

Journal of Science & Technology 147 (2020) 065-069

65

Finding Dense Components in Large-Scale Network Using

Randomized Binary Search Tree

Trinh Anh Phuc1*, Pham Dang Hai1, Phan Thi Thuy Dung2
1Hanoi University of Science and Technology, No. 1, Dai Co Viet, Hai Ba Trung, Hanoi, Vietnam

2Viettel High Technology Industries Corporation, 40th floor, 72 Landmark Keangnam, Hanoi, Vietnam
Received: October 05, 2019; Accepted: November 12, 2020

Abstract

Given a simple undirected graph G=(V, E), the density of a subgraph on vertex set S is defined as a ratio
between the number of edges |E(S)| and the number of vertices |S|, where E(S) is the set of edges induced
by vertices in S. Finding the maximum density subgraph has become an intense study in recent years,
especially in the social network era. Being based on a greedy algorithm that connects with a suitable graph
data structure, we have reduced its time complexity by using a randomized binary search tree, also called
treap. We make the complexity analysis in both time and memory requirements, including computational
experiments in large scale real networks.

Keywords: Dense subgraphs, greedy algorithm, randomized binary search tree, graph data structures, large
scale real networks.

1. Introduction*

The problem of finding high connected
subgraphs has been intensively interested in [1-3].
The paper [3] shows that the Densest k-subgraph
problem remains NP-hard. However, its variance
Densest subgraph problem can be solved by
polynomial time. The algorithm proposed in [2,3]
gives us a natural greedy idea of solving the Densest
subgraph problem and reveals an interesting result for
not only proving theoretical aspects but also practical
ones.

Many applications have been seen in a series of
papers as [4-7]. In the paper [6], the author presented
an algorithm for identifying hubs and authorities
among potential web pages being relevant to a
specified query. They said that a set of hubs and
authorities is highly connected in comparison to the
rest of the graph representing web pages. In [4-5], the
authors want to extract, classify and inference dense
communities in the web whose communities are
considered as dense subgraphs. The definition of
graph density provided by [8] will be used in our
paper.

1.1. Definitions

Let G=(V, E) be a simple undirected graph
where V is a set of vertices and E is a set of edges.
Let S be a subset of V and E(S) be the edges induced

* Corresponding author: Tel.: (+84) 942.227.941
Email: phucta@soict.hust.edu.vn

by S, that means { }(S) : ,E ij E i S j S= ∈ ∈ ∈ . We
get the density definition of the subset S.

Definition 1: Let S be a subset of V, the density
of the subset S is defined as

| E(S) |
(S)

| S |
d =

Following the handshaking lemma, 2d(S) is the mean
degree of the subgraph induced by S.

Definition 2: The density of the graph G is
defined as

{ }(G) max (S)d d
S V

=
⊆

Hence, 2d(G) is the maximum average degree
overall subgraphs.

1.2. Problem and solution

Determining a subgraph S satisfying both
definitions 2 and 1 mentioned above is the Densest
subgraph problem. The paper [9] showed that this
problem is totally equivalent to the integer linear
programming solved approximatively by the simplex
algorithm [10]. Nevertheless, our intent of the
algorithm gets some critical situations in large scale
real networks. Firstly, the number of vertices requires
much memory space to store O(|V|2) parameters.
Secondly, a polynomial time algorithm seems not
sufficient to run quickly in large scale real networks
which usually have thousands or even millions of
vertices and edges. In addition to the provision of

Journal of Science & Technology 147 (2020) 065-069

66

another more attractive solution, the paper [9] also
proposes the following greedy algorithm

Algorithm 1 Densest-Sub-Graph

In our paper, section 2 details a graph data
structure using treap which is a new adaptative
version for solving the Densest subgraph problem
associated with the greedy idea [1-3, 9]. Section 3
represents a complexity analysis of both time and
memory requirements corresponding to this graph
data structures. Section 4 gives a series of
experiments based on large network datasets [11].
Section 5 summarizes our results and gives some
future research works.

2. Graph data structures

A simple undirected graph G=(V, E) is used to
represent our network data. Without loss of
generality, we suppose each vertex of G to be labeled
by an identical letter. Each vertex corresponds to a
node in our network data and each edge represents a
connection between two nodes (see Figure 1).

Fig. 1. A simple undirected graph G=(V,E) with |V|=6
and |E|=7. Each vertex is labeled by an identical
letter.

2.1. Adjacency list using treap

We noticed the comment of [12], which real-
world networks are usually sparse in, i.e. E=O(|V|), to
choose an appropriate data structure to represent our
network data. Therefore, the adjacency-list in [6]
replaced the conventional adjacency-matrix in the
representation of our undirected graph G=(V,E).
Recall that the adjacency-list representation of G
requires only O(|V|+2|E|) memory space, whereas the
adjacency-matrix representation needs much O(|V|2)
memory space (see Figure 2).

Fig. 2. Undirected graph G=(V,E) in Figure 1 is
represented by an adjacency-list data structure.

For the adjacency-list data structure, the authors
in [13] suggest an implementation consisting of two
components (see Figure 2). The first component is an
array indexed by vertex label, sometimes is called by
a vertex header containing |V| pointers. These pointers
point to head nodes of single-linked list, usually are
named first. The second component is just a set of
single-linked lists representing 2|E| edges. The
relationship between two sets of vertices and edges is
therefore represented by an ensemble of first pointers.

Even we get an advantage in the choice of
adjacency-list graph representation about memory
complexity. Nevertheless, there are some other
inconveniences. The adjacency-list data structure
does not give us a mechanism of sorting vertices by
degree. While we want to remove a specified edge
iminj in the previous algorithm 1, a traversal of the
whole list of adjacency vertex could take at least
O(|V|) time. We have to update the degree of a vertex
j after rearranging remained vertices by degree for the
next iteration without knowledge of its new position.
Thus, it is necessary to modify the header component
of the adjacency list, more precisely, we use a
randomized search tree – treap - as a new header
component (see Figure 3).

Journal of Science & Technology 147 (2020) 065-069

67

Fig. 3. The adjacency-list representation of G=(V,E)
in Figure 2 using treap as a new header. Each treap
node consists of a label, degree, and the first of fields.
Two labels and degree are encircled in the node.
Every first pointer is drawn by a dotted arrow.

Algorithm 2 Densest-Subgraph-with-Treap.

Treaps are randomized search trees where each
node has a key and an associated random priority.
Their nodes are organized so that the keys appear in
in-order traversal and the priorities appear in max-
heap-order. The paper [14] showed that insertion,
deletion and searching operators of treap can be
implemented in O(log|V|) expected time. However,
we need some modifications of treap to apply it as a
new header in our adjacency-list data structure. The
first modification is to add a first pointer field into
each node of the treap; this pointer usually points to
the linked-list of adjacency vertices. The second
modification is to replace respectively key and
priority by label and degree fields. Instead of using
max-heap order, we decided to arrange our treap

nodes in min-heap order. A global node T attached to
num_edges, num_vertices and root pointer fields is
also implemented. The num_edges and num_vertices
fields are used to get current numbers of vertices and
edges. The root field points to the head node of treap
that means a container of G=(V,E) representation.
The greedy algorithm associated with our new graph
data structure is detailed as follow

3. Complexity analysis

3.1. Space complexity

The adjacency-list representation of G=(V,E)
requires only O(|V|+2|E|) memory space. We need
more space to store degree field for each vertex in the
header of adjacency-list representation. Accurately,
this header requires O(2|V|) memory space for all
vertices and always O(2|E|) memory space for all
edges in graph G. The graph data structure using
treap costs O(2|V|+2|E|) space complexity.

3.2. Time complexity

In algorithm 2, T(i) denotes our graph data
structure using treap at ith iteration. In line 6 of
algorithm 2, the imin vertex is always located at the
root of the treap and the arrangement of nodes is in
min-heap order of degree, takes only O(1) time. A
for-loop between lines 7-13 has exactly deg(imin)
iterations, always be minuscule, since imin is the
minimum degree vertex of T(i). The cost of this loop
is calculated as follows:

deg(imin)xO(h(i))

where h(i) is the height of treapT(i). Because of the
decrease in vertex size of treap after iteration, the
expected height of this treap is logarithmic of the
current num_vertices. If we suppose this deg(imin) is
constantly minuscule over graph that means deg(imin)
becomes O(1) then the previous cost can be expressed

log(|V|) log(|V| 1) log(1) log(|V|!)+ − + + =

Using Stirling's approximation to second order,

1
log(| V | !) | V | log | V | | V | log(2 | V |)

2
≈ − + Π

Again, two consecutive lines 14-15 in algorithm 2
take a constant time O(1). In brief, algorithm 2
requires asymptotically O(|V|log|V|) time complexity.
It is necessary to notice that the time complexity is
based on the strong hypothesis of the constant of
minimum degree vertex.

4. Computational experiments

We decided to implement a series of four graph
data structures whose headers are respectively treap
[15], heap [16], AVL tree [17] and array [13]. All of
them are encoded in the C programming language.

Journal of Science & Technology 147 (2020) 065-069

68

All experiments were carried out on a laptop machine
with Intel Dual Core 1.6 Ghz processor and 4 GB
RAM under Ubuntu running 64-bit version. We used
gcc to compiler our code with -O3 flag optimization
option.

Our experimental network datasets are curated
by [14] which consists of social networks (Facebook,
Google+, Twitter, etc...), networks with ground-truth
communities (Amazon product, Youtube social
network, etc...), networks of communications (Email,
Wikipediatalk, etc...), networks of co-purchasing
product at Amazon, networks of road networks. We
selected carefully eleven instances detailed in Table 1
for our computational experiments. They are all really
large-scale networks containing more than seven
thousand vertices to more than one million vertices.

For each instance, we report the following
information

• Elapsed times in second, time counter provided
by C programming library, corresponding to our four
different graph data structures.

• Density of the graph d(G) is estimated by the
four different graph data structures.

The performance results of these four graph data
structures are all displayed in Table 2 in which a bold
time in second marks the fastest running time of
graph data structure for each instance and a
subtraction symbol - indicates that the algorithm
associated with a particular graph data structure was
unable to run on that network instance due to time
limitation, i.e. more than 17000 seconds. The graph
data structure using treap outperforms almost the

large-scale network instances, in comparison to other
variants of graph data structure in term of time
complexity, except for the BerkStand instance that
reflects the densest network d(G) among eleven
instances. The graph density d(G) estimated by
algorithm 2 is very competitive, it exhibits high
performance on six network instances. Notice that
the greedy algorithm does not provide an optimal
solution d(G)*. Hence, the results of the density graph
varied for different runs on the same network
instances.

Table 1. A brief description of Stanford's large real
networks. The space complexity cost is O(|V|+2|E|)
since the number of edges represents in twice.

Large scale
networks |V| 2|E|

wiki-vote 7115 103689

email-Enroll 36692 367662
soc-Epinions1 75875 508837
soc-Slashdot 82144 549202
email-EuAll 265214 420045
amazon0601 403394 3387388
BerkStand 685230 7600595
NotreDame 325729 1497134
roadNet-PA 1088092 3083796
roadNet-TX 1379917 3843320
roadNet-CA 1965206 5533214

Table 2. The results of the greedy algorithm based on the four different graph data structures are evaluated on
the Stanford's large scale networks.

Large scale
networks

Treap Heap AVL Array
d(G) time d(G) time d(G) time d(G) time

wiki-vote 46.275 0.308 46.126 1.116 46.275 0.882 46.278 1.114
email-Enroll 37.344 2.003 36.563 10.125 37.344 21.612 37.344 14.798

soc-Epinions1 60.253 17.931 59.987 42.121 60.253 208.95 60.252 58.806
soc-Slashdot 42.804 20.199 41.337 63.582 42.804 261.242 42.804 90.396
email-EuAll 33.588 212.039 33.493 287.185 33.589 2029.695 33.586 354.692
amazon0601 7.012 309.936 6.893 1192.771 7.012 780.924 7.497 805.591
BerkStand 103.405 130.063 103.405 85.113 103.405 900.629 103.405 2094.88
NotreDame 79.645 266.371 79.157 631.392 79.645 1277.523 79.645 1161.997
roadNet-PA 1.64 1679.421 1.417 2079.127 1.652 2048.168 - -
roadNet-TX 1.691 183.029 1.393 1667.592 1.718 212.696 - -
roadNet-CA 1.659 781.205 1.407 1489.01 - - - -

Journal of Science & Technology 147 (2020) 065-069

69

5. Conclusion

We have introduced the Densest-Subgraph-
With-Treap algorithm for finding dense subgraph in
large networks based on the greedy idea [1-3, 9] of
removing iteratively the minimum degree vertex.
After fixing this greedy idea, the graph data structures
were taken into account to reduce the complexity of
solving the densest subgraph problem.

There are several notices that reflect invariants
of the greedy idea [1-3, 9] to find the densest
component in graph. In spite of the theoretical proofs
showed the 2-approximation algorithm, we got
certainly different results on the same input graph
performed by different adjacency-list graph headers
(treap, heap, AVL or array).

References

[1] Yuichi Asahiro and Kazuo Iwama. Finding dense
subgraphs. In John Staples, Peter Eades, Naoki Katoh
and Alistair Moffat, editors, Algorithms and
Computations, Springer Berlin Heidelberg (1995)
102-111.

[2] Yuichi Asahiro, Kazuo Iwama, Hisao Tamaki, and
Takeshi Tokuyama. Greedily finding a dense
subgraph. J. Algorithms, volume 34 (2000) 203-221.

[3] Uriel Feige and Michael Seltser. On the densest k-
subgraph problem. Algorithmica, 29:2001 (1997).

[4] Yon Dourisboure, Filippo Geraci, and Marco
Pellegrini. Extraction and classification of dense
communities in the web. In Proceedings of the 16th
International Conference on World Wide Web,
WWW '07,New York, NY, USA (2007) 461-470.

[5] David Gibson, Ravi Kumar, and Andrew Tomkins.
Discovering large dense subgraphs in massive graphs.
In Proceedings of the 31st International Conference
on Very Large Data Bases, VLDB '05,VLDB
Endowment (2005) 721-732.

[6] Jon M. Kleinberg. Authoritative sources in a
hyperlinked environment . J. ACM, volume 46 (1999)
604-632.

[7] Ravi Kumar, Prabhakar Raghavan, Sridhar
Rajagopalan, and Andrew Tomkins. Trawling the
web for emerging cyber-communities. In Proceedings
of the 8th International Conference on WWW, New
York, NY, Elsevier North-Holland, Inc (1999)1481-
1493.

[8] V. Vinay Ravi Kannan. Analyzing the structure of
large graphs. In manuscrit, NY, NewYork,USA,
Elsevier North-Holland, Inc (1999).

[9] Moses Charikar. Greedy approximation algorithms
for finding dense components in a graph. In
Proceedings of the Third International Workshop on
Approximation Algorithms for Combinatorial
Optimization, APPROX '00, London, UK, UK,
Springer-Verlag (2000) 84-95.

[10] George B. Dantzig. A history of scientific computing.
Chapter Origins of the Simplex Method ACM, New
York, NY, USA (1990) 141-151.

[11] Jure Leskovec and Andrej Krevl. SNAP Datasets:
Stanford large network dataset collection (2014).

[12] David Eppstein and Darren Strash. Listing all
maximal cliques in large sparse real-world graphs.
Lecture Notes in Computer Science, Springer, volume
6630 (2011)364-375.

[13] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C.
Stein.Introduction to Algorithms.The MIT Press, 3rd
edition (2009).

[14] Cecilia R. Seidel, Raimund, Aragon. Randomized
search trees. Algorithmica, (4/5) volume 16 (1996)
464-497.

[15] Guy E. Blelloch and Margaret Reid-Miller. Fast set
operations using treaps. In Proceeding of the Tenth
Annual ACM Symposium on Parallel Algorithms and
Architectures, SPAA '98, New York, NY, USA
(1998) 16-26.

[16] J. W. J. Williams. Algorithm 232: Heapsort.
Communications of the ACM, volume 7(6), (1964)
347-348.

[17] Evgenii Adelson-Velsky, Georgy, Landis. An
algorithm for the organization of information. In
Proceedings of the USSR Academy of Sciences,
volume 146 (1962) 263-266.

	1. Introduction0F
	2. Graph data structures

