

Journal of Science & Technology 147 (2020) 051-058

51

Application of Convolution Neural Network in Design and Fabrication of

Robots for Transporting Goods in Factories

Nguyen Hoang Dung
Hanoi University of Science and Technology – No.1, Dai Co Viet str., Hai Ba Trung dist., Hanoi, Vietnam

Received: August 10, 2019; Accepted: November 12, 2020

Abstract

Nowadays, the use of freight robots in factories will help people reduce their labor force and move into difficult
and dangerous places more easily. Only smart robots will help people move equipment, goods to destinations
that have been designed to own lanes in factories or remotely control these cargo robots to move following
the demands of the controller. Goods will be delivered to the right place, helping to reduce labor costs for
factories, increase productivity, thereby increasing the profits of businesses. Understanding the necessity of
the design of transport robot and the development of artificial intelligence field along with the development of
some types of embedded computers, the research team proposed a method to use convolutional neural
networks deployed on the embedded computer platform to design a smart robot model to transport goods in
the factory.

Keywords: AI, deep learning, CNN, robot.

1. Introduction

In order to meet*the increasingly popular demand
for industrial automation, robots, especially robots for
transporting goods in factories help businesses
optimize production lines, ensure productivity, and
secure the fastest transport time.

Cargo transport robots in factories are self-
propelled robot products capable of navigating under
human programming or moving under human control.
In order to transport goods to the right place, these
robots will be programmed to follow the markers
available with tape, wire on the floor, or use laser
navigation to move. Currently, cargo transport robot
models have been applied in many factories, airports,
warehouses, wharves, etc. Here are the advantages of
using the transport robot: (1) Ensuring productivity
even without workers; (2) Providing safe, effective and
cost-effective transportation solutions for businesses
and (3) Increasing productivity for the supply chain.

In the process of developing a transport robot in
a factory, software plays an equally important role as
hardware. Software is like the brain, ensuring the
robot's operation. In the past, freight vehicles were
characterized by engines, gearboxes, actuators,
steering wheel, gasoline, etc, but today, a robot is like
a computer that can replace many factors such as
people, mechanics, fuel, etc.

*Corresponding author: Tel: (+84) 913004120
Email: dung.nguyenhoang@hust.edu.vn

Combining the development of artificial
intelligence, machine learning, and deep learning with
the development of camera technology, technology
research on smart transport robots focuses on two main
areas: lane detection and object detection.

• Lane detection: This issue has been studied
for many decades. Most lane detection systems have
been developed and used in a wide variety of vehicles
and robots. In the cargo transport robot control
application, lane detection helps the robot determine
the way to the point where the cargo needs to be
transported.

• Object detection: This is an important
component of the transport robot system. Recently,
technology has made great progress, in addition to
detecting static objects, it is now possible to detect
dynamic objects as well. In the transport self-propelled
robot control application, object detection is used in
many cases, for example detecting obstacles for the
robot to automatically avoid or detecting the hand and
moving the robot according to the operator's hand
controller so that it can move when people cannot
move.

Based on the advantages of applying
convolutional neural network (CNN) models and
researching available documents, the research team
has proposed to use convolutional neural network
(CNN) models for lane detection and object detection
of transport robots in factories. The design, fabrication

Journal of Science & Technology 147 (2020) 051-058

52

methodology and results achieved will be presented in
the next sessions of this paper.

2. System design

2.1. System architecture

Fig. 1. System architecture

Fig.1 shows the design model of a cargo robot
system in a factory. The system consists of 4 main
components: (1) the input block is a camera integrated
on the robot with the role of receiving image data to
send to the processing block. In addition, this block
also functions as the senses of the robot thereby
helping the robot perceive its surroundings; (2) the
processing block is responsible for collecting and
processing images from the input block and giving
control commands to the control unit. The processing
block will be the main processing unit of the entire
system. The trained deep learning models will also
work in this block; (3) The control block consists of
motors and motor control circuits. This block will
receive control signals from the processing block to
help the robot move according to the desired
requirement; (4) The power block uses a rechargeable
battery system as the main power supply for the whole
system, through a voltage stabilizer to provide stable
voltage and current. The specific composition and
functions of the components contained in each block
will be detailed as shown in Table 1.

2.2. Deep learning model for lane walking robot
problem

2.2.1 Rotation angle

Assuming the car is moving in a straight direction
with constant speed, consider the position of the car at
time t0, if the car wants to change direction and move
in time Δt, the new position will have a new straight
direction created with initial direction of an angle
alpha.

From there, the team selects the control signal for
the vehicle which is the angle between the vehicle's
direction of travel and the lane to determine the
direction of movement for the vehicle. For the lane
input image, this angle of rotation will be generated by
the desired movement direction with the Ox axis.

Table 1. Functions of each component

Hardware
component Functions, duties

NVIDIA
Jetson Nano

Developer
Kit

The processing unit using the
NVIDIA Jetson Nano Developer Kit
is an embedded computer with only
one compact circuit board. NVIDIA
Jetson Nano Developer Kit uses
Quad-core ARM® Cortex® - A57
MPCore processor, NVIDIA
Maxwell ™ architecture with 128
NVIDIA CUDA® cores 0.5
TFLOPs (FP16), 4GB 64-bit
LPDDR4 1600MHz - 25.6 GB / s,
HDMI 2.0,802.11 b / g / n wireless
LAN, Bluetooth 4.1, 40-pin GPIO
pin. The corresponding voltage and
current source is 5V / 3A. NVIDIA
Jetson Nano Developer uses 128
CUDA GPU capable of handling
artificial neural networks directly on
the kit, giving out signals fast
enough to control the vehicle.

Raspberry
Pi Camera

Module
V2.0

Input block uses Raspberry Pi
Camera module v2.0 with 8
Megapixels resolution, 1080p30,
720p60, 640 x 480p60 / 90 recording
mode, Sony IMX219 sensor, 3280 x
2464 pixels sensor resolution, pixel
size is 1.12 µm x 1.12 µm, 3.04mm
focal length, 62.2o horizontal field
of view, 48.8o vertical field of view,
CSI connection.

PCA9685
control
circuit

The control unit uses PCA9685
module with 16 channels, frequency
40 ~ 100Hz, 12bit PWM resolution,
I2C communication, using 2.3 ~
5.5VDC voltage.

Decelerated
DC motor

The control unit uses a decelerated
DC motor with no-load speed of 125
rpm at 3V operating voltage (speed
26m / min), 208 rpm at operating
voltage 5V (velocity 44m / min), no-
load current 70mA, maximum
current 250mA.

Li-ion
battery

BL26650

Power unit uses rechargeable Li-ion
BL26650 battery with voltage of
3.7v, capacity of 6800mAh, weight
90g, explosion-proof and anti-
watering or blistering.

QC 3.0
charger and
sTabilizer

circuit

Power unit uses 24W QC3.0
charging and voltage regulator
circuit. Input: 6 - 32 V. Output: 5V /
3.4A- 9V / 2.5A - 12V / 2A

Journal of Science & Technology 147 (2020) 051-058

53

2.2.2 CNN architecture

The CNN [1] architecture that the team uses is
covered in an article by NVIDIA [2] that revolves
around autonomous vehicles. This is a CNN network
that serves the regression problem with a single output
which is the control signal for the vehicle with the
architecture described in Fig.2. The network consists
of 9 layers in which one normalization layer, five
convolutional layers and three fully connected layer

Fig. 2. Architecture of the model

The input image will be divided into YUV planes
which are then transmitted to the network. The first
layer of the network normalizes the image.
Convolution classes are designed to extract the
features and characteristics of the lane. The first three
convolution layers use a 5x5 kernel matrix and the 2x2
sliding matrix and the other 2 convolution layers use
only the 3x3 kernel matrix. As can be seen, this is a
relatively small network with the total number of
parameters after calculating is 252,219, but it still
gives very good results as published by the paper.

2.2.3 Database

The collected data set included more than 5500
photos exported from 2 hours of driving in bright,
sunny, and shady weather. In addition, approximately
300 lane images were recorded in the laboratory for the
purpose of diversifying input data. Fig.3 illustrates
some pictures in a custom dataset with lanes under lab
conditions.

Each data set will be divided at the ratio of 7: 3
for training and validation. In addition, the test set will
include 500 actual lane images and 30 laboratory lane
images (corresponding to 10% of the total number of
images in the dataset). The test set will be used to
evaluate how accurate it is in practice with the test
data.

Fig. 3. Laboratory dataset

2.2.4 Training and model evaluation

The team uses the TensorFlow library together
with the Keras application programming interface for
training. The loss function of the model is determined
by the Mean total Square Error - MSE with the formula
(1) and the results are shown in Fig.4 with n : amount
of data for testing; iY : real value of data i;

 p
iY : predictive value for data i:

 ()2

1

1 n p
i ii

MSE Y Y
n =

= −∑ (1)

Fig. 4. Results of loss function after training

Fig. 5. Overall architecture of Mobilenet V2 [3]

Input Operator T c n s
2242 x 3 conv2d - 32 1 2

1122 x 32 bottleneck 1 16 1 1
1122 x 16 bottleneck 6 24 2 2
562 x 24 bottleneck 6 32 3 2
282 x 32 bottleneck 6 64 4 2
142 x 64 bottleneck 6 96 3 1
142 x 96 bottleneck 6 160 3 2
72 x 160 bottleneck 6 320 1 1
72 x 320 comv2d 1 x 1 - 1280 1 1

72 x 1280 avgpool 7 x 7 - - 1 -
1 x 1 x 1280 comv2d 1 x 1 - k -

Journal of Science & Technology 147 (2020) 051-058

54

Fig. 6. Attributes extracted from Mobilenet V2
networks

2.4 Deep learning model for the problem of
controlling the robot moves according to the hand

This system selects MobileNet V2 as the feature
extraction network and SSD as the object detection
unit. The combination of these two networks will form
a hand detection model with fast processing speed, low
latency, good accuracy, suitable for deployment on
NVIDIA Jetson Nano embedded computer for good
performance. From there, it meets the requirements of
the application transport robot control using the hand
tracking system in the factory. The hand detection
system consists of four main phases as (1)
Preprocessing; (2) Feature Extractor; (3) Detection and
(4) Postprocessing.

2.4.1 Feature Extractor with Mobilenet V2

For embedded systems, a lightweight and low-
latency CNN network is required. The CNN network
that fits that requirement is Mobilenet V2. Mobilenet
V2 has a parameter count of only about 3.5M, resulting
in faster processing speed and accuracy not inferior to
conventional CNN networks.

The difference between Mobilenet V2 compared
to conventional CNN networks is that it uses a separate
depth convolution layer instead of the standard
convolution layer. This is the reason why MobileNet
V2 has much fewer parameters than the rest of CNN
networks. In addition, the special feature of MobileNet
V2 is that this network uses two structures: Linear
Bottlenecks and Inverted Residual Structure to form
the blocks in the model.

MobileNet V2's architecture consists of a full
convolution layer with 32 filters, followed by 19
bottleneck layers depicted in Fig.5. Properties
extracted from the Mobilenet V2 network are depicted
in Fig. 6.

2.4.2 Object detection with Single Shot MultiBox
Detector (SSD)

Fig.7 and Fig.8 respectively show the
architecture and schematic diagram of how an SSD
works when combined with Mobilenet V2. Single Shot
MultiBox Detector (SSD) [4], all of the object
detection and classifications, are done in the same
network. The name of the model - Single Shot
MultiBox Detector also tells us that the model uses
many frames with different ratios to identify the object
area and classify the object, reduce the step of creating
area proposal network compared to Fast R-CNN, so
the processing speed is increased many times while
accuracy remains guaranteed.

In short, the SSD model will be a combination of
2 steps: (1) Extract feature maps from CNN network;
(2) Apply a convolution filter to detect objects on
feature maps with different resolutions (small objects
will be detected in higher resolution feature maps, and
vice versa for large objects). SSD is based on a forward
propagation process of standard architecture,
MobilenetV2 produces an output block of three-
dimensional feature maps at an early stage. The
MobilenetV2 network architecture here is a base
network. We will then add the structures behind the
base network to perform object recognition as part of
the Extra Feature Layers in the diagram. These layers
are intended to reduce the size of the feature map,
thereby reducing the number of frames to be forecasted
and allowing for predicting and detecting objects of
various shapes of sizes. Large feature maps detect
small objects well, and small feature maps help detect
small objects better. These classes are simply
explained in Fig.8.

Fig. 7. Architecture of SSD MobileNet V2

Fig. 8. Diagram simulating how MobileNet V2 SSD
works

Journal of Science & Technology 147 (2020) 051-058

55

Fig. 9. Training procedure for hand detection model

2.4.3 Train the hand detection model

The training procedure of the hand detection
model is shown in Fig.9. The first step of the process
is to collect data (8000 images in the Hand Gesture
Database GTI and 4000 self-collected images), then
label the hand object in each image and finally edit the
configuration file and run the training. The training
hand detection model ran on NVIDIA Jetson Nano
embedded computer.

2.4.4 Robot control convention

The robot control convention is implemented by
the research team as follows: (1) Hand in fist state:
Robot stops and (2) Hand spread: Robot moves
according to hand. Moving left or right will depend on
whether the hand is on the right or left side of the
camera. Moving forward or backward will depend on
the hand distance to the camera. If the hand is far from
the camera, the robot will advance, the hand near the
camera, the robot will back.

3. Results and discussion

3.1 Evaluation and results of robot model moving by
lane

3.1.1 Evaluation on test set

The model is evaluated with the test set and based
on mean squared error (MSE) and the coefficient of
determination R2 determined by the formula (2) with n
is number of data; iy is real data value i; iy is
predicted value for data i and y is the average value of
the dataset:

()
()

2

2
2

1
ˆn

i ii
n

ii

y y
R

y y

−
= −

−

∑
∑

 (2)

With MSE = 4.7 and R2 = 97.65%, it is possible
to see that this is a pretty good result and the lane

characteristics are clearly extracted when put into
convolutional layers, not the environmental factors.
Fig.10 illustrates the input image after going through
the 3rd convolutional layer.

Fig. 10. Feature map after the third layer of
convolutional

3.1.2 Actual evaluation

Testing the model on hardware with the self -
generated lane is good when the car is in lane. The
average speed to handle each frame is 45ms equivalent
to the output video with an average of 22 frames per
second (fps).

3.2 Evaluation and results of the hand-followed robot
controller model

In this section, the results and evaluation of the
hand-followed robot control model will be detailed.
First, we will evaluate the hand detection model. Next
is the process of optimizing the model so that the
model can work best on the available hardware and
thereby helping the freight robot follow the hand of the
operator.

3.2.1 Evaluate the hand detection model with SSD
Mobilenet V2

Fig. 11. Test robot moves in lane

The evaluation of the hand detection model is
based on parameters such as the Mean Average
Precision (mAP, Fig. 12) value and the value of the
loss functions, namely the loss function on the
validation set (Validation loss, Fig.13) and training set

Journal of Science & Technology 147 (2020) 051-058

56

(Training loss, Fig.14). "mAP" is the main data to
evaluate the model, mAP is calculated as the average
accuracy value over 10 Intersection Over Union (IOU)
thresholds from 0.5 to 0.95 respectively, each
threshold increases with the value of 0,05. IOU is a
parameter used to evaluate the overlap between a given
bounding box and a prediction box. By calculating
IOU and considering a fixed threshold, we can tell
whether the prediction box is a correct prediction or a
false prediction. The IOU index is calculated by
dividing the overlapping area between a given
bounding box and the predictive box by the integrated
area by the two boxes. After training 44,000 steps
(corresponding to about 100 epochs) and using the
Tensorboard as a tool to evaluate the model, we
obtained a graph showing the average accuracy of the
model. The results obtained the mAP average accuracy
value of the hand gesture detection model was 83.78%.
This is considered a good parameter threshold for an
object detection problem.

In addition to the average precision value, the
value of the loss functions is also an important
parameter to evaluate whether the object detection
model is working well or not. The smaller the value of
the loss function, the better the model works. In
addition, comparing the loss function on the validation
set and the loss function on the training set also helps
to check if the model is overfitting or underfitting,
thereby giving timely solutions.

The loss function of the SSD model used in this
paper is constructed by Localization loss (to evaluate
detection) and Confidence loss (to evaluate object
classification). Specifically, the formula (3) with N is
the number of boxes that match a given default box; ∝
is an equilibrium coefficient for the effect of
Localization loss; Lconf is Confidence loss and Lloc is

Localization loss. () ()1 3conf locL L L
N

= + ∝

After training model for about 44000 steps, we
have the results as shown in Fig.14 and Fig.15,
showing the loss function on the validation set and the
loss function on the training set. The loss value on the
validation set gradually decreases and gradually
stabilizes at the threshold of 1,462, It is similar to the
validation set, the loss value on the training set also
gradually decreases and gradually stabilizes at the
threshold of 1378. For an object detection model using
a MobilenetV2 SSD, the loss value usually falls
between 1 and 2, so with the 2 values obtained above,
we can evaluate that the model works quite well. In
addition, comparing the two graphs, we can see that
the two charts both tend to decrease gradually and are
equally stable at each training step. Hence, it can be
concluded that the pattern shows no signs of
overfitting or underfitting.

3.2.2 Optimization of the hand detection model

When testing the hand detection model on the
robot's processor, the results obtained from the hand
detection are very good but the processing speed is
only 5fps, with this processing speed, the robot is very
difficult to move according to the hand of the operator.
That requires the team to optimize the model on the
robot's hardware. The team used the TensorRT [5] to
optimize the model running on the jetson nano
processor.

The operating principle of TensorRT is
illustrated in Fig.15. During optimization, TensorRT
performs, transformations and optimizations that are
important to the model. First, the classes with unused
outputs are discarded to avoid unnecessary

Fig. 15. Example of a TensorRT operation

Fig. 13. Validation loss

Fig. 14. Training loss

Fig. 12. mAP

Journal of Science & Technology 147 (2020) 051-058

57

computation. Next, if possible, certain layers such as
convolution, Bias, and ReLU are merged to form a
single layer to improve latency, throughput, power
efficiency, and memory consumption. The process of
optimizing the model is shown in Fig.16. The trained
model will be in the form of "frozen inference graph",
before optimization, it is necessary to set parameters in
the configuration file to match the parameters of the
original Tensorflow model, some parameters need to
be set correctly to avoid errors during optimization
such as the number of classes and the names of classes.
When running, TensorRT will convert the freeze
inference graph to the UFF file and convert it from the
UFF file to TensorRT engines. Finally, on the Jetson
Nano embedded computer, we use a combination of

TensorRT engines with code to perform object
detection. After optimizing the hand detection model
and running again on the robot's processor, the results
were much better than before. Average accuracy
remained unchanged and reached the threshold of
83.78%, processing speed increased by more than 4
times compared to before optimization and reached 21
fps.

3.2.3 The comparison of test results between some
other deep learning network models

In order to be able to explain why the choice of
an SSD network model in combination with
MobilenetV2 deployed on a Jetson Nano embedded
computer as a hand detection model, the team ran a test
system with several network models. Learn more
deeply (using the same training data set and deploy on
the same hardware as the article presented) and
compare the results from actual testing of these models
with the MobilenetV2 SSD model already come to the
final conclusion The comparison results are presented
in Table 2.We can see that the ResNet-50 SSD gives
the highest average accuracy, but the processing speed
is only 9 fps, which is quite slow and cannot respond
to a Cargo robot system in the factory. In contrast, the
MobilenetV2 SSD model offers a much higher
processing speed (21 fps), but the average accuracy is
not too low compared to the ResNet-50 SSD (83.78%
and 87.90%). Based on the above comparison results,
we can see that the MobilenetV2 SSD is more suitable
than the other deep learning network models, it meets
two conditions simultaneously: accuracy and

processing speed when running on a Jetson Nano
embedded computer. In order to be applied to the
transportation of goods in factories, the robots must
meet many strict conditions in terms of accuracy or
speed of control signal processing. The deployment of
the transport robot model moving by following the
hand of the operator model using the MobileNet V2
network combined with the SSD network as the hand
detection device to provide control signals has partly
solved that problem. With 83.78% of accuracy and 21
fps processing speed of the model, the transport robot
can follow the hand of the operator in factories.

Table 2. Results of actual implementation of the
system with different deep learning models

3.3 General Results

Robots designed and tested by the research team
can operate stably with good and stable movement and
transportation on flat surfaces of factories and
workshops. The deep learning models are used to meet
the processing speed and precision required by a robot
cargo system in the factory, specifically the robot can
easily move in a lane or the robot can move as soon as
the hand of the operator signals it. During the trial run
continuously for a long time, the electronic
components operate normally, meeting the
requirements of the research. Fig.18 shows a picture of
the robot model after its assembly is complete. The
selection of hardware devices and then assembling
them together rather than design from scratch is part of
the team's plan to be able to shorten the time to build
the hardware and focus on software implementation.
After a long period of design, fabrication, and
commissioning, it can be seen that the freight robot
system presented in this article has met the
requirements for stability, compactness, and flexibility
in movement, and can be applied in factories in the
future.

Deep learning model FPS mAP

SSD Mobilenet V2 21 fps 83,78 %

Tini YOLO V3 14 fps 77,60 %

SSD ResNet-50 9 fps 87,90 %

Fig. 17. Running robot

Fig. 16. Model optimization process with TensorRT

Journal of Science & Technology 147 (2020) 051-058

58

4. Concluding remarks

This article presents the application of using
convolution neural networks in designing and
manufacturing cargo transport robot models in
factories. After a long time of research, design, and
testing, the team successfully designed the model. The
primary goals have been met. The cargo transport
robot model will include two modes of movement, the
first mode is automatic lane movement and the second
mode is the hand movement of the operator. Although
the robot model is relatively small in size, it can thus
be the core to produce larger robots, transporting more
goods. About two deep learning models for controlling
lane-driven robots and a deep learning model for
controlling robots followed by hand. These two
models have demonstrated the superiority of accuracy
and stability in processing speed so that the robot can
automatically move easily in a lane or followed the
hand of the operator in settings such as factories.

The research results still have some limitations,
so the group will continue to research and improve
their work such as (1) Research to minimize the impact
of the outside environment on the robot's mobility; (2)

Research plans to help robots move in difficult terrain
or rough surfaces in some factories; (3) Apply the
design of larger transport robots so that more cargo can
be transported; (4) Incorporate models of obstacle
recognition and (5) Design and fabricate some
hardware circuits from scratch without using the
available hardware modules.

References
[1] https://vinodsblog.com/2018/10/15/-every-thing-you-
need-to-know-about-convolutional-neural-networks/, Last
accessed on 28/06/2020.

[2] Mariusz Bojarski, Davide Del Testa, Daniel
Dworakowski, Bernhard Firner, End to End Learning for
Self-Driving Cars, Holmdel, USA, 2016.

[3] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey
Zhmoginov, Liang Chieh Chen MobileNetV2: Inverted
Residuals and Linear Bottlenecks, 2018.

[4] Liu W., Anguelov D., Erhan D., Szegedy C., Reed S., Fu
C., Berg A, SSD: Single Shot MultiBox Detector In ECCV,
2016.

[5] https://docs.nvidia.com/deeplearning/frameworks/ tf-trt-
user-guide/index.html, Last accessed on 28/06/2020.

	1. Introduction
	2. System design
	2.1. System architecture
	2.2. Deep learning model for lane walking robot problem
	2.4 Deep learning model for the problem of controlling the robot moves according to the hand

	3. Results and discussion
	3.1 Evaluation and results of robot model moving by lane
	3.2 Evaluation and results of the hand-followed robot controller model

	References

