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Abstract 

Simultaneous Localization and Mapping is a key technique for mobile robot applications and has received 
much research effort over the last three decades. A precondition for a robust and life-long landmark-based 
SLAM algorithm is the stable and reliable landmark detector. However, traditional methods are based on laser-
based data which are believed very unstable, especially in dynamic-changing environments. In this work, we 
introduce a new landmark detection approach using vision-based data. Based on this approach, we exploit a 
deep neural network for processing images from a stereo camera system installed on mobile robots. Two 
deep neural network models named YOLOv3 and PSMNet were re-trained and used to perform the landmark 
detection and landmark localization, respectively. The landmark’s information is associated with the landmark 
data through tracking and filtering algorithm. The obtained results show that our method can detect and 
localize landmarks with high stability and accuracy, which are validated by laser-based measurement data. 
This approach has opened a new research direction toward a robust and life-long SLAM algorithm. 
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1. Introduction1 

Mobile robots have received much attention in 
recent years due to their potential application in many 
fields, for example, logistics, exploration of hazardous 
environments, self-driving cars and services [1]. 
Research topics on mobile robots cover a wide range 
of technologies including, navigation, perception, 
learning, cooperation, acting, interaction, robot 
development, planning, and reasoning. For the task of 
navigation, the robot must know the map of 
environments and its position simultaneously. This 
technique is called SLAM – Simultaneous 
Localization and Mapping. 

The SLAM contains the simultaneous estimation 
of the state of a robot equipped with onboard sensors, 
and the generation of a model (the map) of the 
environment that the sensors are perceiving. In simple 
instances, the robot state is described by its pose 
(position and orientation), although other quantities 
may be included in the state, such as robot velocity, 
sensor biases, and calibration parameters. The map, on 
the other hand, is a representation of aspects of interest 
(e.g., position of landmarks, obstacles) describing the 
environment in which the robot operates [1]. 

The architecture of a SLAM system includes two 
main components as shown in Fig. 1 [2]: the front-end 
and the back-end. The front-end abstracts sensor data 
into models that are amenable for estimation, while the 
back-end performs inference on the abstracted data 
produced by the front-end to estimate the map. The 
data association module in the front-end includes a 
short-term data association block and a long-term one. 
Short-term data association is responsible for 
associating corresponding features in consecutive 
sensor measurements; On the other hand, long-term 
data association (or loop closure) is responsible for 
associating new measurements to older landmarks. We 
remark that the back-end usually feeds back 
information to the front-end, e.g. to support loop 
closure detection and validation. 

 
Fig. 1. Architecture of typical SLAM system [1]
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The SLAM has received noticeable progress over 
the last 30 years, enabling large-scale real-world 
applications. A steady transition of this technology to 
industry has been observed [1]. According to [1], the 
development of SLAM has overcome three ages. In the 
classical age (1986-2004), researchers focused on the 
main probabilistic formulations for SLAM, including 
approaches based on Extended Kalman Filters, Rao-
Blackwellised Particle Filters, and maximum 
likelihood estimation. Subsequently, the algorithmic-
analysis age (2004-2015) showed the study of basic 
properties of SLAM, including observability, 
convergence, and consistency. In this period, 
developments were based on the suppose that the 
front-end has been entrusted with establishing correct 
data association, and thus the back-end is the main 
focus. Many indoor SLAM applications with quite 
stable environments were solved with enough 
accuracy and robustness and thus the algorithmic-
analysis trend is considered to mature. 

Recently, the robot, environment, performance 
combinations procure much of fundamental research 
[1]. Current SLAM algorithms can be easily gone to 
fail when either the motion of the robot or the 
environment is too challenging, for example, fast robot 
dynamics, highly dynamic-changing environments. 
Also, SLAM algorithms are often unable to deal with 
strict performance requirements, for example, high 
rate estimation for fast closed-loop control. These lead 
us to enter the third era for SLAM, the robust-
perception age, which allows SLAM to be applied in 
highly-dynamic-changing environments with 
improved robustness as well as low computational 
requirements.  

It is inferred that a stable landmark detector is 
prerequisite for robust data association, especially in 
dynamic-changing environments. A reliable landmark 
detector based on object detection would be a 
promising approach. There have been several 
investigations dealing with the data association [1-5]. 
These works have tried to improve the sensor fusion 
model in order to receive a stable landmark detector. 
A vision-based method using artificial neural networks 
is also exploited. However, there is still a lack of a 
reliable and robust method. In this work, we propose a 
new approach to detect landmarks for the SLAM 
algorithm. Based on this method, we use and train a 
deep-learning-network-based model, called YOLOv3 
[6], for the image processing to detect objects in the 
images captured by cameras of a robot. These objects 
are considered as landmarks for the SLAM algorithm. 
Since the vision-based method and deep learning 
network, which are considered as the state-of-the-art 
approach, are used, a reliable and robust landmark 
detector would be obtained. 

2. Approach 

2.1 Landmark-based SLAM 

 
Fig. 2. Concept of landmark-based SLAM 

Figure 2 illustrates the basic concept of 
landmark-based SLAM where a mobile robot and 
landmarks of the environment are represented in a 
global reference frame. The goal of SLAM is to know 
the map of the environment and the robot’s position 
simultaneously. It is stated as follows: 

Given: 

• The robot’s control: { }1 2, , ku u u= …U . These 
parameters are converted from the odometry 
system of the robot through encoder and invert 
kinematic equations; 

• Relative observations: { }1 2, , kz z z= …Z . These 
are relative positions from robot to landmarks of 
environment which are measured/detected from 
positioning sensor systems, for example, laser, 
infrared, ultra-sonic or image-based sensors. In 
this work, we focus on the landmark detector 
using a stereo camera, in which we use deep 
learning models for image processing to detect 
and measure the position of landmarks. 

Wanted: an optimized-mathematic model to estimate 

• Map of landmarks: { }1 2, , nm m m= …m ; 

• Path/location of robot: { }1 2, , kx x x= …X . 

2.2. Data association 

The basic idea of our approach is illustrated in a 
flow diagram in Fig. 3. The flow is described as 
follows: 
• Step 1: from left images of stereo camera 

equipped with a robot, we run object detection 
model (re-trained YOLOv3) to detect interested 
objects and their bounding-box’s information 
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including the height, the width and the coordinates 
of bounding-box’s center; 

• Step 2: from the left and right images, we run a 
deep learning network called PSMNet [8] to 
calculate the disparity map, which is used to 
compute the depth map. 

• Step 3: from odometry information, intrinsic and 
extrinsic parameters of the stereo camera, 
information of detected objects, we calculate the 
relative position between detected objects and 
cameras/robot. Position of detected objects are 
computed; 

• Step 4: we perform tracking and filtering 
algorithms to determine whether the detected 
objects are the new landmarks and then associate 
them to the landmark database. 

Table 1. Parameters for re-training YOLOv3 

Parameters 1st train 2nd train 3rd train  

Batch size 64 64 64 
Subdivision 32 32 32 
Learning rate 0,001 0,001 0,001 
Optimizer Adam Adam Adam 
Filter 27 27 18 
Image size 416x416 1024x512 1024x512 
No. of image 2500 2500 2500 
Iteration 500k 300k 20k 
No. of class 4 4 1 

 

Fig.3. Flow diagram for data association for SLAM algorithm 

 

 

Fig. 4. Architecture of YOLOv3 with Darknet53 backbone [6] 
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2.3. Landmark detection  

You Only Look Once (YOLO) is a state-of-the-
art, real-time object detection model. It processes 
images at very high speed accompanied by a high rate 
of accuracy of 57,9% at IoU of 0,5 on COCO dataset. 
As showed in Fig. 4 YOLOv3 is developed basing on 
Darknet-53 neural network which consists of 53 
convolutional layers. In this work, we exploit a 
pretrained model of YOLOv3 [6] and perform fine-
tuning the model to obtain the best-fitted model. 
Toward applications for autonomous driving, we use 
the so-called Cityscapes dataset [7] for re-training the 
pre-trained model. The Cityscapes dataset is an open-
source dataset, containing 5000 annotated images with 
fine annotations captured by the stereo camera 
installed on a car with a high-accuracy GPS system.  
 

 
Fig. 5. Image of Cityscapes dataset with bounding 
boxes of interesting objects [7]  

The dataset has 30 classes of objects in traffic 
infrastructure and road. In this work, we consider only 
poles, traffic lights, traffic signs as landmarks for the 
SLAM algorithm. Therefore, we build a program to 
refine the dataset keeping only interesting objects. 
Fig.5 shows an example of images having interesting 
objects accompany with their bounding box. We re-
trained the model on a high-performance server with 4 
GPUs Pascal Titan X. The configuration of the training 
parameters is shown in Table 1. 

2.4. Landmark localization 

After detecting landmarks and their 
corresponding bounding boxes we compute the 
position of landmarks relative to the cameras/robot. 
We can compute the depth from cameras to landmarks 
using the stereo camera concept with OpenCV. 
However, the accuracy would be not good enough for 
practical applications. In this work, we use a deep 
neural network named PSMNet [8] to compute the 
disparity of left and right images of the stereo camera 
system. PSMNet is a pyramid stereo matching network 
consisting of two main modules including spatial 
pyramid pooling module and 3D as shown in Fig. 6.  
From the disparity, we calculate the depth as well as 
the position of landmarks as shown in Fig. 7. The 
position of the center of each landmark is computed 
according to Eq. (1), where: (  )l lx y  and ( ),r rx y  are 

the coordinates of landmark’s center; d  is the 
disparity between the left and the right images; f  is 

the focus of the camera; T  is the baseline of the stereo 
camera system. 

 
 

Fig. 6. Architecture of PSMNet model [8] 
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Fig. 7. Drawing of computation of landmark’s position 
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Fig. 8. Result of landmark detection with trained 
YOLOv3 
 

 

Fig. 9. Computation of pole positions as landmark 
using YOLOv3 and PSMNet 
 

 
3. Results and discussion 

We performed three trainings for YOLOv3 with 
parameters listed in Table 1. We choose four types of 
objects as landmarks including poles, traffic lights, 
traffic signs, buildings. With the first training, we have 
the Intersection over Union (IoU) only 50-60% at the 
iteration of 50k. The reason would be the size of 
inputted images is too small of 416x416 pixels leading 
to loss of information when scaling.  

In the second training, we increased the size of 
images to 1024x512 pixels and obtain much better 
results with IoU rate as high as 80-90% and a precision 
of 91-99%. As exemplarily shown in Fig. 8, the re-
trained model works qualitatively well where almost 
all poles, traffic lights, traffic signs, and buildings are 
detected with a high rate of IoU.  

For the third train, we considered only pole and 
configured the filter to 18. The result does not show a 

better result. Therefore, we use the result of the second 
training covering more types of objects. 

To validate PSMNet we use an open-source 
dataset named KITTI [9] for the comparison. The 
KITTI dataset has many images accompanied by laser-
based measurement, where the relative position from 
robot/laser-based sensors to objects in captured images 
is measured. The poles can be considered as landmarks 
for practical applications.  

Fig. 9 shows exemplarily the computation of pole 
positions using our proposed method. The results are 
then compared with laser-based data of KITTI dataset 
as shown in Table 2.  

It is seen that the discrepancy between the depth 
from our method and the depth from laser-based 
measurement is small. Especially, when the distance is 
smaller than 30m the PSMNet-based results match 
very well with the laser data. This can be explained 
that, with objects lying within the distance below                    
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30 m, the quality of the pixels is quite good to be 
inferred. Over this range the results cannot be 
believed; The error increases to 20%. With a distance 
further than 30m, the calculation is not exact anymore. 
In practice we have the tracking and filtering algorithm 
for landmarks, therefore we do not need to detect and 
localize landmarks which are very far from the robot. 
As a result, landmarks in the distance below 30m can 
be used. Thus, our method can be used efficiently in 
practice with a high rate of reliability and accuracy. 
Since we use the vision system, the ambiguity of the 
environment which usually happens with the laser 
system can be eliminated. 

Table 2. Validation of depth computed by our method 
and laser-based measurement data 

Laser-based 
measurement 

data (m) 

Depth computed 
by our method 

(m) 

Discrepancy 
(%) 

6,872 7,12 1,86% 

8,863 9,03 1,55% 

13,761 14,23 1,74% 

22,786 23,143 1,57% 

24,033 23,143 -3,70% 

30,293 27,98 -7,64% 

37,108 33,98 -8,43% 

43,748 38,163 -12,77% 

59,793 46,531 -22,18% 

71,019 56,224 -20,83% 

4. Conclusions 

In this paper, we have presented a new approach 
to detect and localize landmarks for the landmark-
based SLAM algorithm using deep neural networks for 
processing images. The YOLOv3 and PSMNet were 
trained and exploited for the issue of object detection 
and object localization. Our method shows 
qualitatively high quality both in the capacity of 
landmark detection and landmark localization where 
the average IoU and precision are as high as 80-90% 
and 91-99%, respectively. Our method can be used for 
a vision-based SLAM system, where landmarks in a 

distance of below 30m can be detected and localized at 
a very high rate of accuracy. The results of this work 
are good bases for further research in the future. This 
would be a hot research topic for the community of 
mobile robot scientists in the era of artificial 
intelligence with deep neural networks.  

In the future, we will continue improving our 
model and transfer the result to a real system toward 
the practical application of autonomous driving. 
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