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Abstract

In this article, for 0 < m <o and the index vectors q =(q,,q, .q; ).r =(1.1,,1,) where 1< g, <oo,1<r, <o

and 1<i <3, we study new results of Navier-Stokes equations with Coriolis force in the rotational framework
in mixed-norm Sobolev-Lorentz spaces Hmra (R3), which are more general than the classical Sobolev
spaces. We prove the existence and uniqueness of solutions to the Navier-Stokes equations (NSE) under

Coriolis force in the spaces L ([0, T]; H™" ) by using topological arguments, the fixed point argument and
interpolation inequalities. We have achieved new results compared to previous research in the Navier-Stokes
problems.
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Tom tat

Trong bai bao nay, cho 0 < m < va cac vécto chisé g =(q,,q, ,q;).r = (r.n.1), véi 1< g, <o,1<r <o
va 1<i<3, ching téi nghién ctru nhitng két qua méi cta céc phurong trinh Navier-Stokes véi luc ngoai
Coriolis trong khéng gian chuén két hop Sobolev-Lorentz H™" (R3 ) , khéng gian téng quat hon khéng gian
Sobolev c¢6 dién da biét. Chung t6i chirng minh s ton tai va tinh duy nhat nghiém cua cac phwong trinh

Navier-Stokes (NSE) dwdi tac dong cla lwe Coriolis trong khéng gian L (Jo, T]: H™" ) bdng céach st dung
tinh chét cac khéng gian, ly thuyét diém bat doéng va cac bét déng thirc noi suy. Ching téi da dat duwoc nhitng

két qué mai so véi céac nghién ciru triée d6 vé cac bai toan Navier-Stokes.

T khoa: Céc phwong trinh Navier-stokes, Iwc Coriolis, khung quay.

1. Introduction

The Coriolis force arises in almost all of the
models of meteorology and geophysics dealing with
large-scale phenomena. If we look around to see what
is happening , we realize that the rotation leads to many
interesting phenomena, this effect is substantial: the
climate is affected and complicated because the
rotation changes the flow of air heated by the sun.
Typhoons and their motion are another phenomenon
resulting from the effect of rotation of Earth. The flows
of the ocean can be affected by the rotation of Earth as
well. Changing the motion of moving objects of fluids
such as air and ocean illustrated above is caused by
force. This force on all moving bodies is called
Coriolis force. Almost all of the fluids following on
Earth can be affected, so researching the Coriolis
effects in Navier-Stokes equations are very important.
We consider Navier-Stokes equations in the rational
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framework with Coriolis force in R’ . For the recent
results concerning periodic solutions for the Navier-
Stokes equations in the rotational framework, we refer
to the work of Kozono, Mashiko and Takada [1]. They
proved the existence of unique mild periodic solution
with suitable smallness assumptions on forces.

The problems of mild solutions to the Navier-
Stokes equations and the problems concerning Navier-
Stokes equations have a long history, first results on
constructing mild solutions for the Navier-Stokes

equations in the Sobolev spaces H* (R3) , go back to
Kato and Fujita [2].

In 1995, using the method of the bilinear
operator, Cannone [3] proved the existence of mild

solutions in H" (R3 ), Giga [4] continued to establish
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the mild solutions with value in Zf (R3) and Cannone
and Meyer [3,5] studied the existence of mild solutions
with initial data in the space L”. Base on the Besov

spaces on a bounded domain in R’ , the regularity and
uniqueness conditions for weak solutions of NSE were
established in [6]. Kato and Ponce [7] showed that the
Navier-Stokes problems are well-posed when the
initial data in the homogeneous Sobolev spaces.

Recently, D.Q. Khai and N.M. Tri considered the
mild solutions of Navier-Stokes in mixed-norm
Sobolev-Lorentz spaces and Sobolev-Fourier-Lorentz
spaces, as in [8,9]

This paper approaches to the methods to solve the
problems of existence and uniqueness of the solution
of the Navier-Stokes equations with Coriolis forces in
new spaces L” ([0, T]; H™"" ). It develops the results
in [8] which shows the existence and uniqueness of the
solutions of Navier-Stokes equations in the same
spaces.

We consider the Navier-Stokes equations in the
rotational framework which are given by the equation
u, +(u .V)u—Au+Vp =we, xu+divF
Vu=0
u (0) =u,

)

where o is the speech of rotation and e, -the unit
vector in x, -direction. The unknown quantities are the
velocity u(z‘,x)z(ul(t,x),u2 (t,x),u3(t,x)) of the
fluid element at time ¢ and position x with the
pressure p(f,x).

Apply the Helmhotz projection P we obtain
u, — PAu = P(o)e3 ><u)+ Pdiv(—uu)+g
Vu=0
u(0)=u,, g=divF

2

We first define the definition of mild solution to
(2). We mean the function u(7) satisfying

t
u(t) =e"u, +J.e('7T)AP[V.(—uu)+ g+ we, xu(r)] dr

0

We note the mixed-norm Sobolev —Lorentz

spaces H™" the

)

is considering as space

equipped with  the norm
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2. Main results

We recall the following results
Lemma 2.1. Let q= (q,,9,,.9;).7 = (rl,rz,;g),m >0
and 0 < T <o be such that
ror

1 1 ql q2 q} ISqSOO
2 o

1
—+—+—-l<m<
9 49 94

4q;
_m
1 1 1
4

q,

<0,1<i<L3
1—

q,

q3

Then the bilinear operator

B(u,v)(t)= j.e('fr)AP[V.(—uv)dT

is continuous from L* ([0, T]; H™"* )YxL” ([0, T];
H™ )to L* ([0, T]; H"’”’q) and we have the the

enequality

||B(u,v)(t)

L"([O, ) H™ )

2 3
<T 2 ||u

eorpiree) Moo ryinre)
Proof. This lemma is obtained from lemma 3 in [8].

Lemma 2.2. 1f ue H™" then

etull S|u
el <l

[0, T, ™" r ([o, TLE" )

Proof. See lemma 4 in [8].

Lemma 2.3. Let P is the Helmholtz projection onto the
divergence-free fields then P is continuous from L™
to L 1<r<w,1<g< oo,

Proof. The operator P in [8] is defined by the Riesz
transforms

(Pf)] :fj + ZRJ'kak

1<k<3

and R, is bounded from L” to L, 1< p <o seein

([10], theorem 6.8 and example, p.54) then P is also
bounded from 7 to L”, 1< p <. In addition, we

have the interpolation relation

(L”',L‘”z )g =L 1<p <r<p,l<g<o
-9
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Using the interpolation theory, we obtain that the
operator P is bounded from L™ to
L1<r<o,l<g<oo.

Therefore, based on linearity property, P is

continuous from L™ to L"? and the proof is

completed.

Lemma 2.4. 1f ue H™" then VO<t<T

t

Je(’_ “p

0

<l
([0, T); A7)

r(fo, T A ) T

Proof. We have

e

= j'e(t—r)A (ﬂ)m Pu(r)dz'

Vo

o
———— " (V=A)" Pu(.-6)d6dz
0 [47r(t—r)]E 3 ,
L

-Jef

0 1 (i-7)
S,![ t_z_):r/z R_[e

dédr

Pu (z’, — H)HHM ,

o
- [ aodr
[47[ (1- z’)]E R

f 1
([0, T ").I.

(fo, T ame)
Therefore, we obtain the lemma.

Theorem 2.1.

Let
q9=(4:9,-9:)-7 = (rl’r2>r3) m>0||g

([0, T A" )

ol

be small enough and 0 < T <o be such that

11 1
11 1 PP
—+—+——1<m<M,1<4<oo
4 9 4 2
2<— I con1<g <ow1<i<3
m
o
9 49 4

Then the equation (2) has a unique mild solution
u in a small ball of L” ([0, T); H™" )

Proof. Consider the ball

B, {veL ([o. T); E™ )< |lv g q)Sg}

Let ¢ be the transformation given as ¢(v)=u

where u is the unique mild solution to equation

u, —PAu = P(we; xv)+ Pdiv(-w)+g (see theorem 6
in [8])

u (t) =eu, + J.e('fr)AP[V.(—vv) +g+we, x v(r)] dr
0

arc

L”([o, ), 7™ )
small enough then the transformation ¢ acts from B,
is a contraction. To do this, we estimate

|tA

([0, T); ") T

+||B v,v)

Oll ([0, 1) 5

L““([O, ), )

+ j‘e(H)A P[g + we, xv(r)} dr

0

1 (fo, T} 0

4 3
+T 2 v

< ||v0

(o i)

+T||g+a)e3><v

H™

><”V ([0, T £ ([0 T} )

: &’ +T(||g||y°([o, ) ") + gj

if || g ,& are small enough. It implies the

transformation ¢ acts from B, into itself.

)i ([0’ T]; Fmra )
Next, for v,v" in B, , we have
* ok * * *
—-wWw+v v :(v —v)v+v (v —v)

) = ‘(i;e('_T)APV.{[(V* —v)v+ v (V* - V):|
+we, x(v—v*)(r)} dr

o(v)-o(

Therefore,

o()-0(»)

Lw([o, T, A7 )
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< j;e(”)APV.{[(V* —v)v—i—v* (v* —v)]
+ we, x(v—v*)(r)}dr

aaa)
m+l—-| —+—+—
[P IE)
2 [

*
X |V—V

g ([0, ), B )

#

+
v L‘([o, T, H™4 ) :|

[0 T}; e

L"([o, TR )

<2eT 2
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It implies that that ¢ is a contraction and the

2 (fo. T} e

if T is small enough.
([0, T]; A7)

equation (2) has unique solution in this ball.

Therefore, the equation (1) has the unique
solution in the ball of L* ([0, T]; H™" ) under some

conditions and we obtain the main results of this paper.
In addition, we also continue to study this solution of
the global problems in the same space.

3. Conclusion

Our obtained results are considered as an impetus
to solve the problems of Navier-Stokes equations in
the new Sobolev space which has been presented
in [8].
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