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Abstract 

Nowadays, the use of freight robots in factories will help people reduce their labor force and move into difficult 
and dangerous places more easily. Only smart robots will help people move equipment, goods to destinations 
that have been designed to own lanes in factories or remotely control these cargo robots to move following 
the demands of the controller.  Goods will be delivered to the right place, helping to reduce labor costs for 
factories, increase productivity, thereby increasing the profits of businesses.  Understanding the necessity of 
the design of transport robot and the development of artificial intelligence field along with the development of 
some types of embedded computers, the research team proposed a method to use convolutional neural 
networks deployed on the embedded computer platform to design a smart robot model to transport goods in 
the factory. 
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1. Introduction 

In order to meet*the increasingly popular demand 
for industrial automation, robots, especially robots for 
transporting goods in factories help businesses 
optimize production lines, ensure productivity, and 
secure the fastest transport time. 

Cargo transport robots in factories are self-
propelled robot products capable of navigating under 
human programming or moving under human control. 
In order to transport goods to the right place, these 
robots will be programmed to follow the markers 
available with tape, wire on the floor, or use laser 
navigation to move. Currently, cargo transport robot 
models have been applied in many factories, airports, 
warehouses, wharves, etc. Here are the advantages of 
using the transport robot: (1) Ensuring productivity 
even without workers; (2) Providing safe, effective and 
cost-effective transportation solutions for businesses 
and (3) Increasing productivity for the supply chain. 

In the process of developing a transport robot in 
a factory, software plays an equally important role as 
hardware. Software is like the brain, ensuring the 
robot's operation. In the past, freight vehicles were 
characterized by engines, gearboxes, actuators, 
steering wheel, gasoline, etc, but today, a robot is like 
a computer that can replace many factors such as 
people, mechanics, fuel, etc. 

 
*Corresponding author:  Tel: (+84) 913004120  
Email: dung.nguyenhoang@hust.edu.vn 

Combining the development of artificial 
intelligence, machine learning, and deep learning with 
the development of camera technology, technology 
research on smart transport robots focuses on two main 
areas: lane detection and object detection. 

• Lane detection: This issue has been studied 
for many decades. Most lane detection systems have 
been developed and used in a wide variety of vehicles 
and robots. In the cargo transport robot control 
application, lane detection helps the robot determine 
the way to the point where the cargo needs to be 
transported. 

• Object detection: This is an important 
component of the transport robot system. Recently, 
technology has made great progress, in addition to 
detecting static objects, it is now possible to detect 
dynamic objects as well. In the transport self-propelled 
robot control application, object detection is used in 
many cases, for example detecting obstacles for the 
robot to automatically avoid or detecting the hand and 
moving the robot according to the operator's hand 
controller so that it can move when people cannot 
move. 

Based on the advantages of applying 
convolutional neural network (CNN) models and 
researching available documents, the research team 
has proposed to use convolutional neural network 
(CNN) models for lane detection and object detection 
of transport robots in factories. The design, fabrication 
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methodology and results achieved will be presented in 
the next sessions of this paper. 

2. System design 

2.1. System architecture 

 
Fig. 1. System architecture 

Fig.1 shows the design model of a cargo robot 
system in a factory. The system consists of 4 main 
components: (1) the input block is a camera integrated 
on the robot with the role of receiving image data to 
send to the processing block. In addition, this block 
also functions as the senses of the robot thereby 
helping the robot perceive its surroundings; (2) the 
processing block is responsible for collecting and 
processing images from the input block and giving 
control commands to the control unit. The processing 
block will be the main processing unit of the entire 
system. The trained deep learning models will also 
work in this block; (3) The control block consists of 
motors and motor control circuits. This block will 
receive control signals from the processing block to 
help the robot move according to the desired 
requirement; (4) The power block uses a rechargeable 
battery system as the main power supply for the whole 
system, through a voltage stabilizer to provide stable 
voltage and current. The specific composition and 
functions of the components contained in each block 
will be detailed as shown in Table 1. 

2.2. Deep learning model for lane walking robot 
problem 

2.2.1 Rotation angle 

Assuming the car is moving in a straight direction 
with constant speed, consider the position of the car at 
time t0, if the car wants to change direction and move 
in time Δt, the new position will have a new straight 
direction created with initial direction of an angle 
alpha.  

From there, the team selects the control signal for 
the vehicle which is the angle between the vehicle's 
direction of travel and the lane to determine the 
direction of movement for the vehicle. For the lane 
input image, this angle of rotation will be generated by 
the desired movement direction with the Ox axis. 

Table 1. Functions of each component 

Hardware 
component             Functions, duties 

NVIDIA 
Jetson Nano 

Developer 
Kit 

 

The processing unit using the 
NVIDIA Jetson Nano Developer Kit 
is an embedded computer with only 
one compact circuit board. NVIDIA 
Jetson Nano Developer Kit uses 
Quad-core ARM® Cortex® - A57 
MPCore processor, NVIDIA 
Maxwell ™ architecture with 128 
NVIDIA CUDA® cores 0.5 
TFLOPs (FP16), 4GB 64-bit 
LPDDR4 1600MHz - 25.6 GB / s, 
HDMI 2.0,802.11 b / g / n wireless 
LAN, Bluetooth 4.1, 40-pin GPIO 
pin. The corresponding voltage and 
current source is 5V / 3A. NVIDIA 
Jetson Nano Developer uses 128 
CUDA GPU capable of handling 
artificial neural networks directly on 
the kit, giving out signals fast 
enough to control the vehicle. 

Raspberry 
Pi Camera 

Module 
V2.0 

 

Input block uses Raspberry Pi 
Camera module v2.0 with 8 
Megapixels resolution, 1080p30, 
720p60, 640 x 480p60 / 90 recording 
mode, Sony IMX219 sensor, 3280 x 
2464 pixels sensor resolution, pixel 
size is 1.12 µm x 1.12 µm, 3.04mm 
focal length, 62.2o horizontal field 
of view, 48.8o vertical field of view, 
CSI connection. 

PCA9685 
control 
circuit 

The control unit uses PCA9685 
module with 16 channels, frequency 
40 ~ 100Hz, 12bit PWM resolution, 
I2C communication, using 2.3 ~ 
5.5VDC voltage. 

Decelerated 
DC motor 

The control unit uses a decelerated 
DC motor with no-load speed of 125 
rpm at 3V operating voltage (speed 
26m / min), 208 rpm at operating 
voltage 5V (velocity 44m / min), no-
load current 70mA, maximum 
current 250mA. 

Li-ion 
battery 

BL26650 

Power unit uses rechargeable Li-ion 
BL26650 battery with voltage of 
3.7v, capacity of 6800mAh, weight 
90g, explosion-proof and anti-
watering or blistering. 

QC 3.0 
charger and 
sTabilizer 

circuit 

Power unit uses 24W QC3.0 
charging and voltage regulator 
circuit. Input: 6 - 32 V. Output: 5V / 
3.4A- 9V / 2.5A - 12V / 2A 
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2.2.2 CNN architecture 

The CNN [1] architecture that the team uses is 
covered in an article by NVIDIA [2] that revolves 
around autonomous vehicles. This is a CNN network 
that serves the regression problem with a single output 
which is the control signal for the vehicle with the 
architecture described in Fig.2. The network consists 
of 9 layers in which one normalization layer, five 
convolutional layers and three fully connected layer 

 
Fig. 2. Architecture of the model 

The input image will be divided into YUV planes 
which are then transmitted to the network. The first 
layer of the network normalizes the image. 
Convolution classes are designed to extract the 
features and characteristics of the lane. The first three 
convolution layers use a 5x5 kernel matrix and the 2x2 
sliding matrix and the other 2 convolution layers use 
only the 3x3 kernel matrix. As can be seen, this is a 
relatively small network with the total number of 
parameters after calculating is 252,219, but it still 
gives very good results as published by the paper. 

2.2.3 Database 

The collected data set included more than 5500 
photos exported from 2 hours of driving in bright, 
sunny, and shady weather. In addition, approximately 
300 lane images were recorded in the laboratory for the 
purpose of diversifying input data. Fig.3 illustrates 
some pictures in a custom dataset with lanes under lab 
conditions. 

Each data set will be divided at the ratio of 7: 3 
for training and validation. In addition, the test set will 
include 500 actual lane images and 30 laboratory lane 
images (corresponding to 10% of the total number of 
images in the dataset). The test set will be used to 
evaluate how accurate it is in practice with the test 
data.  

 
Fig. 3. Laboratory dataset 

2.2.4 Training and model evaluation 

The team uses the TensorFlow library together 
with the Keras application programming interface for 
training. The loss function of the model is determined 
by the Mean total Square Error - MSE with the formula 
(1) and the results are shown in Fig.4 with n  : amount 
of data for testing; iY  : real value of data i;                                

 p
iY : predictive value for data i: 

 ( )2

1

1        n p
i ii

MSE Y Y
n =

= −∑  (1) 

 
Fig. 4. Results of loss function after training 

Fig. 5. Overall architecture of Mobilenet V2 [3] 

Input Operator T c n s 
2242 x 3 conv2d - 32 1 2 

1122 x 32 bottleneck 1 16 1 1 
1122 x 16 bottleneck 6 24 2 2 
562 x 24 bottleneck 6 32 3 2 
282 x 32 bottleneck 6 64 4 2 
142 x 64 bottleneck 6 96 3 1 
142 x 96 bottleneck 6 160 3 2 
72 x 160 bottleneck 6 320 1 1 
72 x 320 comv2d 1 x 1 - 1280 1 1 

72 x 1280 avgpool 7 x 7 - - 1 - 
1 x 1 x 1280 comv2d 1 x 1 - k -  
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Fig. 6. Attributes extracted from Mobilenet V2 
networks 

2.4 Deep learning model for the problem of 
controlling the robot moves according to the hand 

This system selects MobileNet V2 as the feature 
extraction network and SSD as the object detection 
unit. The combination of these two networks will form 
a hand detection model with fast processing speed, low 
latency, good accuracy, suitable for deployment on 
NVIDIA Jetson Nano embedded computer for good 
performance. From there, it meets the requirements of 
the application transport robot control using the hand 
tracking system in the factory. The hand detection 
system consists of four main phases as (1) 
Preprocessing; (2) Feature Extractor; (3) Detection and 
(4) Postprocessing. 

2.4.1 Feature Extractor with Mobilenet V2 

For embedded systems, a lightweight and low-
latency CNN network is required. The CNN network 
that fits that requirement is Mobilenet V2. Mobilenet 
V2 has a parameter count of only about 3.5M, resulting 
in faster processing speed and accuracy not inferior to 
conventional CNN networks. 

The difference between Mobilenet V2 compared 
to conventional CNN networks is that it uses a separate 
depth convolution layer instead of the standard 
convolution layer. This is the reason why MobileNet 
V2 has much fewer parameters than the rest of CNN 
networks. In addition, the special feature of MobileNet 
V2 is that this network uses two structures: Linear 
Bottlenecks and Inverted Residual Structure to form 
the blocks in the model. 

MobileNet V2's architecture consists of a full 
convolution layer with 32 filters, followed by 19 
bottleneck layers depicted in Fig.5. Properties 
extracted from the Mobilenet V2 network are depicted 
in Fig. 6. 

2.4.2 Object detection with Single Shot MultiBox 
Detector (SSD) 

Fig.7 and Fig.8 respectively show the 
architecture and schematic diagram of how an SSD 
works when combined with Mobilenet V2. Single Shot 
MultiBox Detector (SSD) [4], all of the object 
detection and classifications, are done in the same 
network. The name of the model - Single Shot 
MultiBox Detector also tells us that the model uses 
many frames with different ratios to identify the object 
area and classify the object, reduce the step of creating 
area proposal network compared to Fast R-CNN, so 
the processing speed is increased many times while 
accuracy remains guaranteed.  

In short, the SSD model will be a combination of 
2 steps: (1) Extract feature maps from CNN network; 
(2) Apply a convolution filter to detect objects on 
feature maps with different resolutions (small objects 
will be detected in higher resolution feature maps, and 
vice versa for large objects). SSD is based on a forward 
propagation process of standard architecture, 
MobilenetV2 produces an output block of three-
dimensional feature maps at an early stage. The 
MobilenetV2 network architecture here is a base 
network. We will then add the structures behind the 
base network to perform object recognition as part of 
the Extra Feature Layers in the diagram. These layers 
are intended to reduce the size of the feature map, 
thereby reducing the number of frames to be forecasted 
and allowing for predicting and detecting objects of 
various shapes of sizes. Large feature maps detect 
small objects well, and small feature maps help detect 
small objects better. These classes are simply 
explained in Fig.8. 

 
Fig. 7. Architecture of SSD MobileNet V2 

 
Fig. 8. Diagram simulating how MobileNet V2 SSD 
works 
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Fig. 9. Training procedure for hand detection model 

2.4.3 Train the hand detection model 

The training procedure of the hand detection 
model is shown in Fig.9. The first step of the process 
is to collect data (8000 images in the Hand Gesture 
Database GTI and 4000 self-collected images), then 
label the hand object in each image and finally edit the 
configuration file and run the training. The training 
hand detection model ran on NVIDIA Jetson Nano 
embedded computer.  

2.4.4 Robot control convention 

The robot control convention is implemented by 
the research team as follows: (1) Hand in fist state: 
Robot stops and (2) Hand spread: Robot moves 
according to hand. Moving left or right will depend on 
whether the hand is on the right or left side of the 
camera. Moving forward or backward will depend on 
the hand distance to the camera. If the hand is far from 
the camera, the robot will advance, the hand near the 
camera, the robot will back. 

3. Results and discussion 

3.1 Evaluation and results of robot model moving by 
lane 

3.1.1 Evaluation on test set 

The model is evaluated with the test set and based 
on mean squared error (MSE) and the coefficient of 
determination R2 determined by the formula (2) with n 
is number of data; iy  is real data value i; iy  is 
predicted value for data i and y is the average value of 
the dataset:    

 
( )
( )

2

2
2

1     
ˆn

i ii
n

ii

y y
R

y y

−
= −

−

∑
∑
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With MSE = 4.7 and R2 = 97.65%, it is possible 
to see that this is a pretty good result and the lane 

characteristics are clearly extracted when put into 
convolutional layers, not the environmental factors. 
Fig.10 illustrates the input image after going through 
the 3rd convolutional layer. 

 
Fig. 10. Feature map after the third layer of 
convolutional 

3.1.2 Actual evaluation 

Testing the model on hardware with the self - 
generated lane is good when the car is in lane. The 
average speed to handle each frame is 45ms equivalent 
to the output video with an average of 22 frames per 
second (fps). 

3.2 Evaluation and results of the hand-followed robot 
controller model 

In this section, the results and evaluation of the 
hand-followed robot control model will be detailed. 
First, we will evaluate the hand detection model. Next 
is the process of optimizing the model so that the 
model can work best on the available hardware and 
thereby helping the freight robot follow the hand of the 
operator. 

3.2.1 Evaluate the hand detection model with SSD 
Mobilenet V2 

 
Fig. 11. Test robot moves in lane 

The evaluation of the hand detection model is 
based on parameters such as the Mean Average 
Precision (mAP, Fig. 12) value and the value of the 
loss functions, namely the loss function on the 
validation set (Validation loss, Fig.13) and training set 
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(Training loss, Fig.14). "mAP" is the main data to 
evaluate the model, mAP is calculated as the average 
accuracy value over 10 Intersection Over Union (IOU) 
thresholds from 0.5 to 0.95 respectively, each 
threshold increases with the value of 0,05. IOU is a 
parameter used to evaluate the overlap between a given 
bounding box and a prediction box. By calculating 
IOU and considering a fixed threshold, we can tell 
whether the prediction box is a correct prediction or a 
false prediction. The IOU index is calculated by 
dividing the overlapping area between a given 
bounding box and the predictive box by the integrated 
area by the two boxes. After training 44,000 steps 
(corresponding to about 100 epochs) and using the 
Tensorboard as a tool to evaluate the model, we 
obtained a graph showing the average accuracy of the 
model. The results obtained the mAP average accuracy 
value of the hand gesture detection model was 83.78%.  
This is considered a good parameter threshold for an 
object detection problem. 

In addition to the average precision value, the 
value of the loss functions is also an important 
parameter to evaluate whether the object detection 
model is working well or not. The smaller the value of 
the loss function, the better the model works. In 
addition, comparing the loss function on the validation 
set and the loss function on the training set also helps 
to check if the model is overfitting or underfitting, 
thereby giving timely solutions.  

The loss function of the SSD model used in this 
paper is constructed by Localization loss (to evaluate 
detection) and Confidence loss (to evaluate object 
classification). Specifically, the formula (3) with N is 
the number of boxes that match a given default box; ∝ 
is an equilibrium coefficient for the effect of 
Localization loss; Lconf is Confidence loss and Lloc is 

Localization loss. ( ) ( )1      3conf locL L L
N

= + ∝  

After training model for about 44000 steps, we 
have the results as shown in Fig.14 and Fig.15, 
showing the loss function on the validation set and the 
loss function on the training set. The loss value on the 
validation set gradually decreases and gradually 
stabilizes at the threshold of 1,462, It is similar to the 
validation set, the loss value on the training set also 
gradually decreases and gradually stabilizes at the 
threshold of 1378. For an object detection model using 
a MobilenetV2 SSD, the loss value usually falls 
between 1 and 2, so with the 2 values obtained above, 
we can evaluate that the model works quite well. In 
addition, comparing the two graphs, we can see that 
the two charts both tend to decrease gradually and are 
equally stable at each training step. Hence, it can be 
concluded that the pattern shows no signs of 
overfitting or underfitting. 

3.2.2 Optimization of the hand detection model 

When testing the hand detection model on the 
robot's processor, the results obtained from the hand 
detection are very good but the processing speed is 
only 5fps, with this processing speed, the robot is very 
difficult to move according to the hand of the operator. 
That requires the team to optimize the model on the 
robot's hardware. The team used the TensorRT [5] to 
optimize the model running on the jetson nano 
processor. 

The operating principle of TensorRT is 
illustrated in Fig.15. During optimization, TensorRT 
performs, transformations and optimizations that are 
important to the model. First, the classes with unused 
outputs are discarded to avoid unnecessary 

Fig. 15. Example of a TensorRT operation 

Fig. 13. Validation loss 

Fig. 14. Training loss 

Fig. 12.  mAP 
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computation. Next, if possible, certain layers such as 
convolution, Bias, and ReLU are merged to form a 
single layer to improve latency, throughput, power 
efficiency, and memory consumption. The process of 
optimizing the model is shown in Fig.16. The trained 
model will be in the form of "frozen inference graph", 
before optimization, it is necessary to set parameters in 
the configuration file to match the parameters of the 
original Tensorflow model, some parameters need to 
be set correctly to avoid errors during optimization 
such as the number of classes and the names of classes. 
When running, TensorRT will convert the freeze 
inference graph to the UFF file and convert it from the 
UFF file to TensorRT engines. Finally, on the Jetson 
Nano embedded computer, we use a combination of 

TensorRT engines with code to perform object 
detection. After optimizing the hand detection model 
and running again on the robot's processor, the results 
were much better than before. Average accuracy 
remained unchanged and reached the threshold of 
83.78%, processing speed increased by more than 4 
times compared to before optimization and reached 21 
fps. 

3.2.3 The comparison of test results between some 
other deep learning network models 

In order to be able to explain why the choice of 
an SSD network model in combination with 
MobilenetV2 deployed on a Jetson Nano embedded 
computer as a hand detection model, the team ran a test 
system with several network models. Learn more 
deeply (using the same training data set and deploy on 
the same hardware as the article presented) and 
compare the results from actual testing of these models 
with the MobilenetV2 SSD model already come to the 
final conclusion The comparison results are presented 
in Table 2.We can see that the ResNet-50 SSD gives 
the highest average accuracy, but the processing speed 
is only 9 fps, which is quite slow and cannot respond 
to a Cargo robot system in the factory. In contrast, the 
MobilenetV2 SSD model offers a much higher 
processing speed (21 fps), but the average accuracy is 
not too low compared to the ResNet-50 SSD (83.78% 
and 87.90%). Based on the above comparison results, 
we can see that the MobilenetV2 SSD is more suitable 
than the other deep learning network models, it meets 
two conditions simultaneously: accuracy and 

processing speed when running on a Jetson Nano 
embedded computer. In order to be applied to the 
transportation of goods in factories, the robots must 
meet many strict conditions in terms of accuracy or 
speed of control signal processing. The deployment of 
the transport robot model moving by following the 
hand of the operator model using the MobileNet V2 
network combined with the SSD network as the hand 
detection device to provide control signals has partly 
solved that problem. With 83.78% of accuracy and 21 
fps processing speed of the model, the transport robot 
can follow the hand of the operator in factories. 

Table 2. Results of actual implementation of the 
system with different deep learning models 

 
3.3 General Results 

Robots designed and tested by the research team 
can operate stably with good and stable movement and 
transportation on flat surfaces of factories and 
workshops. The deep learning models are used to meet 
the processing speed and precision required by a robot 
cargo system in the factory, specifically the robot can 
easily move in a lane or the robot can move as soon as 
the hand of the operator signals it. During the trial run 
continuously for a long time, the electronic 
components operate normally, meeting the 
requirements of the research. Fig.18 shows a picture of 
the robot model after its assembly is complete. The 
selection of hardware devices and then assembling 
them together rather than design from scratch is part of 
the team's plan to be able to shorten the time to build 
the hardware and focus on software implementation. 
After a long period of design, fabrication, and 
commissioning, it can be seen that the freight robot 
system presented in this article has met the 
requirements for stability, compactness, and flexibility 
in movement, and can be applied in factories in the 
future. 

  

Deep learning model FPS mAP 

SSD Mobilenet V2 21 fps 83,78 % 

Tini YOLO V3 14 fps 77,60 % 

SSD ResNet-50 9 fps 87,90 % 

Fig. 17. Running robot 
 

Fig. 16. Model optimization process with TensorRT 
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4. Concluding remarks 

This article presents the application of using 
convolution neural networks in designing and 
manufacturing cargo transport robot models in 
factories. After a long time of research, design, and 
testing, the team successfully designed the model. The 
primary goals have been met. The cargo transport 
robot model will include two modes of movement, the 
first mode is automatic lane movement and the second 
mode is the hand movement of the operator. Although 
the robot model is relatively small in size, it can thus 
be the core to produce larger robots, transporting more 
goods. About two deep learning models for controlling 
lane-driven robots and a deep learning model for 
controlling robots followed by hand. These two 
models have demonstrated the superiority of accuracy 
and stability in processing speed so that the robot can 
automatically move easily in a lane or followed the 
hand of the operator in settings such as factories. 

The research results still have some limitations, 
so the group will continue to research and improve 
their work such as (1) Research to minimize the impact 
of the outside environment on the robot's mobility; (2) 

Research plans to help robots move in difficult terrain 
or rough surfaces in some factories; (3) Apply the 
design of larger transport robots so that more cargo can 
be transported; (4) Incorporate models of obstacle 
recognition and (5) Design and fabricate some 
hardware circuits from scratch without using the 
available hardware modules. 
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