environment's maximum carrying 

capacity. This scenario aligns with natural dynamics, as 

excessive defensive capabilities in prey can hinder 

successful predation, ultimately leading to the predator’s 

extinction. When we fix w be equal to 10, the dynamical 

system exhibits similar behavior as when w is equal to5. 

However, the range of values for b that causes instability is 

reduced, and the amplitude of oscillations for both species 

during instability decreases significantly. When w is equal 

to 20, the dynamical system remains stable, and its behavior 

becomes independent of the parameter b. 

        

 

                           a) Prey population density                                         b) Predator population density   

Fig. 5. Hopf bifurcation diagram with changing harvesting effort ℎ at different intensity of wind flow w 

 

 

    a) Prey population density                                             b) Predator population density 

Fig. 6. Hopf bifurcation diagram with changing the intensity of wind flow w
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                       a) Prey population density                                           b) Predator population density   

Fig. 7: Hopf bifurcation diagram with changing prey group defense 𝑏 at different intensity of wind flow 𝑤   

 

5. Conclusion 

In this study, we developed and analyzed a nonlinear 

predator-prey model that incorporates the effects of 

wind flow, prey group defense, predator intraspecific 

competition, and harvesting effort. The model extends 

classical predator-prey dynamics by integrating both 

environmental and anthropogenic factors, offering a 

more realistic representation of ecological interactions. 

We established the model’s mathematical well-

posedness by proving the positivity and boundedness of 

solutions. Local and global stability conditions for the 

system’s equilibria were derived, and the occurrence of 

Hopf bifurcation was analyzed to identify conditions 

under which periodic oscillations emerge. Furthermore, 

we explored the optimal harvesting strategy by deriving 

the Maximum Sustainable Yield under simplified 

assumptions. Numerical simulations confirmed the 

theoretical findings and demonstrated the significant 

influence of wind intensity, harvesting effort, and group 

defense on system stability. Notably, strong wind flow 

and moderate harvesting can stabilize the system, while 

excessive prey defense or harvesting may lead to 

predator extinction. These results highlight the delicate 

balance required to maintain biodiversity and ecosystem 

stability. The model has practical implications for 

ecological management and conservation, particularly in 

systems where environmental variability and human 

exploitation are prominent. Our model can be applied to 

study real-world predator-prey systems, such as bison  

and wolves  or lions  and wildebeest , etc [11-14]. In 

these relationships, bison serve as prey for wolves; 

wildebeest serve as prey for lions. Research indicates 

that bison utilize a group defense strategy to help 

mitigate wolf attacks. On the other hand, wolves, 

functioning as predators, face intraspecific competition, 

which can lead to behaviors like cannibalism within their 

species. Simultaneously, windy conditions can 

significantly impact predation success across various 

species [4,5]. Lion hunting is less successful in capturing 

wildebeest during windy conditions.  Future research 

could extend this model by incorporating periodic 

environmental fluctuations, spatial heterogeneity, or 

alternative functional responses to further enhance its 

ecological relevance. 

Conflicts of interest 

The authors state that there are no conflicts of 

interest. 

References 

[1] McVicar, T. R., Roderick, M. L., Donohue, R. J., Li, L. 

T., Van Niel, T. G., Thomas, A., Grieser, J., Jhajharia, 

D., Himri, Y., Mahowald, N. M., Mescherskaya, A.V., 

Kruger, A. C., Rehman, S., and Dinpashoh, Y., Global 

review and synthesis of trends in observed terrestrial 

near-surface wind speeds: Implications for evaporation, 

Journal of Hydrology, vol. 416–417, pp. 182–205,        

Jan. 2012. 

 https://doi.org/10.1016/j.jhydrol.2011.10.024 

[2] Cherry, M. J. and Barton, B. T., Effects of wind on 

predator-prey interactions, Food Webs, vol. 13,               

pp.  92–97, Dec. 2017.  

https://doi.org/10.1016/j.fooweb.2017.02.005 

[3] Liu, S., Zhao, and Q., Niu, X., Effect of water 

temperature on the dynamic behavior of phytoplankton - 

zooplankton model, Applied Mathematics and 

Computation, vol. 378, Aug. 2020, Art. no. 125211. 

https://doi.org/10.1016/j.amc.2020.125211 

[4] Barman, D., Roy, J., and Alam, S., Impact of wind in the 

dynamics of prey–predator interactions, Mathematics 

and Computers in Simulation, vol. 191, pp. 49–81,       

Jan. 2022. 

https://doi.org/10.1016/j.matcom.2021.07.022 

[5] Barman, D., Kumar, V., Roy, J., and Alam, S., Modeling 

wind effect and herd behavior in a predator–prey system 

with spatiotemporal dynamics, The European Physical 

Journal Plus, vol. 137, Aug. 2022, Art. no. 950. 

https://doi.org/10.1140/epjp/s13360-022-03133-4 

[6] Takyi, E., Cooper, K., Dreher, A., and Mccrorey, C., 

Dynamics of a predator - prey system with wind effect 



 

Journal of Science and Technology – Engineering and Technology for Sustainable Development 

Volume 36, Issue 1, March 2026, 087-096 

96 

and prey refuge, Journal of Applied Nonlinear 

Dynamics, vol. 12, iss. 3, pp. 427–440, 2023. 

https://doi.org/10.5890/JAND.2023.09.001 

[7] Chakraborty, S., Pal, S., and Bairagi, N., Predator–prey 

interaction with harvesting: mathematical study with 

biological ramifications, Applied Mathematical 

Modelling, vol. 36, iss. 9, pp. 4044–4059, Sep. 2012.  

https://doi.org/10.1016/j.apm.2011.11.029 

[8] Pratama, R. A., Ruslau, M. F. V., Suryani, D. R., and 

Meirista, E., Optimal harvesting and stability of 

predator-prey model with Holling type ii predation 

respon function and stage-structure for predator, Journal 

of Physics: Conference Series, vol. 1569, iss. 4, 2020, 

Art. no. 042067. 

https://doi.org/10.1088/1742-6596/1569/4/042067 

[9] Luo, J. and Zhao, Y., Stability and bifurcation analysis 

in a predator–prey system with constant harvesting and 

prey group defense, International Journal of Bifurcation 

and Chaos, vol. 27, 2017, Art. no. 1750179.  

https://doi.org/10.1142/S0218127417501796 

[10] Hass, C. C. and Valenzuela, D., Anti-predator benefits of 

group living in white-nosed coatis (Nasua narica), 

Behavior Ecology and Sociobiology, vol. 51,                    

pp. 570–578, Mar. 2002.  

https://doi.org/10.1007/s00265-002-0463-5 

[11] Carbyn Ludwig N., Trottier T., Responses of bison on 

their calving grounds to predation by wolves in Wood 

Buffalo National Park, Canadian Journal of Zoology, 

vol. 65, iss. 8, pp. 2072–2078, 1987. 

https://doi.org/10.1139/z87-317 

[12] MacNulty Daniel R, Mech LD, and Smith Douglas W., 

A proposed ethogram of large-carnivore predatory 

behavior, exemplified by the wolf, J. Mammal, vol. 88, 

iss. 3, pp. 595–605, 2007. 

https://doi.org/10.1644/06-MAMM-A-119R1.1 

[13]  Laundré John W, Hernández Lucina, and Altendorf 

Kelly B., Wolves, elk, and bison: reestablishing the 

"landscape of fear" in Yellowstone National Park, 

Canadian Journal of Zoology, vol. 79, no. 8,                      

pp. 1401–1409, Aug. 2001.  

https://doi.org/10.1139/z01-094 

[14]  Hernández Lucina and Laundré John W., Foraging in the 

‘landscape of fear’ and its implications for habitat use 

and diet quality of elk Cervus elaphus and bison Bison 

bison, Wildlife Biology, vol. 11, iss. 3, pp. 215 –220, 

Sep. 2005. 

https://doi.org/10.2981/0909-

6396(2005)11[215:FITLOF]2.0.CO;2 

 

 

 

 


