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Abstract 

Optimal pressure management in water distribution systems (WDSs) is one of the most efficient approaches 
to control water leakage for water utilities worldwide. The optimal pressure management can be 
accomplished through regulating operations of pressure reducing valves (PRVs) to ensure that the 
excessive pressure in the WDS is minimized. This engineering task can be casted into a nonlinear program 
problem (NLP) with non-smooth constraints. Until now, the non-smooth constraints have been approximated 
by the smoothing function of Chen Harker-Kanzow-Smale (CHKS). In this paper, instead of using the CHKS 
function, we propose to apply the uniform smoothing function for formulation of the NLP. Numerical 
simulations using two smoothing functions will be carried out for optimal pressure managements of a 
benchmark WDS and a real-world WDS in Thainguyen City, in Vietnam. The comparison results reveal that 
the NLP formulated with the uniform smoothing function outperforms the existing NLP formulated with the 
CHKS in terms of optimal solution accuracy. 
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1. Introduction* 

Water loss occurs in all water distribution 
systems (WDSs). The water loss mainly comes from 
aging, deterioration and inefficient management of 
WDSs [1]. The method of pressure control is 
considered as one of the most efficient approaches to 
decrease water loss and avoid probability of creating 
new leaks and seepages [2,3]. To control pressure, 
pressure reducing valves (PRVs) are commonly 
installed in WDSs to maintain pressures of critical 
nodes at appropriate values [2, 3]. In general, this 
engineering problem can be casted into a nonlinear 
program (NLP) optimization problem where decision 
variables are pressure settings of PRVs. 
Vairavamoorthy and Lumbers (1998) [4] formulated 
a nonlinear programming (NLP) for optimal pressure 
management to minimize water leakage flow in WDS 
using sequential quadratic program. Ulanicki et al. 
2007 in [5] presented an approach to optimize 
operation schedules of both boundary and internal 
PRVs for 24 hours to minimize the leakage flows in 
domestic meter areas (DMAs) by formulating and 
solving a NLP. As a result, the control flow 
modulation curves (FM) for the PRVs, i.e., the 
relations between the flows and the pressure settings 
which is used for real-time control of PRV operation, 
were deduced.  Genetic algorithms (GAs) combined 
with a hydraulic simulator, EPANET 2 [6], were also 
employed to optimize pressure management of WDSs 
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[7]. De Paola et al. 2017 [8] applied the harmony 
search algorithm to optimize both PRV locations and 
PRV pressure settings. Sequential convex 
programming (SCP), proposed in [9], was used to 
determine optimal pressure settings of PRVs for 
optimal pressure managements of DMAs. At first, the 
method of SCP linearizes the NLP around a feasible 
NLP solution to a linear program (LP). Then, LP 
solvers are used to solve the LP to a global solution, 
which will be used for taking the next linearization.  
Ghaddar et al. 2017 [10] proposed a new model of 
PRV for optimal pressure management. The model 
can only describe two among three operation modes 
of real PRVs. Thus, it is not appropriate for the case 
where a PRV works as a check valve to prevent 
reverse flows.   

Non-smooth constraints inherently appear in the 
formulation of NLP, thus it is impossible to apply 
standard NLP solvers to solve the NLP. Considering 
the check valve mode of a PRV, the PRV model 
becomes non-smooth as discussed in [11]. In 
addition, bi-directional flows also lead to a kink and 
non-differentiable problem of the head loss equations 
for both Hazen-Williams and Darcy-Weisbach 
formula (i.e., at zero flows). The non-smooth term in 
the Hazen-Williams head loss equation is smoothed 
by using the Chen Harker-Kanzow-Smale (CHKS) 
smoothing functions [12,13]. However, the accuracy 
of these smoothing functions is not properly 
evaluated. 

In this paper, our main contribution is to apply 
the uniform smoothing function, which is suitable for 
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formulation of the NLP model for optimal pressure 
management of WDSs and outperforms the existing 
one 

2. Smoothing Nonlinear Program  Problem for 
Optimal Pressure Management 

2.1 Nonlinear program formulation for optimal 
pressure regulation  

The objective function to be minimized is 
defined as the sum of the excessive pressures at all 
nodes in the WDS in the optimization time horizon T 
[1,11] 
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= =

= −∑∑
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where NJ  is the total number of nodes and T=24 
hours is the time horizon. We consider a WDS with 
NP  pipes, NR  reservoirs and  NPRV   pressure 
reducing valves (PRVs); ,i kH is head at node i, at 

time interval k; ,
L
i kH is the minimum allowable head 

at node i. 

The continuity equation at node i  
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The leakage amount associated to node i [2,11]. 
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where ,i kp and iE  are pressure and elevation of node 
i, respectively; ,i jL is length of pipe connecting node i 
to node j; LC is given leakage coefficient; γ is leakage 
exponent. 

The energy equation for the pipe connecting 
node i   to node j   

, , , , 0; 1,...,− − ∆ = =i k j k i j kH H H ij NP   (5) 

where the head loss ( ,∆ i jH ) is computed by the 
Hazen-Williams equation [11] 
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The energy equation for pressure reducing valve 
placed in link ij [10,11]. 
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Bound constraints for flows and  heads  are used 
to ensure the WDS operated properly 

, ; 1,...,≤ ≤ =L U
i kH H H i NJ    (9) 

, , , , ; 1,...,≤ ≤ =L U
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In this paper, the heads of reservoirs are 
assumed to be constants.  

, ; 1,...,= =ii kH H i NR                  (11) 

The resulting NLP problem has 
( )+ + + ×NJ NP NPRV NR T optimization variables.  
The formulated NLP optimization problem is 
continuous, but it is non-smooth according to 
constraints in equations (3), (6), and (9), which are 

, , ,
γ=i k L t i i kl C L p , ( ), ,max 0, −i k j kH H , and 

0.852

, ,i j kQ . 

The term of ( ), ,max 0, −i k j kH H is non-differentiable 

when , ,=i k j kH H . The equation , , ,
γ=i k L t i i kl C L p   with 

, ,= −i k i k ip H z  can cause a numerical problem for 
NLP algorithms because , , 0= − <i k i k ip H z  can occur 
during implementation of NLP algorithms. To 
overcome this problem, it is necessary to replace 

,i kp by , −i k iH z . Similarly, the term 
0.852

, ,i j kQ  has a 
kink at zero flow and non-differentiable.  In the next 
section, we will approximate these non-smooth 
equations by smooth ones. 

2.2 The existing smoothing function  

In [12] the ( )max 0, t can be approximated by  

( )
2 24

,
2

µ
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The non-smooth function t can be approximated  

( ) ( ) 2 2, , 4φ µ φ µ µ+ − = + CHKS CHKSt t t t    (13) 

This function is commonly used to approximate 
Q in [5, 11].  These above smoothing functions are 

known as Chen Harker-Kanzow-Smale (CHKS) 
smoothing functions in [13]. The parameter µ  is 
chosen as a small value and that 
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2.3 The uniform smoothing function 

Using the uniform smoothing function, 
( )max 0, t  can be approximated by a strictly and 

parameter convex function ( ),tφ µ  as [13] 
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The derivative of ( ),tφ µ is 
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The smoothing function for t  is 
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And, its derivative is 
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The CHSK smoothing function ( ),φ µCHSK t  and 

the uniform smoothing function ( ),φ µU t are shown in 
Fig.1.  

It can be seen from the figure that, with the 
same parameter value µ , the proposed uniform 
smoothing function is more accurate than the CHSK 
smoothing function. Therefore, the approximated 
functions for absolute and max functions in Eq. (7) 
and (6) in the formulated NLP can be deduced with 
higher accuracy. Solving such a highly accurate NLP 

will result in better control strategy than the use of 
NLP formulated with the CHSK smoothing function.  
In the next section, numerical experiments for 
optimal pressure management will be carried out to 
evaluate the accuracy of the CHSK and uniform 
smoothing functions.  
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Fig. 1. Comparisons of smoothing functions of max 
(0,t) 

3. Case study 

3.1 Case study 1  

We consider a benchmark WDS, as shown in 
Fig.2, comprising of 37 links, 22 nodes, and 3 
reservoirs [2,14].  

  

 
Fig. 2. A benchmark water distribution system 

       To demonstrate the high accuracy of our 
proposed smooth model, we compare performances 
of both formulated nonlinear optimization problems. 
The first one is our NLP model formulated using the 
uniform smoothing functions (i.e., using equation 
(14) to (17)), and the second one is the NLP 
formulated using the existing smooth function (i.e., 
equation (12) and (13) ). A nonlinear programming 
solver, IPOPT in [15], is employed to solve both 
formulated NLPs.  All computation experiments are 
accomplished on CPU-Pentium (R) Dual-Core 
2.8GHz, 3.0GB RAM.  Several scenarios on number 
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of PRVs installed in WDSs are considered  such as: 3 
PRVs on link 11, 21, and 20; 4 PRVs on link 1,11,20, 
and 21; 5 PRVs on link 1,11,20,21, and 29. For each 
of scenarios, the results of optimal pressure controls 
from solving both NLPs are applied as inputs for a 
hydraulic simulator-EPANET 2 [6], the resulting 
excessive pressure and water leakage amounts are 
shown in Table 1. 

Table 1. Comparisons of NLP solutions 

 Our new NLP model Existing NLP model  

N OBJ 

(m) 

Leakage 

(m3/day) 

OBJ 

(m) 

Leakage 

(m3/day) 

3 1462.78 2108.16 1463.60 2109.02 

4 982.64 2039.90 983.40 2039.90 

5 830.36 2020.03 835.49 2020.89 

OBJ stands for objective function values; N stands for the 
number of PRVs installed in the WDS 

It can be seen from Table 1 that using our new 
NLP model,  in all scenarios, the obtained results are 
slightly better than the ones obtained from solving the 
existing NLP model. In particular, optimal pressure 
settings of PRVs  found by our NLP model lead to 
lower excessive pressure as well as the amount of 
water leakage.  Fig.3 shows the diurial of water 
leakage flows for 24 hours for the case of 5 PRVs 
installed in the WDS (the dotted line). 
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Fig. 3. Comparisons of water leakage flows 

Comparing with the case where no pressure 
control is carried out for the WDS (the thick line), it 
is seen that optimal pressure management by 
optimizing pressure settings of PRVs can 
significantly decrease water leakage amount. 

3.2 Case study 2 

We consider a real world water distribution 
system in Thainguyen City, in Vietnam as shown in 
Fig.4. The WDS consists of 112 pipes, 120 nodes, 
and 4 storage reservoirs. Similar to case study 1, the 
performances of two NLPs will be compared in terms 
of objective function value. 

 

 
Fig. 4. A real-world WDS in Thainguyen City, Vietnam 
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Fig. 5. Optimal pressure settings of PRVs 

We consider the case of 4 PRVs installed in the 
WDS to control pressure. Both NLPs are solved by 
using IPOPT solver [16]. It took an average 
computation time of 1.96(s), to solve each of NLPs. 
The optimal pressure settings for 4 PRVs found by 
our NLP model are shown in Fig.5. In addition, 
through simulation, with our smoothing NLP model, 
the resulting excessive pressure is 27243.73m, while 
it is 27372.64m by the existing NLP model.  It is seen 
that with our NLP model, we can further reduce 
129.0m of excessive pressure. The average excessive 
pressure of the WDS with 4 PRVs is demonstrated in 
Fig.6 (the dotted line) together with the average 
excessive pressure where no pressure is carried out 
(the thick line). 

It is seen from the figure that much more 
excessive pressure is eliminated when pressure 
settings of PRVs are optimized. This is important 
because when a WDS is operated under low 
excessive pressure, leakage rate, as well as the 
probability of creating new leaks and seepages, are 
decreased [5,11]. 

Time[hours]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Av
er

ag
e 

Ex
ce

ss
iv

e 
Pr

es
su

re
[m

]

5

10

15

20

25

30

35

40

With 4 PRVs
Without PRVs

 
Fig. 6. Comparisons of average excessive pressure 

4. Conclusions 

A highly accurate smoothing NLP model for the 
problem of optimal pressure management is proposed 
by using the uniform smoothing function. Numerical 
simulations have been carried out for optimal 
pressure regulations for a benchmark WDS and a 
real-world WDS. The results have shown that using 
our new NLP model, highly accurate control profiles 
are obtained leading to lower excessive pressure and 
water leakage amount. The results of real water 
leakage amount and excessive pressure are needed to 
verify in practices and it will be studied in our future 
research. 
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