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Abstract

The paper deals with the non-destructive evaluation of the airgap existing between parts in loose metallic assemblies, using
the eddy current (EC) method. In this study, the relationship between the variations of the impedance of a ferrite-cored coil
sensor and an assembly featuring two aluminum plates is analyzed. Then artificial neural networks, based on statistical
learning of the relationship between a sensor and an assembly are proposed and developed using both simulated and
measured multi-frequency EC data, so as to estimate the distance between the assembly parts in a range from 0 um to 500
um. For the neural network built on experiment data, the inaccuracy of obtained results is smaller than 1.06%.

Keywords: non-destructive evaluation, eddy currents, normalized impedance distance, multilayer feed-forward neural
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Tém tit

Bai bao trinh bdy phwong phdp danh gid khong pha hiy sir dung dong dién xoay, nham xdc dinh do day cia khe ho khong
khi ton tai giita cdc I0p ghép kim logi. Trong nghién ciru ndy, moi lién hé gitta sw thay doi tong tré ciia cam bién dong dién
xody véi cdu triic ghép gom hai phién hop kim nhém dirgc phan tich. Tir do, cdc mang no-ron nhdn tao duoc dé xudt va xdy
dung trén co so cdc tdp dit liéu mé phong va thuc nghiém, théng ké moéi quan hé giika cam bién va cdu tric kiém tra, nham
woc lwong khodng cdch giita cac phién ghép ndm trong khodng tie 0 um t6i 500 um. Vi mang no-ron xdy dyng trén tip div
liéu thi nghiém, sai s6 ciia két qud woc hwong khong vieot qua 1,06%.

Tir khoa: danh gia khong pha huy, dong dién xoay, khoang cach téng trd chuén hoa, mang no-ron truyén thing nhiéu 16p

1. Introduction

The non-destructive evaluation (NDE) of
metallic assemblies is a major preoccupation in many
industrial areas such as aeronautical, railway,
automotive, or nuclear industries. This paper deals
with the problem of estimation of the distance between
assembled parts, in order to detect and characterize
loose assemblies. The eddy current (EC) technique is
a good candidate to carry out the investigation of these
structures. However, the quantitative evaluation of
layered structures starting from EC data requires firstly
to elaborate an accurate model of the sensor/structure
interactions, and secondly, to solve an ill-posed
inverse problem [1,2]. In order to bypass the
difficulties induced by the resolution of these forward
and inverse problems, as well as to deal with the
uncertainties that may be occurred in experimental set-
up (inaccurate knowledge of the features of the
assembly, mispositioning of the sensor, etc...), one can
choose to implement a “non-model” approach from
statistical learning of the interactions between the
sensor and the investigated structure. In order to
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implement such an approach, we choose to build an
artificial neural network (ANN), which is known to be
a universal approximator [3]. Moreover, ANNs have
been proved that they are efficient in the solution of
NDE problems [4] starting from experimental data [5].
In this study, a statistical approach based on an ANN
is used to evaluate the distance between parts in an
aluminum assembly, starting from the EC data
provided by the interactions between a ferrite cored
coil EC sensor and an aluminum mockup.
Furthermore, in order to build a robust and accurate
ANN, as well as to deal with assemblies of unknown
thicknesses, we use EC datasets obtained at different
frequencies, which are chosen in an optimal
bandwidth.

The paper is organised as follows: section 2
reports on the experimental set-up and the selection of
the used multi-frequency EC data. The implementation
of the ANN approach is presented in section 3 and the
obtained evaluation results are presented and discussed
in section 4. Finally, conclusions and some
perspectives to our work are given in section 5.
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2. Experimental set-up and multi-frequency EC data

The experimental set-up is constituted of a ferrite
cup cored coil, used as a “transmit and receive” EC
sensor coupled to a mockup standing for a loose
assembly featuring two aluminum plates, separated from
an adjustable distance ¢ ranging from 0 to 500 pm, and
featuring various thicknesses (1.5 mm for the top plate,
1.5 to 25 mm for the bottom plate) (Fig. 1). The sensor
is associated with a PC controlled impedance analyzer
and is implemented with excitation frequencies f ranging
from 5 Hz to 30 kHz. The EC data that are used in this
study are constituted by the impedance variation AZ
defined as:

AZ(f) =2, (/)= 2, () ()

where Z,; and Z, are the normalized impedances of the
sensor coupled with the assembly when the distance
between parts is ¢ and O respectively, and where the
normalized impedance of the sensor is defined as [6]:

Z,=(Z-R))/X, ©)

Z is the impedance of the sensor, Ry and X are the
resistance and the reactance of the uncoupled sensor
respectively. In previous works, it has been shown both
experimentally and computationally that the modulus of
AZ is a function of the distance between parts [7]. More
precisely, a multifrequency study enabled us to assess
that 1) there exists an optimal frequency range
maximizing the sensor sensitivity towards the distance
between parts, ii) only the modulus of AZ is significantly
modified by the distance between parts, iii) the modulus
of AZ vary linearly with the latter distance within the
optimal frequency range, and iv) the variations of AZ as
a function of the thickness of the bottom plate are
nonlinear. In this paper, in order to estimate the distance
between parts starting from AZ when the thickness of the
bottom plate is unknown, we chose to build an ANN in
a multifrequency framework.

Magnetic cup core

l Top plate (o, 10) 1,
1 Airlayer ) T
T Bottom plate (@.1) ,

]

Fig. 1. Experimental set-up [7]

3. Estimation of the distance between parts using
neural networks

3.1. General scheme

The non-model approach implemented in this
study consists of constructing a database that can be

used to elaborate a behavioral model by statistical
learning of the sensor/assembly interactions. The
behavioral model is elaborated by adjusting the
internal parameters of an ANN, so as to statistically
“learn” a relationship between the inputs and the
outputs of the ANN. The ANN, after adjusted, can
provide outputs which are accurately related to the
inputs presented in unknown configurations. In this
study, the inputs of the ANN are multifrequency EC
data, while the outputs are the distance between the
plates of the assembly and the thickness of the bottom
plate. More precisely, the EC data used to feed the
ANN are constituted of the modulus of the sensor
impedance variations AZ, as defined in (Eq. 1). The
data set is obtained at several frequencies which are
chosen in the optimal frequency range [7], in order to
optimize the robustness as well as the accuracy of the
behavioral model. In this paper, two different cases are
considered. First, we build a learning database
including EC data provided by multi-frequency finite
element computations. The white noise is added to this
data set to stand for acquisition noise. This database is
used to elaborate ANN;. Then, the ANN; is
characterized using a test set constituted of a new set
of noisy simulated data, as well as a set of experimental
data featuring the same noise power. ANN; is
elaborated in order to assess i) the relevance of the
behavioral learning approach to estimate loose
assemblies when a large amount of learning data is
available, ii) the robustness and accuracy of an ANN
claborated with simulated data and used with
experimental data. Secondly, another ANN, denoted
ANN,, is elaborated, based on a learning data set
including only multi-frequency experimental data.
ANN; is built to evaluate the relevance of the approach
when using a reduced training data set.

3.2. Elaboration of the data sets

The simulated EC data set used to generate ANN;
is relative to the following configurations: the distance
t between the aluminum plates takes values in the {10,
50, 100, 150,..., 500 um} set, and the excitation
frequencies take values in the {680, 1060, 1440, 1820,
2200 Hz} set. The top plate is 1.5 mm thick and the
bottom plates thicknesses belong to the set {1.5, 2.0,
2.5, 3.0, 3.5 mm}. As a result, 55 sets of input and
output data vectors relative to these configurations are
generated by computations. Each output vector is
constituted of two elements: the distance ¢ between
plates and the thickness of the bottom plate #,.. Each
input vector is constituted of five elements relative to
the values of AZ obtained at the 5 considered excitation
frequencies. In order to take the uncertainty that may
appear in actual EC data into account, white noise has
been added to the computed EC data, to generate
55,000 new noisy input data sets. Consequently,
55,000 sets of input/output vectors are available to
elaborate and characterize ANN;.
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In addition, an experimental data set is built to
elaborate and characterize ANN,. Here, the input
vector relative to each assembly configuration is
constituted of eight elements AZ measured at 8
different frequencies. Five frequencies are those used
for ANN}, and 3 additional frequencies {2561, 2937,
3313 Hz} are used to enlarge the data set. The output
vectors feature two elements ¢ and #, as for the output
vectors of ANN;. However, here only two plate
configurations are considered: the top plate is 1.5 mm
thick and the bottom plate is either 1.5 mm or 25 mm
thick. The distance between plates is in the set {100,
200, 300, 400, and 500 um}. To build the EC databases
for ANN,, EC data measurements are carried out 12
times in each considered configuration. Then 8 sets of
EC measurements are used to build the training data
set, while the 4 remaining data are used to test and
characterize the ANN,.

3.3. Configuration of the neural networks

For both considered ANN, a multi-layered feed-
forward configuration is used. It is made up of an input
layer, a hidden layer, and an output layer (Fig. 2). The
"input layer" is only used to transmit the input values
to all neurons of the hidden layer. The activation
function of the neurons in the hidden layer is the
sigmoid function, and that of the neurons of the output
layer is a linear function. In both cases, the ANN is
trained by the learning algorithm of Levenberg-
Marquardt [8]. After the training process, the final
architecture of ANN; is set to 5-39-2, (5 inputs, 39
neurons in the hidden layer, 2 outputs) and to 8-4-2,
with 4 neurons in the hidden layer for ANN,. These are
the architectures that provide the best-estimated
results, based on the analysis of the obtained mean
square error of the estimation.

Inputlayer Hiddenlayer Outputlayer

Fig. 2. Multi-layered feed-forward neural network
4. Results and discussion

4.1. Characterization parameters

To evaluate the reliability and the accuracy of the
estimated results, two characterization parameters are
defined: the relative precision error (RPE) and the
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relative accuracy error (RAE), expressed in (3) and (4),
respectively.

i
3)
where n is the number of measurement points of ¢ and

m is the number of measures carried out for each
assembly configuration.

1 1e(i -t
RAE% =— — 2100

i

“4)

where # denotes the actual value of the distance
between plates at the i measurement point, and fy

denotes the y" estimated value of the plate distance
corresponding to each .

In addition, the root mean square error (RMSE) is
also used to characterize the elaborated ANN and is
defined by:

RN I U AUUR
RMSE = ;;[Z%(ty—ti)] (5)

where 7,, ¢ and n denote the i estimation result, the

actual value of the distance between plates, and the
number of measurement points, respectively.

4.2. Implementation and characterization of ANN;

First, ANN; is elaborated with noisy simulated
data featuring a 33 dB signal to noise ratio (SNR) and
tested using a new set of noisy simulated data featuring
the same SNR. The SNR is adjusted to 33 dB since it
is relative to the noise power measured on the actual
experimental data. In order to characterize the
evaluation performances of ANNj, the results relative
to the thinnest structure (z, = 1.5 mm) and to the
thickest structure (7, = 3.5 mm) are examined, and the
results are presented in Table 1 and (Fig. 3a). For the
thin structure (¢, = #, = 1.5 mm), the RAE is -3.92%,
the RPE is 2.71%. For the thickest structure
(t:=1.5 mm, t,=3.5 mm) the variation of the estimated
results is equivalent to that of the previous structure,
with a RPE = 2.74%. However, the average value of
the estimated results at each measurement point is
obviously better, since the RAE = 0.26%. Thus, the
estimated results tend to be better when the bottom
plate is thicker. This trend is confirmed by the RMSE
which is 23.75 um in the case of the thin structure, and
9.15 um in the case of the thick structure.
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Table 1. Accuracy and precision of the neural network
built from simulated data

Table 2. Accuracy and precision of the neural network
built from experimental data

Configuration of the tested structure:
L=t=15mm

Data RAE RPE RMSE

(%) (%) (nm)

Simulated -3.92 2.71 23.75
(SNR =33dB)

Experimental -4.37 2.42 27.71
(SNR =33dB)

Configuration of the tested structure:
t;=1.5mm, t, = 3.5 mm

Configuration of the tested structure:
t=t=15mm

Estimation of RAE RPE RMSE
(%) (%) (um)
t -1.06 1.76 5.43

f -3.21 4.18 172.92

Configuration of the tested structure:

t,=1.5mm, t, = 3.5 mm

RAE RPE RMSE
Data
(%) (%) (um)
Simulated 0.26 2.74 9.15
(SNR = 33dB)
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Fig. 3. Estimation results of the neural network built
from simulated data: (a) tested with simulated data, (b)
tested with experimental data; the SNR = 33 dB in both

cases.

ANN; was also tested with experimental data
measured on the thinnest structure with =17, = 1.5 mm
(Figure 3b). The estimated errors are as follows:
RPE =2.42%, RAE =-0.37% and RMSE =27.71 um.
These values show that the estimated results are
acceptable although the ANN was built with simulated
data.
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Fig. 4. Estimated results given by ANN; built from
experimental data (tested with a new experimental data
set): (a) for the thin structure (=, = 1.5 mm), (b) for
the thick structure (# = 1.5 mm, # = 25 mm).

4.3. Implementation and characterization of ANN:

ANN; is elaborated using a set of experimental
EC data, and tested with a new set. The obtained
results are satisfactory as shown in Figure 4. We can
see that the dispersion of the results is small (Table 2),
with RPE 1.76% for the thin structure
(t:=t,=1.5mm), and RPE =1.32% for the thick
structure (4, =1.5 mm, f =25 mm). These values
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indicate that the estimations are reliable. The estimated
results are accurate too, with the RAE = -1.06%, and
the RAE = -0.61% for the thin and the thick tested
structure, respectively. In this application, one can note
that the estimation of the bottom plate thickness is also
correctly achieved, as presented in Table 2. Here,
again, one can note that the thicker the bottom plate,
the better the estimated results.

5. Conclusion

In this study, the estimation of the distance
between the plates of aluminum assemblies was
carried out thanks to statistical behavioral models. The
models were elaborated using a multi-frequency EC
database used to adjust ANNs. The accuracy of
obtained estimation results is good enough to apply to
real industrial applications. For our further works, we
focus on thicker assemblies, different kinds of
materials of tested structures, as well as on the design
of an EC sensor for the evaluation of more realistic
industrial assemblies. Moreover, the number of used
excitation frequencies will also be optimized.
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