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Abstract 

In the paper, we built a predator-prey model to simulate and study the dynamics of zooplankton and 
phytoplankton populations under the temperature impact, in which the stage structure is considered in the 
zooplankton population. Our model is an ordinary differential system of three nonlinear equations with some 
parameters as temperature-dependent functions and uses the generalized Holling response function. The 
non-negative and boundedness of the model solutions have been proven. The behaviors of our system are 
shown by the local stability conditions of the equilibria, especially the co-existence case. The stage 
transformation of zooplankton was studied through the Hopf bifurcation results of varying the temperature. 
The analysis and simulation results indicate that the ideal temperature for the co-existence is about 12-21 
degrees Celsius. The zooplankton's transformation decreases when the temperature increases, leading to an 
imbalance in the system. Besides that, we also provided simulation figures to illustrate the found theoretical 
results. 

Keywords: Phytoplankton-zooplankton system, predator-prey model, stage-structure population, water 
temperature, stability analysis, Hopf bifurcation. 

 
1. Introduction*  

In the aquatic environment, temperature is an 
essential factor affecting the growth of organisms. 
Aquatic organisms often seek out water areas with a 
suitable and stable temperature to live, reproduce and 
find food. Therefore, studying the effect of 
temperature on aquatic organism populations has 
attracted much attention in recent decades [1-4].  

Plankton is tiny and temperature-sensitive 
organisms that live in water. We can divide them into 
three main groups: zooplankton, phytoplankton, and 
bacterioplankton. In particular, the interaction between 
zooplankton and phytoplankton plays an important 
role in balancing and maintaining nutrients in the 
aquatic ecosystem. Numerous studies have shown that 
ocean warming significantly impacts these two 
plankton organisms. For phytoplankton, Staehr and 
Sand-Jensen [5] investigated the effect of temperature 
on the rate of photosynthesis, respiration, and 
phytoplankton growth. Toseland et al. [6] studied 
these organisms' resource distribution and metabolism 
change when varying the temperature. For 
zooplankton, there were some relevant studies on the 
impact of temperature on the body-size decrease of 
Cladoceran species and the change in critical density 
with temperature [7]. Experimental results show that 
the change in water temperature can affect 
zooplankton’s hunting ability and change the structure 
and the density of the phytoplankton population. From 
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that, the affection can lead to a significant variation in 
the marine food web.  

 Recently, Choi et al. [8] have proposed a 
mathematical model describing an ecosystem of three 
entities: nutrient source, phytoplankton, and 
zooplankton, in which phytoplankton contains toxin 
substances to run away from the zooplankton. In 2023, 
Gera [9] published the results about the effect of 
rainfall and temperature on plankton density in river 
flows. During the same period, a model to simulate the 
dynamics of a plankton population consisting of 
phytoplankton and their competition for nutrients was 
proposed by Chu et al. [10]. In 2021, there is also some 
typical research, like the results of Mandal et al. [11]. 
The authors studied the zooplankton and 
phytoplankton interaction, in which phytoplankton has 
a shelter and releases toxins to fight or counter the 
zooplankton. They pointed out that zooplankton can go 
extinct if the toxicity of phytoplankton is too high; 
meanwhile, providing more food sources will support 
the zooplankton’s survival. Research is based on 
differential equations by Kulbhushan and Harpreet 
[12] on the possibility of optimal exploitation of 
phytoplankton in the case of zooplankton infected 
under the influence of toxicants. Their main results 
have shown that phytoplankton harvesting is vital in 
ecosystem dynamics while potentially controlling 
blooms. Sharada N.R et al. proposed a new model to 
study the stability of the zooplankton-phytoplankton 
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system, in which there are toxic phytoplankton and 
non-toxic phytoplankton [13]. Zooplankton tends to 
eat non-toxic phytoplankton, resulting in this 
phytoplankton can be eliminated soon and the toxic 
one thriving. Due to the lack of non-toxic prey, the 
competition in foraging by zooplankton is also 
increasing. 

In this paper, we build a new mathematical model 
to study the interaction between zooplankton and 
phytoplankton under the effect of temperature and 
stage structure in the phytoplankton population. Our 
model is motivated by the proposed model in Zhao’s 
research published in 2020 [14]. However, different 
from Zhao’s model, our model uses the stage structure 
in the zooplankton population. In reality, the lifecycle 
of zooplankton has two main stages: larvae and adult, 
in which the temperature dramatically influences the 
transformation between them. The study by Jackson 
and Lenz discusses the increased predatory capability 
of zooplankton as they mature [15]. Larvae do not 
swim well, so they rely on ocean currents, while adults 
can use this ability to hunt. For simplicity, we consider 
larvae to be non-predatory. Moreover, larvae are less 
able to adapt to temperature than the adult stage, 
leading to a higher mortality rate. Some specific 
analyses regarding the temperature impact on the 
growth stages of zooplankton are presented in [16]. 
Therefore, the question that we want to answer is, for 
an ecosystem with the stage structure, how does 
temperature affect it? In our model, zooplankton 
consists of two stages: juvenile and adult, in which 
there exists a parameter representing the transform rate 
of zooplankton between these them. The equation for 
the dependence of density at two stages of zooplankton 
is shown separately.  

The rest of this paper is organized as follows: In 
Section 2, we present our mathematical model and the 
ecological meaning of the parameters. The positivity, 
boundedness, and uniqueness of solutions, the stability 
analysis of the equilibrium points, and Hopf 
bifurcation results are analyzed and indicated in 
Section 3. Numerical simulations were performed to 
illustrate the theoretical results according to essential 
factors presented in Section 4. Finally, Section 5 gives 
some of our discussions and further work on this 
research. 

2. The Mathematical Model 

In this study, we investigate an ordinary 
differential system of three nonlinear equations as 
follows: 

⎩
⎪
⎨

⎪
⎧

d𝑃𝑃
d𝑡𝑡

= 𝑟𝑟 �1 − 𝑃𝑃
𝐾𝐾
�𝑃𝑃 − 𝑎𝑎𝑃𝑃𝑛𝑛𝑍𝑍𝐴𝐴

1+𝑎𝑎ℎ𝑃𝑃𝑛𝑛
 ,                 

d𝑍𝑍𝐸𝐸
d𝑡𝑡

= −𝑚𝑚𝐸𝐸𝑍𝑍𝐸𝐸 −  𝛼𝛼𝑍𝑍𝐸𝐸  +  𝑒𝑒 𝑎𝑎𝑃𝑃𝑛𝑛𝑍𝑍𝐴𝐴
1+𝑎𝑎ℎ𝑃𝑃𝑛𝑛

,     

 d𝑍𝑍𝐴𝐴
d𝑡𝑡

=  𝛼𝛼𝑍𝑍𝐸𝐸  −  𝑚𝑚𝐴𝐴𝑍𝑍𝐴𝐴.                              

                  (1) 

 

The initial condition is considered as P(0) > 0, 
𝑍𝑍𝐸𝐸(0) > 0, 𝑍𝑍𝐴𝐴(0) > 0. Parameter n > 0 is the Holling 
parameter of the response function. When n = 1, the 
response function is Holling type II, and when n > 1, 
we have the Holling type III response function. The 
variables P, 𝑍𝑍𝐸𝐸 and 𝑍𝑍𝐴𝐴  are the population density of 
phytoplankton, juvenile zooplankton, and adult 
zooplankton, respectively. The parameters 𝑟𝑟, 𝐾𝐾 are the 
intrinsic growth rate and the maximum carrying 
capacity for phytoplankton. The parameter 𝑎𝑎 is the 
capture rate of the adult zooplankton when foraging 
the phytoplankton and 𝑒𝑒 is the transfer rate for 
reproduction from the phytoplankton found. The 
parameter ℎ is the average time for processing food of 
zooplankton. Two parameters 𝑚𝑚𝐸𝐸, 𝑚𝑚𝐴𝐴 are juvenile and 
adult zooplankton mortality rates, respectively. 
Finally, 𝛼𝛼 is the transform rate of zooplankton from 
juvenile to adult. 

To study the influence of temperature on the 
behavior of the multi-plankton dynamical system, we 
consider these above parameters as temperature-
dependent functions [17] as follows:  

1. The mortality rate: 𝑚𝑚(𝑇𝑇) = 𝑚𝑚0exp �− 𝐸𝐸
𝑘𝑘𝑘𝑘
�. 

2. The intrinsic growth rate of phytoplankton: 

𝑟𝑟(𝑇𝑇) = 𝑟𝑟0exp �− �𝑘𝑘−𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜�
2

(2𝑆𝑆)2
�.      

3. The capture rate:    

𝑎𝑎(𝑇𝑇) = 𝑎𝑎0 exp �− �𝑘𝑘−𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜�
2

(2𝑆𝑆)2
�. 

4. The food processing time:  

ℎ(𝑇𝑇) = ℎ0exp ��𝑘𝑘−𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜�
2

(2𝑆𝑆)2
�. 

5. The Holling parameter:   

𝑛𝑛(𝑇𝑇) = 𝑛𝑛0exp ��𝑘𝑘−𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜�
2

(2𝑆𝑆)2
�. 

6. The transform rate of zooplankton:  

 𝛼𝛼(𝑇𝑇) = 𝛼𝛼0exp �− �𝑘𝑘−𝑘𝑘opt �
2

(2𝑆𝑆)2
�. 

3. The Model Analysis 

In this section, we derive the results of solutions’ 
positivity, boundedness, and uniqueness to ensure the 
model consistent with reality. Besides that, the 
stability analysis of the equilibrium points and Hopf 
bifurcation are also presented. 

3.1. The Positivity and Boundedness 

Because the population densities are nonnegative 
and do not go to infinity, proof of the positivity and 
boundedness of the solution is necessary. 

Theorem 3.1: All system (1) solutions are always 
positive and bounded. 
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Proof:  

Firstly, we prove the positivity of solutions. Let  
(𝑃𝑃(𝑡𝑡),𝑍𝑍𝐸𝐸(𝑡𝑡),𝑍𝑍𝐴𝐴(𝑡𝑡)) be the solution of system (1) with 
the positive initial condition. We found that right-hand 
equations of (1) are continuous and smooth functions 
in ℝ+

3 = {(𝑃𝑃,𝑍𝑍𝐸𝐸 ,𝑍𝑍𝐴𝐴):𝑃𝑃,𝑍𝑍𝐸𝐸 ,𝑍𝑍𝐴𝐴 > 0}. For initial 
condition 𝑃𝑃(0) > 0,𝑍𝑍𝐸𝐸(0) > 0,𝑍𝑍𝐴𝐴(0) > 0, we have: 

⎩
⎪⎪
⎨

⎪⎪
⎧𝑃𝑃(𝑡𝑡) = 𝑃𝑃(0)𝑒𝑒𝑒𝑒𝑒𝑒�� �𝑟𝑟 �1−

𝑃𝑃
𝐾𝐾
� −

𝑎𝑎𝑃𝑃𝑛𝑛−1𝑍𝑍𝐴𝐴
1 + 𝑎𝑎ℎ𝑃𝑃𝑛𝑛�

𝑡𝑡

0
𝑑𝑑𝑑𝑑� > 0,                  

𝑍𝑍𝐸𝐸(𝑡𝑡) = 𝑍𝑍𝐸𝐸(0)𝑒𝑒𝑒𝑒𝑒𝑒�� �−𝑚𝑚 − 𝛼𝛼 + 𝑒𝑒
𝑎𝑎𝑃𝑃𝑛𝑛𝑍𝑍𝐴𝐴

(1 + 𝑎𝑎ℎ𝑃𝑃𝑛𝑛)𝑍𝑍𝐸𝐸
�

𝑡𝑡

0
𝑑𝑑𝑑𝑑� > 0,      

𝑍𝑍𝐴𝐴(𝑡𝑡) = 𝑍𝑍𝐴𝐴(0)𝑒𝑒𝑒𝑒 𝑒𝑒 �𝛼𝛼
𝑍𝑍𝐸𝐸
𝑍𝑍𝐴𝐴

− 𝑚𝑚𝐴𝐴� > 0.                                                      

  

Therefore, all solutions of system (1) are always 
positive. 

Next, we prove the boundedness. From the first 
equation of (1), we get: 

d𝑃𝑃
d𝑡𝑡

≤ 𝑟𝑟 �1 −
𝑃𝑃
𝐾𝐾
�𝑃𝑃. 

Thus, we have: 

lim sup
𝑡𝑡→∞

 �𝑃𝑃(𝑡𝑡)� ≤ 𝐾𝐾. 

Let 𝜁𝜁(𝑡𝑡) = 𝑒𝑒𝑃𝑃(𝑡𝑡) + 𝑍𝑍𝐸𝐸(𝑡𝑡) + 𝑍𝑍𝐴𝐴(𝑡𝑡) and replace to (1), 
we obtain: 

d𝜁𝜁(𝑡𝑡)
d𝑡𝑡

= 𝑒𝑒
d𝑃𝑃
d𝑡𝑡

+
d𝑍𝑍𝐸𝐸
d𝑡𝑡

+
d𝑍𝑍𝐴𝐴
d𝑡𝑡

 

            = 𝑒𝑒𝑟𝑟 �1 −
𝑃𝑃
𝐾𝐾
�𝑃𝑃 − 𝑚𝑚𝐸𝐸𝑍𝑍𝐸𝐸 − 𝑚𝑚𝐴𝐴𝑍𝑍𝐴𝐴 

           ≤ 𝑒𝑒𝑟𝑟𝑃𝑃 − (𝑚𝑚𝐸𝐸𝑍𝑍𝐸𝐸 + 𝑚𝑚𝐴𝐴𝑍𝑍𝐴𝐴) 

             ≤ 2𝑒𝑒𝑟𝑟𝑃𝑃 − 𝑒𝑒𝑟𝑟𝑃𝑃 − (𝑚𝑚𝐸𝐸𝑍𝑍𝐸𝐸 + 𝑚𝑚𝐴𝐴𝑍𝑍𝐴𝐴) 

             ≤ 2𝑒𝑒𝑟𝑟𝐾𝐾 − min{𝑟𝑟,𝑚𝑚𝐸𝐸 ,𝑚𝑚𝐴𝐴}(𝑒𝑒𝑃𝑃 + 𝑍𝑍𝐸𝐸 + 𝑍𝑍𝐴𝐴). 

We choose 𝜃𝜃 = min{𝑟𝑟,𝑚𝑚𝐸𝐸 ,𝑚𝑚𝐴𝐴},  we have: 
d𝜁𝜁(𝑡𝑡)
d𝑡𝑡

+ 𝜃𝜃𝜁𝜁(𝑡𝑡) ≤ 2𝑒𝑒𝑟𝑟𝐾𝐾. 

Using differential inequality, we obtain:  

0 ≤ 𝜁𝜁(𝑡𝑡) ≤ 2𝑒𝑒𝑒𝑒𝐾𝐾
𝜃𝜃

 . 

Therefore, all solutions of (1) are bounded. 
Hence the theorem is proved. 

3.2. The Uniqueness 

The uniqueness is proven in the following 
theorem: 

Theorem 3.2: For any initial value 
�𝑃𝑃(0),𝑍𝑍𝐸𝐸(0),𝑍𝑍𝐴𝐴(0)� ∈ ℝ+

3 , the system (1) has a 
unique solution. 

Proof:  

Let 𝑢𝑢(𝑡𝑡) = ln�𝑃𝑃(𝑡𝑡)�, 𝑣𝑣(𝑡𝑡) = ln(𝑍𝑍𝐸𝐸(𝑡𝑡)) and 
𝑧𝑧(𝑡𝑡) = ln(𝑍𝑍𝐴𝐴(𝑡𝑡)), we have: 

⎩
⎪
⎨

⎪
⎧�̇�𝑢(𝑡𝑡) = 𝑟𝑟 �1 − e𝑢𝑢(𝑜𝑜)

𝐾𝐾
� e𝑢𝑢(𝑡𝑡) − 𝑎𝑎e𝑢𝑢(𝑜𝑜)𝑛𝑛e𝑧𝑧(𝑜𝑜)

1+𝑎𝑎ℎe𝑢𝑢(𝑜𝑜)𝑛𝑛 ,

�̇�𝑣(𝑡𝑡) = −𝑚𝑚𝐸𝐸e𝑣𝑣(𝑡𝑡) − 𝛼𝛼e𝑧𝑧(𝑡𝑡) + 𝑒𝑒 𝑎𝑎e
𝑢𝑢(𝑜𝑜)𝑛𝑛e𝑧𝑧(𝑜𝑜)

1+𝑎𝑎ℎe𝑢𝑢(𝑜𝑜)𝑛𝑛 ,     

�̇�𝑧(𝑡𝑡) = 𝛼𝛼e𝑣𝑣(𝑡𝑡) −𝑚𝑚𝐴𝐴e𝑧𝑧(𝑡𝑡).

       (2) 

where 𝑡𝑡 ≥ 0 and the initial value 𝑢𝑢(0) =  ln(𝑃𝑃(0)), 
𝑣𝑣(0) = ln(𝑍𝑍𝐸𝐸(0)) , 𝑧𝑧(0) = ln (𝑍𝑍𝐴𝐴(0)). 

Due to the coefficients of the system (2) satisfy 
the local Lipschitz condition, so system (2) has a 
unique solution (𝑢𝑢(𝑡𝑡), 𝑣𝑣(𝑡𝑡), 𝑧𝑧(𝑡𝑡)). Therefore, 
(𝑃𝑃(𝑡𝑡),𝑍𝑍𝐸𝐸(𝑡𝑡),𝑍𝑍𝐴𝐴(𝑡𝑡)) = �𝑒𝑒𝑢𝑢(𝑡𝑡), 𝑒𝑒𝑣𝑣(𝑡𝑡), 𝑒𝑒𝑧𝑧(𝑡𝑡)�  is the 
unique solution of system (1) with the initial condition 
(𝑃𝑃(0),𝑍𝑍𝐸𝐸(0),𝑍𝑍𝐴𝐴(0)) ∈ ℝ+

3 . 

3.3. The Stability Analysis 

Firstly, the system (1) has the following 
equilibrium point:  

𝐸𝐸0 = (0,0,0). 

𝐸𝐸1 = (𝐾𝐾, 0,0). 

𝐸𝐸∗ = (𝑃𝑃∗,𝑍𝑍𝐸𝐸∗ ,𝑍𝑍𝐴𝐴∗) where  

𝑃𝑃∗ = �
𝑚𝑚𝐴𝐴(𝑚𝑚𝐸𝐸 + 𝛼𝛼)

𝑒𝑒𝑎𝑎𝛼𝛼 − 𝑎𝑎𝑚𝑚𝐴𝐴ℎ(𝑚𝑚𝐸𝐸 + 𝛼𝛼)
�

1
𝑛𝑛

, 

𝑍𝑍𝐸𝐸∗ =
𝑚𝑚𝐴𝐴

𝛼𝛼
𝑟𝑟 �1 −

𝑃𝑃∗

𝐾𝐾
�

1 + 𝑎𝑎ℎ𝑃𝑃∗𝑛𝑛

𝑎𝑎𝑃𝑃∗(𝑛𝑛−1)  , 

𝑍𝑍𝐴𝐴∗ = 𝑟𝑟 �1 − 𝑃𝑃∗

𝐾𝐾
� 1+𝑎𝑎ℎ𝑃𝑃

∗𝑛𝑛

𝑎𝑎𝑃𝑃∗(𝑛𝑛−1)  . 

We have the Jacobian matrix of the system (1) as 
follows: 

𝐽𝐽 = �
𝑗𝑗11 𝑗𝑗12 𝑗𝑗13
𝑗𝑗21 𝑗𝑗22 𝑗𝑗23
𝑗𝑗31 𝑗𝑗32 𝑗𝑗33

� 

=

⎣
⎢
⎢
⎢
⎢
⎡𝑟𝑟 −

2𝑟𝑟𝑃𝑃
𝐾𝐾 −

𝑎𝑎𝑛𝑛𝑃𝑃𝑛𝑛−1𝑍𝑍𝐴𝐴
(1 + 𝑎𝑎ℎ𝑃𝑃𝑛𝑛)2 0 −

𝑎𝑎𝑃𝑃𝑛𝑛

1 + 𝑎𝑎ℎ𝑃𝑃𝑛𝑛
𝑛𝑛𝑒𝑒𝑎𝑎𝑍𝑍𝐴𝐴𝑃𝑃𝑛𝑛−1

(1 + 𝑎𝑎ℎ𝑃𝑃𝑛𝑛)2 −(𝑚𝑚𝐸𝐸 + 𝛼𝛼)
𝑒𝑒𝑎𝑎𝑃𝑃𝑛𝑛

1 + 𝑎𝑎ℎ𝑃𝑃𝑛𝑛
0 𝛼𝛼 −𝑚𝑚𝐴𝐴 ⎦

⎥
⎥
⎥
⎥
⎤

 

Theorem 3.3 The equilibrium points 𝐸𝐸0 is always 
unstable. 

Proof:  

For 𝐸𝐸0 = (0,0,0), we have the corresponding 
Jacobian matrix as follows: 

 𝐽𝐽(𝐸𝐸0) = �
𝑟𝑟 0 0
0 −(𝑚𝑚𝐸𝐸 + 𝛼𝛼) 0
0 𝛼𝛼 −𝑚𝑚𝐴𝐴

� 

We found that 𝐽𝐽(𝐸𝐸0) has three eigenvalues with 
a positive one as follows:  

𝜆𝜆1 = 𝑟𝑟 > 0;
𝜆𝜆2 = −(𝑚𝑚𝐸𝐸 + 𝛼𝛼) < 0;
𝜆𝜆3 = −𝑚𝑚𝐴𝐴 < 0.

 

Thus, 𝐸𝐸0 is unstable. 
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Theorem 3.4 The axial equilibrium points 𝐸𝐸1 is stable 

if  𝑚𝑚𝐴𝐴(𝑚𝑚𝐸𝐸 + 𝛼𝛼) > 𝛼𝛼𝑒𝑒𝑎𝑎𝐾𝐾𝑛𝑛

1+𝑎𝑎ℎ𝐾𝐾𝑛𝑛
. 

Proof:  

We have the Jacobian matrix at 𝐸𝐸1 as follows:  

𝐽𝐽(𝐸𝐸1) =

⎣
⎢
⎢
⎢
⎡−𝑟𝑟 0 −

𝑎𝑎𝐾𝐾𝑛𝑛

1 + 𝑎𝑎ℎ𝐾𝐾𝑛𝑛

0 −(𝑚𝑚𝐸𝐸 + 𝛼𝛼)
 ea𝐾𝐾𝑛𝑛 

1 + 𝑎𝑎ℎ𝐾𝐾𝑛𝑛

0 𝛼𝛼 −𝑚𝑚𝐴𝐴 ⎦
⎥
⎥
⎥
⎤

 

The matrix 𝐽𝐽(𝐸𝐸1) has three eigenvalues satisfy: 

         
 𝜆𝜆1 = −𝑟𝑟 < 0;            

𝜆𝜆2𝜆𝜆3 = 𝑚𝑚𝐴𝐴 (𝑚𝑚𝐸𝐸 + 𝛼𝛼) −
𝛼𝛼𝑒𝑒𝑎𝑎𝐾𝐾𝑛𝑛

1 + 𝑎𝑎ℎ𝐾𝐾𝑛𝑛 ;
 

                     𝜆𝜆2+ 𝜆𝜆3 =  −(𝑚𝑚𝐴𝐴 + 𝑚𝑚𝐸𝐸 + 𝛼𝛼)  < 0. 

Thus, if 𝑚𝑚𝐴𝐴(𝑚𝑚𝐸𝐸 + 𝛼𝛼) > 𝛼𝛼𝑒𝑒𝑎𝑎𝐾𝐾𝑛𝑛

1+𝑎𝑎ℎ𝐾𝐾𝑛𝑛
 then 𝐸𝐸1  is 

stable. Hence, the theorem is proved. 

Theorem 3.5: The equilibrium point 𝐸𝐸∗ is locally 
asymptotically stable if and only if: 

𝑎𝑎1 > 0, 𝑎𝑎3 > 0 and  𝑎𝑎1𝑎𝑎2 > 𝑎𝑎3, 

where 𝑎𝑎1, 𝑎𝑎2, 𝑎𝑎3 are the coefficients of 𝜆𝜆 in the 
characteristic equation at 𝐸𝐸∗ as follows: 

𝐽𝐽(𝐸𝐸∗) = 𝜆𝜆3 + 𝑎𝑎1𝜆𝜆2 + 𝑎𝑎2𝜆𝜆 + 𝑎𝑎3. 

Proof: 

We have the Jacobian matrix at E* as follows: 

𝐽𝐽(𝐸𝐸∗) = �
𝑗𝑗11 0 𝑗𝑗13
𝑗𝑗21 −(𝑚𝑚𝐸𝐸 + 𝛼𝛼) 𝑗𝑗23
0 𝛼𝛼 −𝑚𝑚𝐴𝐴

�, 

where 𝑗𝑗11 = 𝑟𝑟 − 2𝑒𝑒𝑃𝑃∗

𝐾𝐾
− 𝑎𝑎𝑛𝑛𝑃𝑃∗(𝑛𝑛−1)𝑍𝑍𝐴𝐴

∗

(1+𝑎𝑎ℎ𝑃𝑃∗𝑛𝑛)2
; 𝑗𝑗13 = − 𝑎𝑎𝑃𝑃∗𝑛𝑛

1+𝑎𝑎ℎ𝑃𝑃∗𝑛𝑛
; 

𝑗𝑗21 = 𝑛𝑛𝑒𝑒𝑎𝑎𝑍𝑍𝐴𝐴
∗𝑃𝑃∗(𝑛𝑛−1)

(1+𝑎𝑎ℎ𝑃𝑃∗𝑛𝑛)2
; 𝑗𝑗23 = 𝑒𝑒𝑎𝑎𝑃𝑃∗𝑛𝑛

1+𝑎𝑎ℎ𝑃𝑃∗𝑛𝑛
.  

We have: 

det(𝐽𝐽 − 𝜆𝜆𝜆𝜆) = �
𝑗𝑗11 − 𝜆𝜆 0 𝑗𝑗13
𝑗𝑗21 𝑗𝑗22 − 𝜆𝜆 𝑗𝑗23
0 𝑗𝑗32 𝑗𝑗33 − 𝜆𝜆

�         (3) 

                      = 𝜆𝜆3 + 𝑎𝑎1𝜆𝜆2 + 𝑎𝑎2𝜆𝜆 + 𝑎𝑎3, 

where 𝑎𝑎1 = −𝑗𝑗33 − 𝑗𝑗22 − 𝑗𝑗11, 

𝑎𝑎2 = 𝑗𝑗11𝑗𝑗22 + 𝑗𝑗11𝑗𝑗33 + 𝑗𝑗22𝑗𝑗33 − 𝑗𝑗23𝑗𝑗32, 

𝑎𝑎3 = 𝑗𝑗11𝑗𝑗23𝑗𝑗32 − 𝑗𝑗13𝑗𝑗21𝑗𝑗32 − 𝑗𝑗11𝑗𝑗22𝑗𝑗33. 

Using the Routh-Hurwitz criterion, 𝐸𝐸∗ is 
asymptotically stable with the necessary and sufficient 
conditions as follows:  

 �
𝑎𝑎1 > 0,
𝑎𝑎3 > 0,
𝑎𝑎1𝑎𝑎2 > 𝑎𝑎3.

   

↔ �

𝑗𝑗33 + 𝑗𝑗22 + 𝑗𝑗11 < 0,
𝑗𝑗12𝑗𝑗21𝑗𝑗32 + 𝑗𝑗11𝑗𝑗22𝑗𝑗33 − 𝑗𝑗11𝑗𝑗23𝑗𝑗32 < 0,
(𝑗𝑗33 + 𝑗𝑗22 + 𝑗𝑗11)(𝑗𝑗23𝑗𝑗32 − 𝑗𝑗11𝑗𝑗22 − 𝑗𝑗11𝑗𝑗33 − 𝑗𝑗22)
> 𝑗𝑗11𝑗𝑗23𝑗𝑗32 − 𝑗𝑗13𝑗𝑗21𝑗𝑗32 − 𝑗𝑗11𝑗𝑗22𝑗𝑗33.

 

3.4. Hopf Bifurcation 

In this subsection, we investigate the stability of 
the co-existence equilibrium point when 𝛼𝛼 is varied 
through the Hopf bifurcation. The characteristic 
equation at 𝐸𝐸∗ is: 

𝐽𝐽(𝐸𝐸∗) = 𝜆𝜆3 + 𝑎𝑎1𝜆𝜆2 + 𝑎𝑎2𝜆𝜆 + 𝑎𝑎3,                (4) 

where 𝑎𝑎𝑖𝑖 with 𝑖𝑖 = 1,2,3 is in Theorem 3.3. 

Theorem 3.6: If exists 𝛼𝛼 = 𝛼𝛼∗ satisfy: 

i. 𝑎𝑎1𝑎𝑎2 = 𝑎𝑎3, 

ii. 𝑎𝑎1d𝑎𝑎2
d𝛼𝛼

+ 𝑎𝑎2d𝑎𝑎1
d𝛼𝛼

− d𝑎𝑎3
d𝛼𝛼

≠  0, 

then, system (1) occurs Hopf bifurcation at the co-
existence equilibrium E*. 

Proof:  

We let the form of 𝜆𝜆 is 𝜆𝜆 = 𝑢𝑢 + 𝑖𝑖𝑣𝑣. Substituting 
𝜆𝜆  into (3), we have:  

(𝑢𝑢 + 𝑖𝑖𝑣𝑣)3 + 𝑎𝑎1(𝑢𝑢 + 𝑖𝑖𝑣𝑣)2 + 𝑎𝑎2(𝑢𝑢 + 𝑖𝑖𝑣𝑣) + 𝑎𝑎3 = 0 

↔ 𝑢𝑢3 + 3𝑢𝑢2𝑣𝑣𝑖𝑖 − 3𝑢𝑢𝑣𝑣2 − 𝑖𝑖𝑣𝑣3 + 𝑎𝑎1𝑢𝑢2 − 𝑎𝑎1𝑣𝑣2 

+2𝑎𝑎1𝑢𝑢𝑣𝑣𝑖𝑖 + 𝑎𝑎2𝑢𝑢 + 𝑎𝑎2𝑣𝑣𝑖𝑖 + 𝑎𝑎3 = 0 

↔ 𝑢𝑢3 − 3𝑢𝑢𝑣𝑣2 + 𝑎𝑎1𝑢𝑢2 − 𝑎𝑎𝑣𝑣2 + 𝑎𝑎2𝑢𝑢 + 𝑎𝑎3 

+(3𝑢𝑢2𝑣𝑣 − 𝑣𝑣3 + 2𝑎𝑎1𝑢𝑢𝑣𝑣 + 𝑎𝑎2𝑣𝑣)𝑖𝑖 = 0. 

Thus, we get: 

𝑢𝑢3 − 3𝑢𝑢𝑣𝑣2 + 𝑎𝑎1𝑢𝑢2 − 𝑎𝑎1𝑣𝑣2 + 𝑎𝑎2𝑢𝑢 + 𝑎𝑎3 = 0;           (5) 

3𝑢𝑢2𝑣𝑣 − 𝑣𝑣3 + 2𝑎𝑎1𝑢𝑢𝑣𝑣 + 𝑎𝑎2𝑣𝑣 = 0.                                 (6) 

From (6), representing 𝑣𝑣 through 𝑢𝑢 and 
substituting into (5), we have: 

−8𝑢𝑢3 + 4𝑎𝑎1𝑢𝑢2 + 𝑢𝑢(2𝑎𝑎12 − 2𝑎𝑎2) − 𝑎𝑎1𝑎𝑎2 + 𝑎𝑎3 = 0. 

Due to 𝑢𝑢(𝛼𝛼∗) = 0, differentiating (6) with 
respect to 𝛼𝛼 and putting 𝛼𝛼 = 𝛼𝛼∗, we obtain: 

�
d𝑢𝑢
d𝛼𝛼
�
𝛼𝛼=𝛼𝛼∗

= �
𝑎𝑎1d𝑎𝑎2

d𝛼𝛼 + 𝑎𝑎2d𝑎𝑎1
d𝛼𝛼 − d𝑎𝑎3

d𝛼𝛼
2𝑎𝑎12 − 2𝑎𝑎2

�

𝛼𝛼=𝛼𝛼∗

≠ 0. 

Thus, we get: 

𝑎𝑎1d𝑎𝑎 2
d𝛼𝛼

+
𝑎𝑎2d𝑎𝑎1

d𝛼𝛼
−

d𝑎𝑎3
d𝛼𝛼

≠ 0. 

Hence, the theorem is proved. 
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4. Numerical Simulations 

In this section, we provide the numerical 
simulations to illustrate the results in the above 
sections. Depending on the stability conditions in the 
above theorems, we can find the suitable temperature 
value with the parameter set so that the system (1) 
reaches the co-existence equilibrium point 𝐸𝐸∗.  

For the parameter set chosen in Table 1, we 
compare the behavior of (1) with temperature values: 
𝑇𝑇 = 14 ℃, 𝑇𝑇 = 20 ℃ and 𝑇𝑇 = 25 ℃. At 𝑇𝑇 = 14 ℃, 
the stable condition in Theorem 3.5 is not satisfied, so 
system (1) does not converge on 𝐸𝐸∗. Fig. 1 shows the 
behavior of the system (1) when 𝑇𝑇 = 14 ℃. In Fig. 1a, 
although we change the initial conditions, the system 
only converges on a limit cycle around 𝐸𝐸∗. Fig. 1b 
shows the time evolution of the density of three 
organisms, in which the values of the three density 
variables oscillate continuously over time with almost 
constant amplitude when the time is large enough. This 
shows that although the dynamical system does not 
have a stable equilibrium point, zooplankton and 

phytoplankton can still co-exist in a relatively low-
temperature environment. 

On the contrary, when 𝑇𝑇 = 20 ℃, system (1) 
converges on the stable co-existence equilibrium point 
𝐸𝐸∗. The time evolution of the system is shown in 
Fig. 2. Initializing with many different values (see 
Fig. 2a), the densities of organisms oscillate. However, 
the oscillation amplitude gradually decreases over time 
and finally converges to the equilibrium value when all 
two organisms co-exist (see Fig. 2b). 

Fig. 3 shows the behavior of the system (1) when  
𝑇𝑇 = 25 ℃. At this temperature value, the system 
converges on the free-zooplankton equilibrium 𝐸𝐸1 
where phytoplankton grows to the maximum carrying 
capacity 𝐾𝐾 and the zooplankton is extinct. We can see 
that with the chosen parameter set, as the temperature 
increases, the behavior of the system is to change from 
the limit cycle to the co-existence equilibrium and to 
the free-zooplankton equilibrium point. Rising 
temperatures can be detrimental to zooplankton in the 
competition.

 
Table 1. Description of the parameters for model (1) 

Parameter Description Values Reference 

𝑚𝑚𝐸𝐸  Mortality rate of juvenile zooplankton mE0 = 20.8×108, E = 0.55, k = 8.62×10-5 - 
𝑚𝑚𝐴𝐴  Mortality rate of adult zooplankton mA0 = 20.4×108, E = 0.55, k = 8.62×10-5 - 
𝛼𝛼 Transform rate of zooplankton α0 = 0.8, S = 12, Topt = 24 - 
𝑟𝑟 Intrinsic growth rate of phytoplankton r0 = 15, S = 12, Topt = 25 [15] 
ℎ Food processing time h0 = 0.17, S = 6.4, Topt = 30 [15] 
𝑎𝑎 Capture rate of zooplankton a0 = 8.9, S = 9.4, Topt = 22 [15] 
𝑛𝑛 Holling parameter of functional response n0 = 1.2, S = 22, Topt = 16 [15] 
𝑒𝑒 Conversion efficiency 0.274 - 
𝐾𝐾 Carrying capacity of environment 8 - 

          
a)                                                                                            b) 

Fig. 1. Phase plot of model (1) a) and the behavior of plankton populations b) when 𝑇𝑇 = 14 ℃. 
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a)                                                                                        b) 

Fig. 2. Phase plot of model (1) a) and the behavior of plankton populations b) when 𝑇𝑇 = 20 ℃. 

       
a)                                                                         b) 

Fig. 3. Phase plot of model (1) a) and the behavior of plankton populations b) when 𝑇𝑇 = 25 ℃. 

       
 a) b) 

Fig. 4.  Bifurcation diagrams respect to temperature of phytoplankton a) and zooplankton b) populations. 

Fig. 4 shows more clearly the effect of 
temperature on the growth of two organism' 
populations. With the chosen parameter set, the best 
temperature range for the co-existence is about 
12 ℃ ~21 ℃. However, in most of this temperature 
range, the two organism do not co-exist stably, their 

densities oscillate continuously. Outside of this 
temperature range, zooplankton in both stages is 
eliminated. Only two temperature ranges 
12 ℃ ~13 ℃ and 20 ℃ ~21 ℃, are ideal conditions 
for both organism populations to co-exist stably.  
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 a) b)  

Fig. 5. The change of phytoplankton a) and zooplankton b) populations when modifying the value of transform rate. 

   
a)                                                                                     b) 

Fig. 6.  Bifurcation diagrams respect to transform rate of phytoplankton a) and zooplankton b). 

 
Fig. 5 shows the behavior of phytoplankton and 

total zooplankton density with three different values of 
transformation rate and keeping the other parameters 
unchanged. When the transformation rate is not great 
enough (𝛼𝛼 = 0.6), the zooplankton population is 
extinct, and the phytoplankton population reaches the 
carrying capacity. When the transformation rate 
increases, the system can converge on the co-existence 
equilibrium point or limit cycle around this point. This 
phenomenon can be seen more clearly when observing 
the Hopf bifurcation diagram when varying the 
transformation rate in Fig. 6. When the transformation 
rate crosses a critical value, a limit cycle appears and 
breaks the stability at an equilibrium of the system. In 
conclusion, phytoplankton and zooplankton can co-
exist only when the transformation parameters are 
great enough and the habitat has a suitable 
temperature. 

5. Conclusion 

In this paper, the interactions between zooplankton 
and phytoplankton under the temperature-affected and 
the stage structure in the zooplankton population were 

studied. Our mathematical model was theoretically 
analyzed and illustrated by numerical simulation. The 
nonnegative and boundedness of solutions, existence, and 
uniqueness are indicated. With the given parameter value 
set, the best temperature range for co-existence in the 
system is about 12℃ to 21℃. When the temperature is 
too low or high, the zooplankton is gradually eliminated, 
and the phytoplankton grows to the maximum capacity of 
the environment. On the other hand, for the parameter α, 
the system maintains the co-existence when its value is 
large enough. If this rate is too low, it leads to 
zooplankton being eliminated. About future work, in 
order to build a simulation model that is closer to natural 
phenomena, our current model can be improved by 
adding more complex factors such as the influence of 
light, nutrition, flow, etc. 
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