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Abstract 

The paper deals with the non-destructive evaluation of the airgap existing between parts in loose metallic assemblies, using 
the eddy current (EC) method. In this study, the relationship between the variations of the impedance of a ferrite-cored coil 
sensor and an assembly featuring two aluminum plates is analyzed. Then artificial neural networks, based on statistical 
learning of the relationship between a sensor and an assembly are proposed and developed using both simulated and 
measured multi-frequency EC data, so as to estimate the distance between the assembly parts in a range from 0 µm to 500 
µm. For the neural network built on experiment data, the inaccuracy of obtained results is smaller than 1.06%. 

Keywords: non-destructive evaluation, eddy currents, normalized impedance distance, multilayer feed-forward neural 
network 

Tóm tắt  

Bài báo trình bày phương pháp đánh giá không phá hủy sử dụng dòng điện xoáy, nhằm xác định độ dày của khe hở không 
khí tồn tại giữa các lớp ghép kim loại. Trong nghiên cứu này, mối liên hệ giữa sự thay đổi tổng trở của cảm biến dòng điện 
xoáy với cấu trúc ghép gồm hai phiến hợp kim nhôm được phân tích. Từ đó, các mạng nơ-ron nhân tạo được đề xuất và xây 
dựng trên cơ sở các tập dữ liệu mô phỏng và thực nghiệm, thống kê mối quan hệ giữa cảm biến và cấu trúc kiểm tra, nhằm 
ước lượng khoảng cách giữa các phiến ghép nằm trong khoảng từ 0 µm tới 500 µm. Với mạng nơ-ron xây dựng trên tập dữ 
liệu thí nghiệm, sai số của kết quả ước lượng không vượt quá 1,06%. 

Từ khóa: đánh giá không phá hủy, dòng điện xoáy, khoảng cách tổng trở chuẩn hóa, mạng nơ-ron truyền thẳng nhiều lớp 

 
1. Introduction  

The*non-destructive evaluation (NDE) of 
metallic assemblies is a major preoccupation in many 
industrial areas such as aeronautical, railway, 
automotive, or nuclear industries. This paper deals 
with the problem of estimation of the distance between 
assembled parts, in order to detect and characterize 
loose assemblies. The eddy current (EC) technique is 
a good candidate to carry out the investigation of these 
structures. However, the quantitative evaluation of 
layered structures starting from EC data requires firstly 
to elaborate an accurate model of the sensor/structure 
interactions, and secondly, to solve an ill-posed 
inverse problem [1,2]. In order to bypass the 
difficulties induced by the resolution of these forward 
and inverse problems, as well as to deal with the 
uncertainties that may be occurred in experimental set-
up (inaccurate knowledge of the features of the 
assembly, mispositioning of the sensor, etc…), one can 
choose to implement a “non-model” approach from 
statistical learning of the interactions between the 
sensor and the investigated structure. In order to 
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implement such an approach, we choose to build an 
artificial neural network (ANN), which is known to be 
a universal approximator [3]. Moreover, ANNs have 
been proved that they are efficient in the solution of 
NDE problems [4] starting from experimental data [5]. 
In this study, a statistical approach based on an ANN 
is used to evaluate the distance between parts in an 
aluminum assembly, starting from the EC data 
provided by the interactions between a ferrite cored 
coil EC sensor and an aluminum mockup. 
Furthermore, in order to build a robust and accurate 
ANN, as well as to deal with assemblies of unknown 
thicknesses, we use EC datasets obtained at different 
frequencies, which are chosen in an optimal 
bandwidth.  

The paper is organised as follows: section 2 
reports on the experimental set-up and the selection of 
the used multi-frequency EC data. The implementation 
of the ANN approach is presented in section 3 and the 
obtained evaluation results are presented and discussed 
in section 4. Finally, conclusions and some 
perspectives to our work are given in section 5. 
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2. Experimental set-up and multi-frequency EC data 

The experimental set-up is constituted of a ferrite 
cup cored coil, used as a “transmit and receive” EC 
sensor coupled to a mockup standing for a loose 
assembly featuring two aluminum plates, separated from 
an adjustable distance t ranging from 0 to 500 µm, and 
featuring various thicknesses (1.5 mm for the top plate, 
1.5 to 25 mm for the bottom plate) (Fig. 1). The sensor 
is associated with a PC controlled impedance analyzer 
and is implemented with excitation frequencies f  ranging 
from 5 Hz to 30 kHz. The EC data that are used in this 
study are constituted by the impedance variation ∆Z 
defined as: 

0( ) ( ) ( )nt nZ f Z f Z f∆ = −  (1)  

where Znt and Zn0 are the normalized impedances of the 
sensor coupled with the assembly when the distance 
between parts is t and 0 respectively, and where the 
normalized impedance of the sensor is defined as [6]:  

( )0 0nZ Z R X= −   (2) 

Z is the impedance of the sensor, R0 and X0 are the 
resistance and the reactance of the uncoupled sensor 
respectively. In previous works, it has been shown both 
experimentally and computationally that the modulus of 
∆Z is a function of the distance between parts [7].  More 
precisely, a multifrequency study enabled us to assess 
that i) there exists an optimal frequency range 
maximizing the sensor sensitivity towards the distance 
between parts, ii) only the modulus of ∆Z is significantly 
modified by the distance between parts, iii) the modulus 
of ∆Z vary linearly with the latter distance within the 
optimal frequency range, and iv) the variations of ∆Z  as 
a function of the thickness of the bottom plate are 
nonlinear. In this paper, in order to estimate the distance 
between parts starting from ∆Z when the thickness of the 
bottom plate is unknown, we chose to build an ANN in 
a multifrequency framework.  

 

Fig. 1. Experimental set-up [7] 

3. Estimation of the distance between parts using 
neural networks 

3.1. General scheme 

The non-model approach implemented in this 
study consists of constructing a database that can be 

used to elaborate a behavioral model by statistical 
learning of the sensor/assembly interactions. The 
behavioral model is elaborated by adjusting the 
internal parameters of an ANN, so as to statistically 
“learn” a relationship between the inputs and the 
outputs of the ANN. The ANN, after adjusted, can 
provide outputs which are accurately related to the 
inputs presented in unknown configurations. In this 
study, the inputs of the ANN are multifrequency EC 
data, while the outputs are the distance between the 
plates of the assembly and the thickness of the bottom 
plate. More precisely, the EC data used to feed the 
ANN are constituted of the modulus of the sensor 
impedance variations ∆Z, as defined in (Eq. 1). The 
data set is obtained at several frequencies which are 
chosen in the optimal frequency range [7], in order to 
optimize the robustness as well as the accuracy of the 
behavioral model. In this paper, two different cases are 
considered. First, we build a learning database 
including EC data provided by multi-frequency finite 
element computations. The white noise is added to this 
data set to stand for acquisition noise. This database is 
used to elaborate ANN1. Then, the ANN1 is 
characterized using a test set constituted of a new set 
of noisy simulated data, as well as a set of experimental 
data featuring the same noise power. ANN1 is 
elaborated in order to assess i) the relevance of the 
behavioral learning approach to estimate loose 
assemblies when a large amount of learning data is 
available, ii) the robustness and accuracy of an ANN 
elaborated with simulated data and used with 
experimental data. Secondly, another ANN, denoted 
ANN2, is elaborated, based on a learning data set 
including only multi-frequency experimental data. 
ANN2 is built to evaluate the relevance of the approach 
when using a reduced training data set. 

3.2. Elaboration of the data sets 

The simulated EC data set used to generate ANN1 
is relative to the following configurations: the distance 
t between the aluminum plates takes values in the {10, 
50, 100, 150,..., 500 µm} set, and the excitation 
frequencies take values in the {680, 1060, 1440, 1820, 
2200 Hz} set. The top plate is 1.5 mm thick and the 
bottom plates thicknesses belong to the set {1.5, 2.0, 
2.5, 3.0, 3.5 mm}. As a result, 55 sets of input and 
output data vectors relative to these configurations are 
generated by computations. Each output vector is 
constituted of two elements: the distance t between 
plates and the thickness of the bottom plate tb. Each 
input vector is constituted of five elements relative to 
the values of ∆Z obtained at the 5 considered excitation 
frequencies. In order to take the uncertainty that may 
appear in actual EC data into account, white noise has 
been added to the computed EC data, to generate 
55,000 new noisy input data sets. Consequently, 
55,000 sets of input/output vectors are available to 
elaborate and characterize ANN1. 
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In addition, an experimental data set is built to 
elaborate and characterize ANN2. Here, the input 
vector relative to each assembly configuration is 
constituted of eight elements ∆Z measured at 8 
different frequencies. Five frequencies are those used 
for ANN1, and 3 additional frequencies {2561, 2937, 
3313 Hz} are used to enlarge the data set. The output 
vectors feature two elements t and tb as for the output 
vectors of ANN1. However, here only two plate 
configurations are considered: the top plate is 1.5 mm 
thick and the bottom plate is either 1.5 mm or 25 mm 
thick. The distance between plates is in the set {100, 
200, 300, 400, and 500 µm}. To build the EC databases 
for ANN2, EC data measurements are carried out 12 
times in each considered configuration. Then 8 sets of 
EC measurements are used to build the training data 
set, while the 4 remaining data are used to test and 
characterize the ANN2. 

3.3. Configuration of the neural networks 

For both considered ANN, a multi-layered feed-
forward configuration is used. It is made up of an input 
layer, a hidden layer, and an output layer (Fig. 2). The 
"input layer" is only used to transmit the input values 
to all neurons of the hidden layer. The activation 
function of the neurons in the hidden layer is the 
sigmoid function, and that of the neurons of the output 
layer is a linear function. In both cases, the ANN is 
trained by the learning algorithm of Levenberg-
Marquardt [8]. After the training process, the final 
architecture of ANN1 is set to 5-39-2, (5 inputs, 39 
neurons in the hidden layer, 2 outputs) and to 8-4-2, 
with 4 neurons in the hidden layer for ANN2. These are 
the architectures that provide the best-estimated 
results, based on the analysis of the obtained mean 
square error of the estimation. 

 
Fig. 2. Multi-layered feed-forward neural network 

4. Results and discussion 

4.1. Characterization parameters  

To evaluate the reliability and the accuracy of the 
estimated results, two characterization parameters are 
defined: the relative precision error (RPE) and the 

relative accuracy error (RAE), expressed in (3) and (4), 
respectively. 
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where n is the number of measurement points of t and 
m is the number of measures carried out for each 
assembly configuration. 
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where ti denotes the actual value of the distance 
between plates at the ith measurement point, and ŷt  
denotes the yth estimated value of the plate distance 
corresponding to each ti. 

In addition, the root mean square error (RMSE) is 
also used to characterize the elaborated ANN and is 
defined by: 

( )2
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where ît , t and n denote the ith estimation result, the 
actual value of the distance between plates, and the 
number of measurement points, respectively.  

4.2. Implementation and characterization of ANN1 

First, ANN1 is elaborated with noisy simulated 
data featuring a 33 dB signal to noise ratio (SNR) and 
tested using a new set of noisy simulated data featuring 
the same SNR. The SNR is adjusted to 33 dB since it 
is relative to the noise power measured on the actual 
experimental data. In order to characterize the 
evaluation performances of ANN1, the results relative 
to the thinnest structure (tb = 1.5 mm) and to the 
thickest structure (tb = 3.5 mm) are examined, and the 
results are presented in Table 1 and (Fig. 3a). For the 
thin structure (tt = tb = 1.5 mm), the RAE is -3.92%, 
the RPE is 2.71%. For the thickest structure                      
(tt = 1.5 mm, tb = 3.5 mm) the variation of the estimated 
results is equivalent to that of the previous structure, 
with a RPE = 2.74%. However, the average value of 
the estimated results at each measurement point is 
obviously better, since the RAE = 0.26%. Thus, the 
estimated results tend to be better when the bottom 
plate is thicker. This trend is confirmed by the RMSE 
which is 23.75 µm in the case of the thin structure, and 
9.15 µm in the case of the thick structure.  
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Table 1. Accuracy and precision of the neural network 
built from simulated data 

Configuration of the tested structure: 
tt = tb = 1.5 mm 

Data 
RAE 
(%) 

RPE 
(%) 

RMSE 
(µm) 

Simulated 
(SNR = 33dB) 

-3.92 2.71 23.75 

Experimental 
(SNR = 33dB) 

-4.37 2.42 27.71 

Configuration of the tested structure:  
tt = 1.5 mm, tb = 3.5 mm 

Data 
RAE 
(%) 

RPE 
(%) 

RMSE 
(µm) 

Simulated 
(SNR = 33dB) 

0.26 2.74 9.15 

 

 
Fig. 3. Estimation results of the neural network built 
from simulated data: (a) tested with simulated data, (b) 
tested with experimental data; the SNR = 33 dB in both 
cases. 

ANN1 was also tested with experimental data 
measured on the thinnest structure with tt = tb = 1.5 mm 
(Figure 3b). The estimated errors are as follows: 
RPE = 2.42%, RAE = -0.37% and RMSE = 27.71 µm. 
These values show that the estimated results are 
acceptable although the ANN was built with simulated 
data.  

  

Table 2. Accuracy and precision of the neural network 
built from experimental data 

Configuration of the tested structure:  
tt = tb = 1.5 mm 

Estimation of RAE 
(%) 

RPE 
(%) 

RMSE 
(µm) 

t -1.06 1.76 5.43 

tb -3.21 4.18 172.92 

Configuration of the tested structure: 
tt = 1.5 mm, tb = 3.5 mm 

Estimation of RAE 
(%) 

RPE 
(%) 

RMSE 
(µm) 

t -0.61 1.32 4.34 

tb 0.02 0.03 13.00 

 

 
Fig. 4. Estimated results given by ANN2 built from 
experimental data (tested with a new experimental data 
set): (a) for the thin structure (tt = tb = 1.5 mm), (b) for 
the thick structure (tt = 1.5 mm, tb = 25 mm). 

4.3. Implementation and characterization of ANN2 

ANN2 is elaborated using a set of experimental 
EC data, and tested with a new set. The obtained 
results are satisfactory as shown in Figure 4. We can 
see that the dispersion of the results is small (Table 2), 
with RPE = 1.76% for the thin structure 
(tt = tb = 1.5 mm), and RPE = 1.32% for the thick 
structure (tt = 1.5 mm, tb = 25 mm). These values 
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indicate that the estimations are reliable. The estimated 
results are accurate too, with the RAE = -1.06%, and 
the RAE = -0.61% for the thin and the thick tested 
structure, respectively. In this application, one can note 
that the estimation of the bottom plate thickness is also 
correctly achieved, as presented in Table 2. Here, 
again, one can note that the thicker the bottom plate, 
the better the estimated results. 
5. Conclusion  

In this study, the estimation of the distance 
between the plates of aluminum assemblies was 
carried out thanks to statistical behavioral models. The 
models were elaborated using a multi-frequency EC 
database used to adjust ANNs. The accuracy of 
obtained estimation results is good enough to apply to 
real industrial applications.  For our further works, we 
focus on thicker assemblies, different kinds of 
materials of tested structures, as well as on the design 
of an EC sensor for the evaluation of more realistic 
industrial assemblies. Moreover, the number of used 
excitation frequencies will also be optimized. 
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