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Abstract 

Given a simple undirected graph G=(V, E), the density of a subgraph on vertex set S is defined as a ratio 
between the number of edges  |E(S)| and the number of vertices |S|, where E(S) is the set of edges induced 
by vertices in S. Finding the maximum density subgraph has become an intense study in recent years, 
especially in the social network era. Being based on a greedy algorithm that connects with a suitable graph 
data structure, we have reduced its time complexity by using a randomized binary search tree, also called 
treap. We make the complexity analysis in both time and memory requirements, including computational 
experiments in large scale real networks. 
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1. Introduction* 

The problem of finding high connected 
subgraphs has been intensively interested in [1-3]. 
The paper [3] shows that the Densest k-subgraph 
problem remains NP-hard. However, its variance 
Densest subgraph problem can be solved by 
polynomial time. The algorithm proposed in [2,3] 
gives us a natural greedy idea of solving the Densest 
subgraph problem and reveals an interesting result for 
not only proving theoretical aspects but also practical 
ones. 

Many applications have been seen in a series of 
papers as [4-7]. In the paper [6], the author presented 
an algorithm for identifying hubs and authorities 
among potential web pages being relevant to a 
specified query. They said that a set of hubs and 
authorities is highly connected in comparison to the 
rest of the graph representing web pages. In [4-5], the 
authors want to extract, classify and inference dense 
communities in the web whose communities are 
considered as dense subgraphs. The definition of 
graph density provided by [8] will be used in our 
paper. 

1.1. Definitions 

Let G=(V, E) be a simple undirected graph 
where V is a set of vertices and E is a set of edges. 
Let S be a subset of V and E(S) be the edges induced 
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by S, that means { }(S) : ,E ij E i S j S= ∈ ∈ ∈ . We 
get the density definition of the subset S. 

Definition 1: Let S be a subset of V, the density 
of the subset S is defined as 

| E(S) |
(S)

| S |
d =   

Following the handshaking lemma, 2d(S) is the mean 
degree of the subgraph induced by S.  

Definition 2: The density of the graph G is 
defined as  

{ }(G) max (S)d d
S V

=
⊆

 

Hence, 2d(G) is the maximum average degree 
overall subgraphs. 

1.2. Problem and solution 

Determining a subgraph S satisfying both 
definitions 2 and 1 mentioned above is the Densest 
subgraph problem. The paper [9] showed that this 
problem is totally equivalent to the integer linear 
programming solved approximatively by the simplex 
algorithm [10]. Nevertheless, our intent of the 
algorithm gets some critical situations in large scale 
real networks. Firstly, the number of vertices requires 
much memory space to store O(|V|2) parameters. 
Secondly, a polynomial time algorithm seems not 
sufficient to run quickly in large scale real networks 
which usually have thousands or even millions of 
vertices and edges. In addition to the provision of  
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another more attractive solution, the paper [9] also 
proposes the following greedy algorithm 

 
Algorithm 1  Densest-Sub-Graph 

In our paper, section 2 details a graph data 
structure using treap which is a new adaptative 
version for solving the Densest subgraph problem 
associated with the greedy idea [1-3, 9]. Section 3 
represents a complexity analysis of both time and 
memory requirements corresponding to this graph 
data structures. Section 4 gives a series of 
experiments based on large network datasets [11]. 
Section 5 summarizes our results and gives some 
future research works.  

2. Graph data structures 

A simple undirected graph G=(V, E) is used to 
represent our network data. Without loss of 
generality, we suppose each vertex of G to be labeled 
by an identical letter. Each vertex corresponds to a 
node in our network data and each edge represents a 
connection between two nodes (see Figure 1). 

 
Fig. 1. A simple undirected graph G=(V,E) with |V|=6 
and |E|=7. Each vertex is labeled by an identical 
letter. 

2.1. Adjacency list using treap 

We noticed the comment of [12], which real-
world networks are usually sparse in, i.e. E=O(|V|), to 
choose an appropriate data structure to represent our 
network data. Therefore, the adjacency-list in [6] 
replaced the conventional adjacency-matrix in the 
representation of our undirected graph G=(V,E). 
Recall that the adjacency-list representation of G 
requires only O(|V|+2|E|) memory space, whereas the 
adjacency-matrix representation needs much O(|V|2) 
memory space (see Figure 2). 

 
Fig. 2. Undirected graph G=(V,E) in Figure 1 is 
represented by an adjacency-list data structure.  

For the adjacency-list data structure, the authors 
in [13] suggest an implementation consisting of two 
components (see Figure 2). The first component is an 
array indexed by vertex label, sometimes is called by 
a vertex header containing |V| pointers. These pointers 
point to head nodes of single-linked list, usually are 
named first. The second component is just a set of 
single-linked lists representing 2|E| edges. The 
relationship between two sets of vertices and edges is 
therefore represented by an ensemble of first pointers. 

Even we get an advantage in the choice of 
adjacency-list graph representation about memory 
complexity. Nevertheless, there are some other 
inconveniences. The adjacency-list data structure 
does not give us a mechanism of sorting vertices by 
degree. While we want to remove a specified edge 
iminj in the previous algorithm 1, a traversal of the 
whole list of adjacency vertex could take at least 
O(|V|) time. We have to update the degree of a vertex 
j after rearranging remained vertices by degree for the 
next iteration without knowledge of its new position. 
Thus, it is necessary to modify the header component 
of the adjacency list, more precisely, we use a 
randomized search tree – treap - as a new header 
component (see Figure 3). 
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Fig. 3. The adjacency-list representation of G=(V,E) 
in Figure 2 using treap as a new header. Each treap 
node consists of a label, degree, and the first of fields. 
Two labels and degree are encircled in the node. 
Every first pointer is drawn by a dotted arrow. 

 
Algorithm 2 Densest-Subgraph-with-Treap. 

Treaps are randomized search trees where each 
node has a key and an associated random priority. 
Their nodes are organized so that the keys appear in 
in-order traversal and the priorities appear in max-
heap-order. The paper [14] showed that insertion, 
deletion and searching operators of treap can be 
implemented in O(log|V|) expected time. However, 
we need some modifications of treap to apply it as a 
new header in our adjacency-list data structure. The 
first modification is to add a first pointer field into 
each node of the treap; this pointer usually points to 
the linked-list of adjacency vertices. The second 
modification is to replace respectively key and 
priority by label and degree fields. Instead of using 
max-heap order, we decided to arrange our treap 

nodes in min-heap order. A global node T attached to 
num_edges, num_vertices and root pointer fields is 
also implemented. The num_edges and num_vertices 
fields are used to get current numbers of vertices and 
edges. The root field points to the head node of treap 
that means a container of G=(V,E) representation. 
The greedy algorithm associated with our new graph 
data structure is detailed as follow 

3. Complexity analysis 

3.1. Space complexity 

The adjacency-list representation of G=(V,E) 
requires only O(|V|+2|E|) memory space. We need 
more space to store degree field for each vertex in the 
header of adjacency-list representation. Accurately, 
this header requires O(2|V|) memory space for all 
vertices and always O(2|E|) memory space for all 
edges in graph G. The graph data structure using 
treap costs O(2|V|+2|E|) space complexity.  

3.2. Time complexity 

In algorithm 2, T(i) denotes our graph data 
structure using treap at ith iteration. In line 6 of 
algorithm 2, the imin vertex is always located at the 
root of the treap and the arrangement of nodes is in 
min-heap order of degree, takes only O(1) time. A 
for-loop between lines 7-13 has exactly deg(imin) 
iterations, always be minuscule, since imin is the 
minimum degree vertex of T(i). The cost of this loop 
is calculated as follows:  

deg(imin)xO(h(i)) 

where h(i) is the height of treapT(i). Because of the 
decrease in vertex size of treap after iteration, the 
expected height of this treap is logarithmic of the 
current num_vertices. If we suppose this deg(imin) is 
constantly minuscule over graph that means deg(imin) 
becomes O(1) then the previous cost can be expressed 

log(|V|) log(|V| 1) log(1) log(|V|!)+ − + + =   

Using Stirling's approximation to second order,  

1
log(| V | !) | V | log | V | | V | log(2 | V |)

2
≈ − + Π

Again, two consecutive lines 14-15 in algorithm 2 
take a constant time O(1). In brief, algorithm 2 
requires asymptotically O(|V|log|V|) time complexity. 
It is necessary to notice that the time complexity is 
based on the strong hypothesis of the constant of 
minimum degree vertex. 

4. Computational experiments  

We decided to implement a series of four graph 
data structures whose headers are respectively treap 
[15], heap [16], AVL tree [17] and array [13]. All of 
them are encoded in the C programming language. 
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All experiments were carried out on a laptop machine 
with Intel Dual Core 1.6 Ghz processor and 4 GB 
RAM under Ubuntu running 64-bit version. We used 
gcc to compiler our code with -O3 flag optimization 
option. 

Our experimental network datasets are curated 
by [14] which consists of social networks (Facebook, 
Google+, Twitter, etc...), networks with ground-truth 
communities (Amazon product, Youtube social 
network, etc...), networks of communications (Email, 
Wikipediatalk, etc...), networks of co-purchasing 
product at Amazon, networks of road networks. We 
selected carefully eleven instances detailed in Table 1 
for our computational experiments. They are all really 
large-scale networks containing more than seven 
thousand vertices to more than one million vertices.  

For each instance, we report the following 
information 

• Elapsed times in second, time counter provided 
by C programming library, corresponding to our four 
different graph data structures. 

• Density of the graph d(G) is estimated by the 
four different graph data structures. 

The performance results of these four graph data 
structures are all displayed in Table 2 in which a bold 
time in second marks the fastest running time of 
graph data structure for each instance and a 
subtraction symbol - indicates that the algorithm 
associated with a particular graph data structure was 
unable to run on that network instance due to time 
limitation, i.e. more than 17000 seconds. The graph 
data structure using treap outperforms almost the 

large-scale network instances, in comparison to other 
variants of graph data structure in term of time 
complexity, except for the BerkStand instance that 
reflects the densest network d(G) among eleven 
instances. The graph density d(G) estimated by 
algorithm 2 is very competitive, it exhibits high 
performance on six network instances.  Notice that 
the greedy algorithm does not provide an optimal 
solution d(G)*. Hence, the results of the density graph 
varied for different runs on the same network 
instances. 

Table 1. A brief description of Stanford's large real 
networks. The space complexity cost is O(|V|+2|E|) 
since the number of edges represents in twice. 

Large scale 
networks |V| 2|E| 

wiki-vote 7115 103689 

email-Enroll 36692 367662 
soc-Epinions1 75875 508837 
soc-Slashdot 82144 549202 
email-EuAll 265214 420045 
amazon0601 403394 3387388 
BerkStand 685230 7600595 
NotreDame 325729 1497134 
roadNet-PA 1088092 3083796 
roadNet-TX 1379917 3843320 
roadNet-CA 1965206 5533214 

Table 2. The results of the greedy algorithm based on the four different graph data structures are evaluated on 
the Stanford's large scale networks. 

Large scale 
networks 

Treap Heap AVL Array 
d(G) time d(G) time d(G) time d(G) time 

wiki-vote 46.275 0.308 46.126 1.116 46.275 0.882 46.278 1.114 
email-Enroll 37.344 2.003 36.563 10.125 37.344 21.612 37.344 14.798 

soc-Epinions1 60.253 17.931 59.987 42.121 60.253 208.95 60.252 58.806 
soc-Slashdot 42.804 20.199 41.337 63.582 42.804 261.242 42.804 90.396 
email-EuAll 33.588 212.039 33.493 287.185 33.589 2029.695 33.586 354.692 
amazon0601 7.012 309.936 6.893 1192.771 7.012 780.924 7.497 805.591 
BerkStand 103.405 130.063 103.405 85.113 103.405 900.629 103.405 2094.88 
NotreDame 79.645 266.371 79.157 631.392 79.645 1277.523 79.645 1161.997 
roadNet-PA 1.64 1679.421 1.417 2079.127 1.652 2048.168 - - 
roadNet-TX 1.691 183.029 1.393 1667.592 1.718 212.696 - - 
roadNet-CA 1.659 781.205 1.407 1489.01 - - - - 
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5. Conclusion 

We have introduced the Densest-Subgraph-
With-Treap algorithm for finding dense subgraph in 
large networks based on the greedy idea [1-3, 9] of 
removing iteratively the minimum degree vertex.  
After fixing this greedy idea, the graph data structures 
were taken into account to reduce the complexity of 
solving the densest subgraph problem.  

There are several notices that reflect invariants 
of the greedy idea [1-3, 9] to find the densest 
component in graph. In spite of the theoretical proofs 
showed the 2-approximation algorithm, we got 
certainly different results on the same input graph 
performed by different adjacency-list graph headers 
(treap, heap, AVL or array). 
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