
  
Journal of Science & Technology 146 (2020) 025-030 

 

25 

  
Numerical Modelization of the Oil Film Pressure for a Hydrodynamic  

Tilting-Pad Thrust Bearing  
 

Le Anh Dung, Tran Thi Thanh Hai * 
Hanoi University of Science and Technology, No.1 Dai Co Viet str., Hai Ba Trung dist., Hanoi, Vietnam 

Received: June 17, 2020; Accepted: November 12, 2020 
 

Abstract 

This study analyses the hydrodynamic characteristic of the tilting pad thrust bearing. Research content is 
simultaneously solving the Reynolds equation, force equilibrium equation, and momentum equilibrium 
equations. Reynolds equation is solved by utilizing the finite element method with Galerkin weighted residual, 
thereby determines the pressure at each discrete node of the film. Force and momentums are integrated from 
pressure nodes by Gaussian integral. Finally, force and momentum equilibrium equations are solved using 
Newton-Raphson iterative to achieve film thickness and inclination angles of the pad at the equilibrium 
position. The results yielded the film thickness, the pressure distribution on the whole pad and different 
sections of the bearing respected to the radial direction. The high-pressure zone is located at the low film 
thickness zone and near the pivot location. 

Keywords: Hydrodynamic tilting-pad thrust bearing, equilibrium position, finite element method. 
 

1. Introduction1 

Tilting pad thrust bearings are used in rotary 
machineries, allow for the thrust load operation at the 
average of rotation and support a heavy load. 
Hydrodynamic thrust bearing based on hydrodynamic 
lubrication.  

In 2012, D. V. Srikanth et. al. [1] studied a large 
tilting pad thrust bearing angular stiffness. In 2014, 
Najar and Harmain [2] performed a numerical study on 
pressure profiles in the hydrodynamic thrust bearing. 
Annan Guo et.al [3] experiment static and dynamic 
characteristics of tilting pad thrust bearing in the same 
year. In 2018, Mostefa K. et al. [4] analyzed the effect 
of dimple geometries on textured tilting pad thrust 
bearing using a finite difference method. 

In Vietnam, studies about hydrodynamic tilting 
pad bearing are few. Most recently, Hai T.T.T et al [5] 
compared a numerical calculation of a hydrodynamic 
fixed pad thrust bearing with experiment results. 
Besides Dung Le Anh et al. [6] perform a numerical 
modelization of oil film pressure in hydrodynamic 
journal bearing under a steady load. 

This research analyzes the pressure and oil film 
thickness of a pivot tilting pad thrust bearing at 
hydrodynamic lubrication. 

2. Thrust bearing and the equations 

2.1. Tilting pad thrust bearing 
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Fig.1 shows the diagram of a pad in pivot tilting 
pad thrust bearing. Here, the pad is placed onto a pivot 
that is eccentric from the middle of the pad, to form the 
oil wedge as hydrodynamic theory. The pressure in the 
wedge generates the force onto the pad surface making 
the pad to tilt at an angle respected to the r-axis and the 
θ -axis. r and θ  are two directions of polar 
coordinates. The inner and outer radius of the pad are 
r1 and r2, padθ  is the pad angle,  pθ  and pr  are the 
position of the pivot, hp  is the film thickness at pivot 
location,  rα and θα  are the inclinations of the pad 
along the radial and circumferential direction, ω  is 
the angular velocity of the collar. 

 
Fig. 1. Diagram of a pivot tilting pad thrust bearing. 
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2.2. The equations 

2.2.1 The Reynolds equation: 

Obtained from the Naviers-Stockes and 
continuity equations for an incompressible, isoviscous, 
steady-state and laminar flow fluid, the Reynolds 
equation is written in polar coordinates [7]: 

3 31 6p p hrh h r
r r r

µω
θ θ θ

∂ ∂ ∂ ∂ ∂   + =   ∂ ∂ ∂ ∂ ∂   
  (1) 

where p is oil film pressure, r is radial direction, θ  is 
circumferential direction, h is oil film thickness, µ  is 
dynamic viscosity, ω  is angular velocity of the shaft. 

The boundary condition chosen for the Reynolds 
equation is:  

( )0, 0p rθ = = ; ( ) , 0padp rθ θ= =  

( )1, 0p r rθ = = ; ( )2 , 0p r rθ = =  

2.2.2 Oil film thickness equation: 

( ) ( )p p ph h r rcos sin θθ θ α = + − − + 
 ( ) ( )p rrsin sinθ θ α+ −     (2) 

2.2.3 Force and momentum equilibrium equations: 

The pressure distribution is integrated over the 
pad area to give the resulting force and the moments in 
two perpendicular directions around the pivot point.  

( )  
, ,  z p r S

F h prd dr Wθα α θ= =∬   

( ) ( ) 2, ,  sin 0x p r pS
M h pr d drθα α θ θ θ= − =∬      (3) 

( ) ( )( ) 
, ,  .cos 0y p r p pS

M h p r r rd drθα α θ θ θ= − − =∬    

3. Algorithm 

3.1 Solving Reynolds equation 

The pad domain is discreted into a 4-node finite 
element mesh as Fig. 2. Here coordinates in polar form 
is change to the reference coordinates ( ),ξ η . Using 
finite element method, integrate equation (1) over the 
domain S: 

 3 31 6 0iS

p p hW rh h r dS
r r r

µω
θ θ θ

 ∂ ∂ ∂ ∂ ∂    + − =    ∂ ∂ ∂ ∂ ∂    
∬     

 (4) 

where iW  is weight functions. 

Integrate by part equation (4), we have: 

 3 3

 3 3

1 .6

1 . 0

i i
iS

i r ib

W Wp p hrh h W r dS
r r r

p pW rh n d W h n d
r r θ

µω
θ θ θ

τ τ
θ

∂ ∂∂ ∂ ∂
− − − +

∂ ∂ ∂ ∂ ∂
∂ ∂

+ + =
∂ ∂

∮

∬

∮
 (5) 

p can be expressed as: { }
1

.
n

i i
i

p N p N p
=

= =∑  

where n is the total number of mesh points, N is the 
global polynomials function vector. 

 
Fig. 2. Diagram of a tilting pad thrust bearing 

With Galerkin weight residual, the weighting 
function iW  is chosen equal to the shape function iN . 
Combined with boundary condition, we have: 

3 0 i r
pW rh n d
r

τ∂
=

∂
∮ and  

 
31 . 0i

b

pW h n d
r θ τ

θ
∂

=
∂

∮   

Equation (5) becomes: 

{ } { } { } { }
{ }

 3 31 j ji i

S

N NN N
rh h dS p

r r r θ θ

∂ ∂∂ ∂
+

∂ ∂ ∂ ∂
∬  

{ }
 
 .6iS

hN r dSµω
θ
∂

= −
∂

∬    (6) 

Rewrite the left side of equation (4) as a matrix 
form: 

{ }
3

 

3

0  .
0

i i
i n

iS
i n

n n

N N
N N

r h
p rd drr N NrhN N

r r
r

θ
θ θ θ

θ

∂ ∂ 
∂ ∂    ∂ ∂    ∂ ∂       ∂ ∂   … ∂ ∂      ∂ ∂ 

∂ ∂ 



 ∬   

    (7) 

The conversion from polar coordinates to 
reference coordinate system is featured by Jacobi 
matrix J: 
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1 1

1 1

  

  

n nj j
i ii i

n nj j
i ii i

N Nr r
J

r N N
r

θ θ
ξ ξ ξ ξ
θ

θη η η η

= =

= =

∂ ∂ ∂ ∂ 
  ∂ ∂ ∂ ∂  = =
 ∂ ∂ ∂ ∂ 
  ∂ ∂ ∂ ∂   

∑ ∑

∑ ∑
     (8) 

Thus (7) becomes: 

3

1

3

0  
0

i i

S

n n

N N
r h

J r
rhN N

r

θ

θ

−

∂ ∂ 
   ∂ ∂   × × ×      ∂ ∂   
∂ ∂ 

 ∬   

{ }

( ) [ ] { }

1

i n

i
i n

i

N N

J p r
N N
r r

det J d d K p

θ θ

ξ η

−

∂ ∂ 
 ∂ ∂× × × × 
∂ ∂ … ∂ ∂ 

× × = ×



 (9) 

The right side of the equation (6) becomes: 

{ } { }

{ } ( )

 

 

  .6

 .6 . .

iS

iS

hF N r rd dr

hN r r det J d d

µω θ
θ

µω ξ η
θ

∂
= −

∂
∂

= −
∂

∬

∬
  (10) 

Thus, equation (6) is rewritten as: 

[ ] { } { }. iK p F=   (11) 

Solve the above equation with boundary 
condition, we can get pressure value at all nodes. 

3.2 Solve force and momentum equation 

Let: 
 
 

S
S rd drθ=∬   

( ) 2 sin pS
R r d drθ θ θ= −∬        (12) 

( )( ) 
 .cos p pS

T r r rd drθ θ θ= − −∬   

We get:. ( ) { }, , t
z p r iF h S pθα α =   

( ) { }, , t
x p r iM h R pθα α =           (13) 

( ) { }, , t
y p r iM h T pθα α =     

 The Jacobian matrix related to the equilibrium 
position is: 

z z z

p r

x x x

p r

y y y

p r

F F F
h
M M M

D
h
M M M
h

θ

θ

θ

α α

α α

α α

 ∂ ∂ ∂
 
∂ ∂ ∂ 

 ∂ ∂ ∂ = −
 ∂ ∂ ∂
 
∂ ∂ ∂ 
 ∂ ∂ ∂ 

 (14) 

Substitute (13) to (14), we have: 

. . .

. . .

. . .

p r

p r

p r

t t t
h

t t t
h

t t t
h

S p S p S p

D R p R p R p

T p T p T p

θ

θ

θ

α α

α α

α α

 
 
 = −
 
  

 

p r

t

t
h

t

S
R p p p
T

θα α

 
   = −  
 
 

  (15) 

where 
ph

p

pp
h
∂

=
∂

, pp
θα

θα
∂

=
∂

, 
r

r

ppα α
∂

=
∂

 

php , p
θα

, 
r

pα  are calculated as follows: 

Derive equation (11) respected to ph , θα , rα  :  

[ ]{ } { } [ ] { }i
i

K p F
p K

k k k
∂ ∂ ∂

+ =
∂ ∂ ∂

  (16) 

with pk h= , θα , rα .    

Thus, { }
[ ]

{ } [ ]{ }1i
i

Kp F
p

k K k k
 ∂∂ ∂

= − 
∂ ∂ ∂ 

  (17) 

where: 

[ ]

{ } { } { } { }

 2 3

1

S

j ji i

K hh
k k

N NN N
r rd dr

r r r
θ

θ θ

∂ ∂
= ×

∂ ∂
 ∂ ∂∂ ∂
 × +
 ∂ ∂ ∂ ∂ 

∬
 

 (18) 

{ } { }
 
 .6iS

F hN r rd dr
k k

µω θ
θ

∂ ∂ ∂ = −  ∂ ∂ ∂ 
∬  (19) 

In order to solve the nonlinear equation, Newton- 
Raphson method is commonly used due to its rapid 
convergence and highly accurate approximation. Let 

, , 
t

p ru h θα α =   be the present step of the equilibrium 

position, newu  be the new guess value for the new step. 
Thus, the iterative process is given by: 
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 \ , 0, 0
t

new z x yu u D F W M M = − − − −   

This iteration process ends when the following 
error bound condition err  is satisfied: 

1

1

k k
new

k

u u
err

u

+

+

−
≤  & z

z

F W err
F
−

≤  & xM err≤  

& yM err≤  with err=10-5. 

Within the algorithm described above, 
programming diagram is shown in Fig.3. A set of 
initial values are used to calculate the pressure, film 
thickness and inclinations. Then in each iteration, new 
values are updated until the solution converges. 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Programming Algorithm 

4. Results 

The present study bearing is a large tilting pad 
bearing and its parameters are described in Table 1. 
The program is written in MATLAB 2019a. 

Table 2 illustrates the iteration process of a 
100x100 elements mesh grid. The result shows with a 
good initial guess, high accuracy can be achieved after 
a few iterative steps due to the high convergence rate 
of the Newton-Raphson method. The circumferential 
inclination is much lower than the radial inclination as 
the result of pivot location is offset a distance from the 
center of the pad with respect to the circumferential 
direction. 

Fig.4a, 4b show the pressure distribution of a pad. 
Film thickness is described in Fig.4c. The pressure is 
yielded in the Cartesian coordinates for easier 
description. The high-pressure zone is located at the 
center zone of the pad, near the pivot location, and 
leans toward low film thickness. This is reasonable 
while the equivalent film force on the whole pad is 
needed to impact the pivot location to create an 

equilibrium state. The maximum 
pressure on the whole pad is 
4.14833 MPa at the
( ) ( ), 14 ,1.08885 or mθ = . 

This position is not located in 
the middle section of the pad along 
the radial direction because the film 
thickness of the tilting pad thrust 
bearing can vary along the radial 
direction. 

Fig.5 indicates the pressure 
distribution at different sections of 
the pad with respect to the radial 
axis. At the middle section of the 
pad, the highest-pressure-value is 
4.13729 MPa at 14oθ = , slightly 
lower than the maximum pressure of 
the whole field. At two symmetric 
sections r = 1.2390m and                          
r = 0.9660m, the section near the 
outer radius shows higher pressure 
than the one near the inner radius. 
This is reasonable due to the non-

symmetry of the model. 

In order to check the validation of the program, 
author compared with the study of Kouider [4] with 
specific parameters showed in Table 3. 

 

 

 

FALSE 



  
Journal of Science & Technology 146 (2020) 025-030 

 

29 

  
(a) 

 
(b) 

 
(c) 

Fig. 4. (a,b) Pressure distribution of a pad. (c) Film 
thickness of a pad 

 

Table 1. Bearing parameters 

Pad Parameters Value 

Rotational speed, N  (rpm) 157 

Inner radius/Outer radius, 1

2

r
r

(m) 
0.875/1.330 

Dynamic viscosity, µ (Pa.s) 0.00565 

Number of pads 12 

Pad angle, padθ  (deg) 20 

Pivot circumferential position, pθ  
(deg)   

11.652 

Pivot radius, pr  (m) 1.1025 

Applied load on each pad (N) 321667 
 

 
Fig. 5. Pressure distribution in different sections. 

 
Fig. 6. Compare pressure distribution with [4] 
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Table 2. Iteration process within a mesh of 100x100

Iteration  ph  

 ( )mµ  

 rα  

(10-5.rad) 

 θα  

(10-5.rad) 

Max pressure 
(MPa) 

Fz 
 (105 N) 

Mx  
(Nm) 

My 
 (Nm) 

0 50.000000 10.000000 0.000000 6.474877 4.938925 1468.991 7251.081 

1 56.966530 10.976675 -1.779205 4.649763 3.595186 534.561 2265.785 

2 58.543082 10.842759 -3.014021 4.189871 3.247799 92.999 264.700 

3 58.507289 10.728756 -3.184184 4.148570 3.216814 1.612 2.445 

4 58.503206 10.726141 -3.185541 4.148326 3.216669 6.958x10-5 -1.852x10-5 

5 58.503206 10.726140 -3.185541 4.148326 3.216670 2.182x10-11 -1.107x10-10 

 

Table 3. Parameters Application for bearing in [4] 

Pad Parameters Value 

Rotational speed, N  (rpm) 3000 

Inner radius / Outer radius, 1r  2r  

(m) 

187.5/322.5 

Dynamic viscosity, µ (Pa.s) 0.0252 

Number of pads 12 

Pad angle, padθ  (deg) 28 

Pivot circumferential position, pθ  
(deg)   

17.38 

Pivot radius, pr  (m)  255.00 

Applied load on each pad (N) 59592 

Fig. 6 shows the pressure comparison between 
the present study with the results in Kouider’s 
calculation [4] in the middle section. While used the 
finite difference method, there still have slight 
differences in value. The maximum value in reference 
is 8.673MPa while in the present study, this value is 
8.708MPa. Overall, both results are in good 
agreement. 

5. Conclusion 

This research numerically simulates the pressure 
distribution and the film thickness of tilting pad thrust 
bearing. The high-pressure zone is located at the lower 
film thickness zone and near the pivot location. The 
maximum pressure is not positioned in the middle 
section of the bearing due to the non-symmetric of the 
model. The pressure at the different radial sections of 
the bearing is diverse in value because of the non-
symmetry of the model.  

The results of this study are the foundation for 
future researches taking into account thermal and 
deformation problems. 
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