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Abstract 

The study presents an efficient implementation of the control volume-based finite difference method (CVFDM) 
integrated with a line-by-line solver for stress and strain analysis. The Navier's equation was discretized for 
each element, yielding fifteen displacement unknowns represented in a single equation. For this study, a   
three-unknown formulation per element was adopted. A line-by-line solver employing the TriDiagonal Matrix 
Algorithm (TDMA) was utilized to solve the equations. Dynamic memory allocation for updating displacements 
at previous element rows, enhancing convergence speed. Variables were solved and stored contiguously 
along a row in each time step, the iteration continued until the desired accuracy was achieved, eliminating the 
need for redundant boundary condition updates and reducing overall simulation time. A finite difference 
method (FDM)-based stress analysis application was developed based on the novel approach proposed in 
this work. Numerical simulations of three problems conducted using this application demonstrate a high level 
of agreement with theoretical solutions. The modified CVFDM with line-by-line solver proves to be an efficient 
and robust approach for stress and strain analysis, providing accurate and reliable results. 

Keywords: CVFDM, stagger mesh, convergence criterion. 

 

1. Introduction1 

In the context of displacement and stress analysis 
problems, researchers commonly initiate 
investigations by employing the finite element method 
(FEM) [1], or the utilization of renowned commercial 
software such as ANSYS or ABAQUS. Fluid flow 
simulations have typically employed finite difference 
method (FDM), as exemplified in mould filling 
simulations using SOLA_VOF [2,3] and 
investigations of bubble motion and local variables in 
multiphase flows using the volume of fluid (VOF) 
method [4], solved via control volume finite difference 
method (CVFDM). Stress analysis using the Finite 
Difference Method (FDM) typically follows a           
two-step process. First, the governing differential 
equation that describes the specific stress problem is 
formulated. Subsequently, this equation is discretized 
and solved numerically using FDM. Such as [5] 
problem of thermoelectricity for an infinitely long and 
isotropic circular cylinder of temperature dependent 
physical properties, the governing equation and 
boundary conditions were formulated in terms of 
differential equation, after that these equations were 
discretized and solved by FDM.   

Yield and potential functions for plastic 
anisotropy, homogeneous anisotropic hardening were 
complicated differential equations [6]. The authors 
were using FDM combined algorithm loading-
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unloading, loading-reloading, and deep-
drawing/springback simulations to solve both first and 
second derivatives of yield function are approximated 
by central difference method. Also the finite difference 
formulation of Biot's theory has the properties of 
fourth order accuracy in space and second order 
accuracy in time combined with a parallel velocity-
stress staggered-grid [7]. Besides, meshless 
generalized finite difference method (MGFDM) has 
been applied to analyse multi-layered composites, as 
demonstrated in [8] and [9], their applicability is often 
limited. These studies focused on situations where 
each layer possessed uniform material properties and 
homogeneous boundary conditions. In such scenarios, 
the MGFDM only exhibited good performance for 
rectangular models with multilayered materials. 
Casting simulations encompass a sequence of 
interrelated phenomena, including injection moulding, 
heat transfer, solidification, bubble dynamics, and 
residual stress. The results of each simulation step 
serve as input parameters for subsequent steps, 
coupling fluid flow and stress analysis.  

To overcome this limitation, a novel hybrid 
approach [10] has been developed that synergistically 
integrates finite element method (FEM) and finite 
difference method (FDM) techniques, effectively 
combining the strengths of both methodologies. 
However, ensuring compatibility between FEM and 
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FDM presents challenges, such as connecting 
equilibrium and momentum equations and establishing 
compatible conditions for their respective meshes. 
These complexities can hinder automated design 
processes. For displacement and stress field problem 
solving via CVFDM coupled with staggered meshes 
[11] has proven effective. Surrounding a control 
volume element, six neighbouring elements are 
considered, with the choice of three, five, or seven 
unknowns depending on the solution form. The 
minimum number of unknowns equals the elements in 
a single mesh row. In this study, three unknowns were 
selected for model solving, and the TriDiagonal Matrix 
Algorithm (TDMA) was employed to solve the 
resulting equations. Methods to accelerate 
convergence rate and reduce simulation time are 
explored and discussed. 

2. Governing Equations 

To numerically solve the stress field problem, the 
differential equilibrium equations were discretized on 
a staggered mesh. The stress-strain relationship was 
incorporated via Hooke's law, substituting strains for 
stresses in the equilibrium equations. Subsequently, 
strain variations were expressed in terms of 
displacements through Cauchy's equations. This 
resulted in the discretization of the differential 
equilibrium equations in terms of displacements for 
each element of the staggered mesh. The discretized 
equations and the corresponding unknowns are 
presented in following sections: 

2.1. Differential Equilibrium Equations (Navier 
Equations) 

0ij
i

i

p
x
σ∂

+ =
∂

                                                    (1) 

in which ijσ represent for stress in an element, xi is 

direction x, y or z and ip is force per unit volume.   

Discretization of the first equilibrium equation 
(direction x) 

The equilibrium in (1) are represented for the 
three coordinate directions (x, y, z), which exhibit 
mathematical similarities. To minimize the number of 
equations presented, only the x-direction equilibrium 
equation was discretized explicitly. To represent the 
remaining equilibrium equations, subscripts and 
superscripts in the x-direction equation were 
substituted with their corresponding y- and z-direction 
counterparts. The discretization of the first equilibrium 
equation was conducted using a staggered mesh. 
Normal stresses were positioned at the centre of 
control volumes, while shear stresses were located at 
the edges (Fig. 1). This discretization was applied to 
ensure equilibrium between adjacent elements. 

 
Fig. 1. The equilibrium of stresses on control volume 
element 

 

 
Fig. 2. Normal stress on control volume 

 

 
Fig. 3. Shear stress on control volume 

( )

11

1

1 1
1

1

1
2

0

ij k ijkijk i jk
yx yxxx xx

j
i i

ijk ijk i jk ijk
zx zx i x i x

k i i

dydx dx

dx p dx p
dz dx dx

σ σσ σ

σ σ

+−

−

+ −
−

−

−−
+ +

+

− +
+ =

+

             (2) 

In Equation (2), each stress component, 
expressed in terms of displacements and temperature, 
was discretized over control volumes. The normal 
stress was located at the centre of a control volume 
(Fig. 2), while the shear stresses were positioned on the 
edges connecting four surrounding finite elements 
(Fig. 3).  

The discretization of the normal stress 
specifically took the following form: 
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2.2. Discretization of Shear Stress 
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The material constants in mentioned equation 
included modulus of elasticity E, Poisson’s ratio ν, 
heat conductivity coefficient α  and temperature T.  

The discretization stresses within the staggered 
mesh enabled the representation of thermo-mechanical 
stresses in the casting process. This facilitated the 
analysis of the stress field at the interface of dissimilar 
materials, such as the mould-die interface. 

The stresses were discretized in equations (3) and 
(8) for substitution into equation (2). The first 
equilibrium equation in terms of displacement has 
been simplified and is expressed as follows: 

1 1 1 1 1

1 1 1

ijk ijk ijk ijk ijk
p p w w e e s s n n

ijk ijk ijk
b b t t

a u a u a u a u a u

a u a u b

= + + + +

+ +
        (11) 

in which the subscripts were presented for elements: 
pole “p”, west “w”, east “e”, north “n”, south “s”, top 
“t” and bottom “b”. 

3. Equivalent Shear Stress 

Shear stresses are applied to the sides of the 
element, while normal stress is applied to the central 
point, as shown in Fig. 4. Plasticity theories require 
equivalent total stress at a single point. 

To account for the shear stresses, a formula is 
needed to transform them into shear stress at the 
central point. The average shear stress at the central 
point is calculated as follows: 

( )1 1 1 11
4

ijk ijk i jk ij k i j k
xy xy xy xy xyσ σ σ σ σ+ + + += + + +          (12) 

in which ijk
xyσ is the equivalent shear stress at the 

central, shear stresses at four sides of the element “ijk” 
shown as shear stresses at four conners of planar 
element in Fig 4. 

 
Fig. 4. Equivalent shear stress at the central 

 
Fig. 5. Shear stress on boundary 

The characteristic of shear stress is applied to the 
sides of elements. It is influenced by the displacements 
of four neighbouring elements (as in 8). If any of these 
four elements are absent, their displacements are set to 
zero. This situation arises when shear stress is applied 
to an external face of a boundary element. As a result, 
the absolute value of these shear stresses may increase 
unexpectedly, significantly impacting the equivalent 
shear stress and equivalent total stress of the boundary 
element. To address this issue, several approaches are 
available. One option involves ignoring shear stresses 
on the boundary when calculating the equivalent shear 
stress. 
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An alternative approach is to calculate the shear 
stresses at the boundary through linear extrapolation 
from the internal shear stresses shown in Fig. 5. 

0 1 20 1 0

1 1

.i k i k i k
xy xy xy

y y y
y y

σ σ σ
∆ + ∆ ∆

= −
∆ ∆

    (15) 

in which 0i k
xyσ is shear stress at the boundary, 1i k

xyσ , 
2i k

xyσ  are internal shear stresses. 

In the evaluation of equivalent shear stress, shear 
stress can be disregarded or estimated indirectly 
through linear extrapolation. The latter approach, 
while slightly more accurate, relies on the adequacy of 
four stress components in the equivalent shear stress 
formulation. 

The difference in accuracy between the two 
options is negligible. Equivalent shear stress can be 
conceptualized as the average of the trapezoidal region 
bounded by the shear stresses inside and on the 
boundary. The first option discards one of the bottom 
rows, reducing the average to the remaining row. If the 
two bottom rows are identical, the results from both 
options converge. 

In practice, the difference in shear stresses 
between the two options is minimal, unless the mesh is 
excessively coarse. 

4. Line-By-Line Solver 

The equilibrium equations comprise                       
15 displacement unknowns along each directional 
component. Simultaneous resolution of all unknowns 
presents significant challenges due to the complexity 
of the system. Consequently, the equations are solved 
independently and sequentially on a line-by-line basis, 
which simplifies the solution process. 

The numerical solver employs a line-by-line 
method that combines the iterative Gauss-Seidel 
method with TDMA. This approach is referred to as 
the Line Gauss-Seidel (LGS) Method [12]. TDMA 
method is particularly well-suited for solving            
one-dimensional problems, where the Navier 
equations result in a tridiagonal coefficient matrix. 
This structure allows for direct solution through 
forward and backward substitution, considerably 
simplifying the process. 

TDMA was employed to solve the equilibrium 
equations in each spatial direction independently. In 
the x-direction, the traversal direction was selected, 
while the y- and z-directions were treated as sweep 
directions. Consequently, displacements at points "w" 
(west), "p" (pole), and "e" (east) in the x-direction 
became variables, while displacements at points "n" 
(north), "s" (south), "t" (top), and "b" (bottom) were 
treated as parameters or constants in the equation. 
Similar approaches were applied to the remaining 
equilibrium equations. The equations were 

subsequently transformed into tridiagonal linear 
algebraic equations. 

The x-direction cross direction in the first 
equilibrium equation. 

1 1 1 1 1 1 1 1
ijk ijk ijk ijk ijk ijk ijk ijk
w w p p e e s s n n b b t ta u a u a u a u a u a u a u b− + − = + + + +    (16) 

The y-direction cross direction in the second 
equilibrium equation. 

2 2 2 2 2 2 2 2
ijk ijk ijk ijk ijk ijk ijk ijk
s s p p n n w w e e b b t ta v a v a v a v a v a v a v b− + − = + + + +      (17) 

The z-direction cross direction in the second 
equilibrium equation. 

3 3 3 3 3 3 3 3
ijk ijk ijk ijk ijk ijk ijk ijk
b b p p t t w w e e s s n na w a w a w a w a w a w a w b− + − = + + + +  (18) 

5. Convergence Criterions 

Traditional convergence criteria in iterative 
solvers for displacement field problems typically 
measure the residual values between successive 
iterations. However, this approach presents a 
limitation when handling problems with both large and 
small displacements. 

In large displacement problems, a tolerance of 
approximately 0.01 is generally sufficient to obtain 
accurate results. Conversely, small displacement 
problems with maximum displacement values on the 
order of 0.01 mm require tolerances below 10-5 for 
accuracy. 

Applying a fixed tolerance for all problems can 
lead to incorrect results. If the tolerance is based on 
large displacement problems, it may be too coarse for 
small displacement problems, resulting in premature 
termination of iterations before sufficient convergence 
is achieved. On the other hand, if the tolerance is based 
on small displacement problems, it may be overly 
stringent for large displacement problems, leading to 
unnecessary computation time. 

For instance, in a large displacement problem, 
residual values around 0.01 may be acceptable for 
accuracy. The iteration may halt and produce a 
solution, but excessive computational time is spent 
reducing the residuals from 0.01 to 10-5, which may not 
be necessary. Table 1 demonstrates this issue, where 
the unnecessary computation time can be ten times 
longer than required. 

Table 1. Relative tolerance 

Tolerance Number of Iteration-step 

0.001 490 

0.0001 4940 

0.00001 28100 
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To address both issues, a substitute convergence 
criterion is required. Calculating residual values as a 
percentage ratio between the residual displacement 
value between two consecutive steps and the 
displacement on one mesh element provides a solution. 
Utilizing a percentage ratio ensures that this criterion 
is independent of the model's size or displacement 
level. 

( )
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ijk ijk
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max( ( , , ))u ur r i j k=                     (20) 
in which s is iteration step, max

su∆ is maximum 
displacement on a single mesh. s

ijku is displacement at 
current iteration step and 1s

ijku − is displacement at 
previous iteration step.  

Similarity residuals for the y direction and z 
direction are rv and rw. 

The final residual can be calculated as  

r=max (ru, rv, rw)        (21) 

6. Convergence Speed and Simulation Duration 

Each of equilibrium equations (16), (17), (18) 
governing displacements in the x, y, and z directions 
incorporates seven displacement unknowns. These 
unknowns include one central displacement and six 
displacements on the element's six faces. While 
solving for all seven unknowns simultaneously would 
theoretically yield the fastest convergence, a reduction 
to five or even three unknowns is possible. However, 
increasing the number of unknowns necessitates the 
establishment of more complex boundary conditions. 
For instance, employing a five-unknown system 
requires five boundary conditions per equation. These 
conditions involve specifying both the first and last 
terms in each row (resulting in two conditions) and 
imposing three additional conditions on directions 
perpendicular to the specified terms. While achievable 
for specific models, this approach becomes 
cumbersome for general applicability. Furthermore, it 
presents software usability challenges, as users would 
need to declare a greater number of parameters to 
establish sufficient boundary conditions for diverse 
problems. 

Due to its ease of implementing boundary 
conditions and universal applicability to various 
computational models, the 3-unknown formulation is 
the most widely adopted approach. In theory, all           
3-unknown models exhibit equivalent convergence 
rates per iteration for the displacement being solved. 
However, within a 3D problem, the convergence speed 
in a particular direction is influenced by the remaining 
two directions. Additionally, the convergence of a 
specific row is impacted by the previous row. This 
interplay between rows becomes crucial for optimizing 

overall convergence speed. It's noteworthy that setting 
up boundary conditions often consumes a significant 
portion of the entire simulation process. While 
employing a higher number of boundary conditions 
enhance convergence per iteration, it doesn't 
necessarily translate to a reduction in total 
computation time. This section will delve deeper into 
these considerations. 

In the application of the Line Gauss-Seidel 
method to solve equilibrium equations, the 
displacements on the current row are updated 
immediately upon solving the tridiagonal equations for 
that row. This approach facilitates the convergence of 
displacements on subsequent rows, potentially 
accelerating the convergence of the entire system  
for one- or two-dimensional problems. However, 
challenges arise when applying this method to       
three-dimensional problems. The immediate update of 
displacements on the current row can introduce 
difficulties. 

At the current stage, prior to the solution of the 
equations represented in this row, all displacements 
retain their previous values and are depicted as solid 
circles in Fig. 6. Upon solving the equations, the 
displacements are updated with new values, 
represented by hollow circles at points "w", "P", and 
"e". In the next step, the displacements at "w", "P", and 
"e" have been freshly updated and correspond to the 
displacements at points "s". The disparity between the 
values at points "s" and "n" accelerates the 
convergence of displacements at points "w", "P", and 
"e" relative to those at points "w", "P", and "e". 
However, this update procedure also introduces 
slippage between the rows. While this update process 
initially enhances convergence speed, it is only evident 
during the initial iteration steps. When the solution 
process progresses sequentially in the x, y, and z 
directions, the slippage accumulates in the x and y 
directions. This phenomenon not only diminishes 
convergence speed in the z direction but also 
compromises the accuracy of displacements along this 
direction. 

 
Fig. 6. Slippage in solving row 

A novel approach for variable storage in the 
solution of systems of equations is proposed. By 
utilizing a single auxiliary variable to store 
intermediate solution values, the slide is eliminated, 
and convergence is significantly accelerated. Table 2 
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demonstrates the improved performance of this 
approach. However, it requires additional memory due 
to the introduction of the auxiliary variable. Therefore, 
the recommended practice is to use a variable of the 
same size as the displacement variables (u, v, or w) to 
minimize memory requirements. This variable can be 
reused for each directional component of the 
displacement solution. 

Table 2. Tolerance for old and novel methods 

Iteration 
step 

Tolerance % 
(old method) 

Tolerance % 
(novel approach) 

1 100.0 100.0 
2 33.003 38.198 
3 16.177 30.582 
4 12.464 18.073 
5 11.840 12.475 
6 11.340 10.166 
7 10.886 8.368 

50 5.370 0.982 
100 3.937 0.490 
500 1.880 0.098 

1000 1.361 0.049 
1500 1.127 0.032 
 
The traditional numerical method for solving the 

equilibrium equations in a finite differential analysis 
involves employing two three-dimensional arrays of 
static memory. The first array stores the displacements 
obtained from the previous iteration, while the second 
array contains the updated displacements after solving 
for all elements in three directions during the current 
iteration. Following the solution process, the 
displacements in the second array are compared with 
those in the first array to determine the tolerance 
achieved for that iteration. Subsequently, the updated 
displacements from the second array are transferred to 
the first array, overwriting the previous results, and 
serving as the basis for subsequent iterations. 

A novel computational method is introduced that 
utilizes a single three-dimensional static memory array 
to store displacement results. Additionally, a             
one-dimensional dynamic memory array was 
employed to store new displacements on the current 
solution row. Displacements in dynamic memory were 
compared with those in the static memory to obtain a 
tolerance value. Upon comparison, the results in the 
dynamic memory are immediately updated into the 
static memory. This continuous update of new results 
at row j (depicted as hollow circles in Fig. 6) enhances 
the accuracy of the displacement values at row j + 1. 
This is achieved by utilizing new data from row j and 
old data from row j + 1 and row j + 2, rather than 
relying solely on old data for all three rows. 

Furthermore, the proposed method offers a significant 
memory economy compared to the classical method, 
as it employs only one three-dimensional array instead 
of two. 

To accelerate the convergence of the 
computational problem, an analysis of the time 
expenditure at each calculation step was conducted. 
For a single-material model, results revealed that 
established equation includes setting boundary 
conditions and assigned material properties for each 
component (encompassing 15 variables per row) 
accounted for 86% of the computational time, equation 
solving and memory updates consumed approximately 
13% and less than 1%, respectively. Furthermore, the 
simulation time for the multi-material model was 
significantly longer (approximately 10 times) 
compared to the single-material model. This disparity 
emerged despite the identical geometric configuration, 
boundary conditions, and mesh topology between the 
two models. Analysis revealed that the                         
time-consuming aspect resided primarily in the 
assignment of boundary conditions and material 
properties, which accounted for over 98% of the 
modelling duration for the multi-material model. 

To achieve computational efficiency, variables 
should be solved and stored contiguously along a row 
in each time step. Once the row satisfies the desired 
accuracy criteria, the computation proceeds to the next 
row. This iterative process avoids multiple boundary 
condition updates, thereby accelerating the 
convergence rate and simulation time. 

7. Numerical Models 

The KH stress application was developed based 
on the mentioned calculation methodology for stress 
and displacement analysis. Subsequently, numerical 
simulations were performed using the KH stress 
application, and the results exhibited a high degree of 
consistency with theoretical predictions, as 
demonstrated in the following: 

Model 1. A Tensile Bar 

 
                  Fig. 7 A tensile bar 

A fixed steel bar with a square cross section of  
20 × 20 mm is subjected to a uniform load of intensity 
p = 108 Pa (see Fig. 7). The bar has length of L = 1 m, 
modulus of elasticity E = 2 × 1011 Pa and Poisson’s 
ratio ν = 0.3. 

- Theoretical result: 
80; 10 ;yy zz xx Paσ σ σ= = =  

Von_Mises stress: 810vm xx Paσ σ= =   

 
l 

P 
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Strain: 
30.5 10xx

xx E
σ

ε −= = ×  

30.15 10xx
yy zz E

σ
ε ε ν −= = = ×  

- Numerical result by KH stress application. 

The mesh system for the problem: 20×4×4 mesh 
eyes 5x y z mm∆ = ∆ = ∆ =  

Displacements on one mesh eye 

2.4927 3u e mm= −  

0.748 3v e mm= −  

0.7478. 3w e mm= −  
2.4927 3 0.4985 3

5xx
u e e
x

ε = = − = −
∆

 

0.748 3 0.1496 3
5yy

v e e
y

ε = = − = −
∆

 0.7478 3 0.14956 3
5zz

w e e
z

ε = = − = −
∆

 

Von_Mises Stress: 9.97 7vm e Paσ = , the error of 
stress is 0.3%. 

 

 

 

 
Fig. 8. Numerical results by KH stress application, (a) 
deformation model, (b) Contour of displacement in x 
direction, (c) Contour of displacement in y direction, 
and (d) Contour of Von_Mises stress of bar. 

Model 2. A Square Plate with a Central Hole 

A square plate with dimensions of 1.0 m × 1.0 m 
plate and a thickness of t = 0.1 m was fabricated from 
steel. A central hole of diameter d = 0.4 m was bored 
into the plate. The steel exhibited material properties 
of elastic modulus E = 2 × 1011 Pa and Poisson’s ratio, 
ν =0.3. A vertical tensile load in the form of a pressure 
p = 100 MPa was applied along the horizontal side of 
the plate (as depicted in Fig. 9) 

 
Fig. 9. A square plate with central hole subjected to 
vertical tensile load 

 

- Theoretical result 

Kirsch's solution for stresses at a hole are for the 
case of uniaxial tension in an infinite plate. Uniaxial 
tension is represented by the remote stress, σ∞. The 
hole has radius, a, the radial coordinate is r (which is 
meaningless when r < a), and θ = 0 aligns with the 
remote loading direction. The solution for the stress 
state around a hole is 

2 2 4
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        = − + − +                   
 

2 4

1 1 3 cos 2
2 2

a a
r rθθ

σ σ
σ θ∞ ∞

      = + − +               
 

2 4

1 2 3 sin 2
2r

a a
r rθ

σ
σ θ∞

    = − + −         
 

The stress concentration at the hole occurs 
90θ = ± ° depicted as pink region and minimum stress 

with 0 or180θ = ° ° represented blue region in Fig. 10 
(b) and (c)  

- Numerical result by KH stress application 

The numerical results obtained through the KH 
stress application, as depicted in Fig. 10, exhibit 
substantial agreement with theoretical predictions.  
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Fig. 10 Numerical results (a) Von_Mises stress 
contour, (b) contour of stress on y direction, and           
(c) deformation model. 

Model 3. A Rectangular Plate with a Central Hole 

A rectangular steel plate with dimensions of width 
b = 1.0 m, length a = 4.0 m, and thickness t = 0.1 m 
contains a central circular hole with diameter                   
d = 0.2 m. The material properties of the plate are 
elastic modulus E = 2×1011 Pa and Poisson's ratio          
ν = 0.3. Vertical horizontal loading in the form of a 
pressure p = 106 Pa is applied along the vertical side of 
the plate, see Fig. 11 (a).  

- Numerical Modelling 

Due to symmetry about the horizontal axes, a 
quarter of the plate was used for numerical modelling 
to reduce computational complexity. This approach 
assumes symmetric deformation and stress distribution 
in the entire plate, see Fig. 12 (b). 

 

- Numerical result by KH stress application 

The stress concentration at the hole occurs 
90θ = ± ° depicted as dark grey region and minimum 

stress with 0θ = ° or 180°  represented deep black 
region in Fig. 12 (a). 

The numerical results obtained through the KH 
stress application, as depicted in Fig. 12, exhibit 
substantial agreement with theoretical predictions. 

 

 
Fig. 11. (a) A rectangular plate with central hole 
subjected to horizontal load, (b) A quarter of the plate 
for numerical model. 

 

 
Fig. 12 (a) Von Mises stress contour and (b) 
displacement of a quarter of the plate with central hole 

8. Conclusion 

Control volume base finite different method has 
been proposed for the solution of displacement and 
stress field problems in multi-material solids. The 
accuracy of total stress, represented by the von Mises 
stress, on boundary elements has been improved by 
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employing a modified formula for shear stress. A     
line-by-line solver employing TDMA was utilized to 
solve the equations. Dynamic memory allocation for 
updating displacements at previous element rows, 
enhancing convergence speed. Variables were solved 
and stored contiguously along a row in each time step, 
the iteration continued until the desired accuracy was 
achieved, eliminating the need for redundant boundary 
condition updates, and reducing overall simulation 
time. 

FDM-based stress analysis application was 
developed based on the novel approach proposed in 
this work. Numerical simulations of three problems 
conducted using this application demonstrate a high 
level of agreement with theoretical solutions.  
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