
 
Journal of Science & Technology 144 (2020) 022-027 

 

22 

 
A Deep Learning Method for Diagnosing Coronary Artery Disease  

using SPECT Images of Heart 
 

Nguyen Thanh Trung1*, Nguyen Thai Ha2, Nguyen Duc Thuan2, Dang Hoang Minh3  
1.108 Military Central Hospital, No. 1, Tran Hung Dao, Hai Ba Trung, Ha Noi, Viet Nam 

2. Hanoi University of Science and Technology, No. 1, Dai Co Viet, Hai Ba Trung, Ha Noi, Viet Nam 
3Military Information Technology Institude, No. 17 Hoang Sam, Cau Giay, Ha Noi, Viet Nam 

Received: November 01, 2019; Accepted:  June 22, 2020  
 

Abstract 

Coronary artery disease (CAD) is one of the leading causes of death in the world, especially in the middle-
aged and old populations. CAD treatment costs are very high when patients are at a late stage, complicated 
pathologies. This study investigated the efficiency of the diagnoses of CAD by a deep learning model using 
polar maps and slice images derived from myocardial perfusion imaging (MPI) by single photon emission 
computed tomography (SPECT) cameras. Data for evaluation were collected at the Department of Nuclear 
Medicine, 108 Military Central Hospital. The experimental results showed that learning from MPI slice images 
provided a higher diagnosis accuracy than from polar map images. 
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1. Introduction* 

Coronary artery disease (CAD) is a modern-
world medical issue of interest because of its rising 
incidence and the leading cause of death and 
disablement. The medical fee for the treatment of CAD 
is high, especially when the patient is in the late stage 
or has complications [1]. The detection of CAD is 
based on myocardial perfusion imaging (MPI) by 
using SPECT camera. In the United States, there are 
about 7 million SPECT scanning sessions every year 
[2]. If the CAD is detected in the early stage, the 
patient can be effectively cured and has a high chance 
of survival. However, the accuracy of the doctor’s 
decision depends on many factors, including image 
quality and the doctor’s expertise. Applying machine 
learning for CAD diagnosis is one of the solutions that 
help to improve the accuracy of the detection. 

Machine learning for medical diagnosis has been 
approached for a long time [3]. Currently, deep 
learning (DL) which is a broader family of machine 
learning provides many impressive results for the 
medical diagnosis problem [4-6]. CAD diagnosis 
using DL based polar map on stress MPI with total 
perfusion deficit was introduced in [7]. In the existing 
work, the DL model is constructed of convolutional 
neural networks (CNN) layers and three fully 
connected (FC) layers. The output of the DL model is 
the weight (ranging 0-1), in which a patient is decided 
to have CAD if the output weight is greater than 0.7 
and not have CAD if the weight is 0.7 or smaller.  The 
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DL model was trained on a dataset of 1,638 polar 
images (1,018 images of CAD and 620 images of non-
CAD). The precision of the DL model is 82.3%. 

Polar images are synthesized from slice images 
by an algorithm which is based on the standardized 
myocardial segmentation and nomenclature for 
tomographic imaging of the heart [8,9]. This is 
suggested by the American Society of Nuclear 
Cardiology (ASNC). There may have some disease 
features that are missed in the synthetic procedure. In 
this study, we consider using the SPECT images for 
dignosing CAD because the polar map is derived from 
these images and may not maintain as many features 
as the original images. We also introduce a deep 
learning model to diagnose the CAD from SPECT 
images. 

2. Dataset and diagnosis model 

2.1 Dataset 

Zeiler and Fergus demonstrate that a CNN layer 
can learn the features, such as color and edge, which 
form the object in the input image [10]. Therefore, we 
used CNN layers to learn the characteristic medical 
signs of disease in SPECT images. However, to obtain 
the best benefit of the CNN layer, a large dataset is 
necessary.  

2.1.1. Spect dataset 

The dataset was collected at the Department of 
Nuclear Medicine, 108 Military Central Hospital. It 
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includes 1413 heart SPECT images which were 
scanned from 2015 to 2018. SPECT images were 
labeled as CAD and non-CAD by many experts. The 
detail of the dataset is shown in Table 1. The dataset 
was approved by the ethics committee of the 
Department of Nuclear Medicine, 108 Military Central 
Hospital, and it has been used as a reference dataset for 
the CAD diagnosis. 

Table 1: SPECT dataset. 
 CAD Non-CAD 

Male 638 477 
Female 134 164 
Total 772 641 

In this study, we used polar map on stress MPI 
and slice MPI to detect the CAD. The other patient’s 
information, such as age, the number of injured 
coronary artery branches, the test result before MPI 
scanning, is not of our interest. 

 

 

2.1.2. Data acquisition 

 Data were collected from rest and stress MPI 
sessions which are based on the Bruce protocol about 
imaging guidelines for nuclear cardiology of the 
ASNC. Before scanning 60 minutes, the patient was 
injected with 0,31mCi/kg of radioactive tracer Tc99m-

_MIBI for each rest and stress phases. For patients who 
cannot exercise, Diyridamole was used with 
0,56mg/kg/ 4 minutes after heart frequency getting 
85% of theory [11,12]. Fig.1 shows the procedure of 
the two-phase MPI. 

The SPECT cameras are Optima 640, Infinia and 
Ventri, from GE Healthcare. The imaging procedure 
and parameters are set as default as GE’s guidelines. 
The image quality is verified by doctors with using of 
specified softwares, such as QGS/QPS, in the Xeleris 
servers. 

Slice images were reconstructed by the iterative 
optimization algorithm from SPECT cameras. Noise 
can be removed by imaging when the patient was 
prone or by the attenuation correction. 

 

 
Fig. 1. Procedure of the two-phase myocardial perfusion imaging. 

       
Fig. 2. An example of slice images (left) and polar images (right). The left picture contains 8 rows of images, 
grouped as 4 pairs of stress (above) and rest (below) phases. From top-to-bottom, pairs are images of two short 
axes, a vertical long axis, and a horizontal long axis. The right images are polar images which are derived from 
slice images.  

Rest phase 

Stress phase 
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2.1.3. Image preprocessing 

The image processing scheme is shown in Fig.3. 
First, the boundaries around the left ventricular 
myocardium are provided by the Myovation Evolution 
tool in Xeleris software, supported by GE Healthcare 
[13]. The boundaries are adjusted and verified by 
technicans with more than 15 years of experiences. 
Doctors double-check the region of interest, i.e. left 
ventricle and valve plane position if necessary. After 
that, we obtain the slice and polar images. 

In a heart SPECT session, we obtain slice images 
and polar images (see Fig.2). The polar images are 
derived from slice images by using the standardized 
myocardial segmentation and nomenclature for 
tomographic imaging [8,9]. Images were acquired both 
in rest and stress phases. These images, which 
represent the anatomical information of the patient’s 
heart, are then used to diagnose the CAD. 

2.1.4. Image normalization 

The original size of polar and slice images is 
1920 × 1080 × 3 (3 indicates three color channels). 
Images were cropped by a fixed margin to remove 
unnecessary information and to reduce the 

computation. Cropped size is 1080 × 1640 × 3 for slice 
images and 314 × 314 × 3 for polar map image (see 
Fig.4).  

2.1.5. Data labeling 

SPECT images of each patient were labled as 
CAD or non-CAD. This was done by experts and 
verified by many-year experient doctors. In case of 
CAD, doctors specify the injured location in the 
myocardial area that corresponds to the control area of 
arteries, such as right coronary artery (RCA), left 
circumflex (LCX), left anterior descending (LAD). 
Each control area of arteries is divided into territories 
(see Fig.5). 

The doctor specifies the injured coronary artery 
territories and its control area (as shown in Table 2). 
This is the key point for CAD labeling. For example, 
if the result is “There is a small defect in the 
lateroanterial wall due to ischemia in the perfusion 
area of LCx”, the patient is labeled CAD. If the result 
is “The result is properly normal”, the patient is labeled 
non-CAD. We developed a software for labeling the 
CAD (see Fig.6). 

 

 

 
Fig. 3. The image processing scheme of SPECT 
images. 

 
Fig. 4. Cropped slice (A) and polar (B) images of             
Fig. 2. 
 

 
Fig. 5. A slice view of coronary atery territories as 
suggested by the American Heart Association. 

  
Fig. 6. The software used for labeling CAD/non-CAD 
patients. 
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Table 2. 17 coronary artery territories used in CAD diagnosis results. 

LAD RCA LCX 
1. Basal anterior 3. Basal inferoseptal 5. Basal inferolateral 
2. Basal anteroseptal 4. Basal inferior 6.Basal anterolateral 
7. Mid anterior 9. Mid inferoseptal 11.Mid inferolateral 
8. Mid anteroseptal 10. Mid inferior 12. Mid anterolateral 
13. Apical anterior 15. Apical inferior 16. Apical lateral 
14. Apical septal   
17. Apex   

2.2. Diagnosis model  

We develop our deep learning network based on 
the VGG network, which consists of 16 convolutional 
(CNN) layers and it is very appealing because of its 
very uniform architecture [14]. Our network includes 
8 CNN layers, filter size of 3×3. Each CNN layer is 
followed by a BatchNormalization layer for 
normalizing data, then a Rectified Linear Unit (ReLU) 
activation function and a MaxPooling layer with stride 
2. These CNN layers are used for extracting main 
features of input images. The output of CNN layers is 
passed through a GlobalAverage Pool to generate the 
feature vector. The fully connected (FC) layer with the 
softmax function is added to the end of the network. 
The last FC layer consists of 2 units (representing the 
CAD and non-CAD classes). Overview of our network 
is shown in Fig. 7. 

 The output of our proposed network is a 2-
element vector y = [pCAD, pnon-CAD], in which each 
element represents the probability of classes: pCAD 

indicates the probability of CAD, pnon-CAD indicates the 
probability of non-CAD, where pCAD + pnon-CAD = 1. 
The output label of the network is assigned to the class 
with higher probability.  

In our method, the slice MPI image is fed into the 
network for diagnosing the CAD. We also prove the 
efficiency of using the MPI image in CAD diagnosic 
compared to the polar map images. This is done by 
feeding the polar map image into the same network 
architecture. We access the precision of our model by 
using k-fold cross validation, with k = 5. More precise, 
our dataset is separated randomly into 5 equal subsets. 
Each subset consists of 282 (the last one has 285) 
images with average 154 (±7) CAD and 128 (±8) non-
CAD. Four subsets were used for training and the other 
subset was used for testing. We repeated the training 
and testing procedure, each with different testing 
subset (see Fig. 8). The precision of the tested subset 
in each procedure was computed and recorded. The 
precision is the mean of the 5 recorded values. 

  

 
Fig. 7. Our deep learning network architecture used for diagnosing CAD. 
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Fig. 8. An illustration of 5-fold cross validation. Fig. 10. Mean precision of two models using slice MPI 

images and polar map images. 

 

 
Fig. 9. Precision of two models using slice MPI 
images and polar map images on each subset 

Fig. 11. ROC of the trained model using slice MPI and 
polar map images. 

 

Our network model was built in Python with 
Keras API.  The network was trained on a computer 
with configuration CPU IntelI CoreI i3-6100 @ 
3.70GHz; RAM: 8Gb; GPU: Nvidia GeForce GTX 
1060 3GB. 

The training time of the network with four 
subsets is about 1 hour and 13 minutes. The time for 
recoginizing an image is about 50 milli seconds. 

3.  Experimental results and discussion 

Experimental results indicate that deep learning 
model trainning with slice MPI produces higher 
diagnosis accuracy on all subset than using polar map 
(Figure 9). Figure 10 shows the mean precision of our 
proposed deep learning network using slice MPI 
images (86.14% ± 2.14%) and polar map images 
(82.57% ± 2.33%). 

In additions, we also analyze the receiver 
operating characteristic (ROC) that illustrates the 
diagnostic ability. Fig.11 shows the ROC of the trained 
model using slice MPI and polar map images. The 

ROC curve of the model using slice MPI images is 
higher than that of model using polar map images. This 
indicates that model using slice MPI images has a 
higher diagnostic ability than model using polar map 
images. 

4. Conclusion 

This paper introduced a deep learning method for 
diagnosing the CAD using the slice images acquired 
from the SPECT camera. The performance of our 
method is better than the existing method. 

With the same deep network, learning from slice 
images provides a higher accuracy of detecting CAD 
than from polar images. This is reasonable since polar 
images are synthesized from slices images and the 
synthesization probably does not maintain all the 
features of slice images. The experimental results 
suggest that slice images are helpful and should be 
used in diagnosing the CAD. 

This study shows the potentiality of using SPECT 
slice images in diagnosing CAD by deep learning 
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methods. However, there is still space for improving 
the accuracy of detecting CAD. Our future work is to 
improve the performance of the CAD detection, such 
as polishing the image processing procedure since the 
input of the network in our experiment is not refined; 
and adding more information of patient, e.g. TPD 
parameters, age, gender, and past medical history. 
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