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Abstract

This paper presents a numerical simulation of hydrodynamic journal bearing lubrication by using finite
element method to solve Reynolds equation in static load condition. Reynolds boundary condition is applied
in this research in order to yield oil film pressure distribution at a given oil supply hole position. When the
pressure distribution is obtained, the equilibrium position of the housing bearing can be determined by using
Newton- Raphson method applied on the equilibrium equation of the charge. The equilibrium positions are
simulated in different parameters of the journal speed and the applied load. The results show that at the
different sections of bearing, the starting disruption positions are different and the middle section along the
axial direction shows the maximum pressure and gradually decreases toward two ends of bearing. On the
other hand, the more loads applied, the distance from the calculated equilibrium position to the journal
center gets farther. The faster journal rotation speed makes the balance point closer to the journal center.

Keywords: Hydrodynamic journal bearing, Cavitation, Equilibrium position, Reynold boundary condition,
Static load.

Tém tat

Bai béo nay duwa ra m6 phong s6 cho béi tron 6 d& thdy dong bang cach sir dung phurong phap phén t& hitu
han dé giai phuong trinh Reynolds & ché dé tai tinh. Ap dung diéu kién bién Reynolds dé gidi ra phan bé &p
suét mang dau. Sau d6 xéac dinh vi tri cdn béng ctua bac bang cach giai phwong trinh cén bang tai st dung
thuét giai Newton- Raphson Vj tri can bang duwoc mé phéng & cac gia tri khac nhau vé tbc do quay cla truc
va tai tac dung. Két qua cho thay 0’ céc mét cét khac nhau cta 6 theo phuwong doc truc, vi tri bat dau gian
doan 1a khac nhau, méat cét gitka & dat gia trj 4p suét I6n nhét va gidm dén vé hai phia cta 6 theo phuong
doc truc. Khi tai cang I6n vj tri tdm bac cang cach xa tam truc. Téc dé quay cla truc cang Ion thi vi tri can
béng cang gén véi tam truc.

T khoa: O d& thly dong, Gian doan mang dau, Vi tri can bang, Diéu kién bién Reynolds, Tai trong tinh.

1. Introduction

Widely used in rotary machineries, hydro-
dynamic journal bearings allow for the large load
operation at the average rate of rotation.
Hydrodynamic  journal  bearing based on
hydrodynamic lubrication, which can be described as
the load-carrying surfaces of the bearing are
absolutely separated by a thin film of lubricant in
order to prevent metal-to-metal contact.

The equation governing the pressure generated
in the lubricant film was first derived by Reynolds
[1]. In 1962, Dowson [2] generalized the Reynolds
equation considering the variation of fluid properties
both across and along the fluid film thickness. In
1930s, Swift [3] va Stieber [4] presented the Swift—
Stieber boundary condition (so-call Reynolds
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boundary) to study the pressure distribution at steady-
state. Hence the Reynolds equation solves using
numerical technique [5] with help of computer
program. In 1989, Chen and Chen [6] studied the
steady-state  characteristics of finite bearings
including inertia effect using the Reynolds expansion
formulation of Banerjee et al [7]. In 1991, Pai and
Majumdar [8] analyzed the stability characteristics of
submerged plain journal bearings under a
unidirectional constant load and variable rotating
load. In 1999, Raghunandana and Majumdar [9]
analyzed the effects of non-Newtonian lubricant on
the stability of oil film journal bearings under a
unidirectional constant load. In 2000, Kakoty and
Majumdar [10] analyzed the stability of journal
bearings under the effects of fluid Inertia, the next
year, Jack and Stephen [11] reviewed the theory of
finite element applied on elasto-hydrodynamic
lubrication. In 2016, Biswas, Chakraborti and Saha
[12] performed the experiments to study the stability
of three lobe journal bearing.
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This research tends to study the stability of the
hydrodynamic journal bearing, takes account of
cavitation presented by Reynold boundary condition.
Finite element method (FEM) were used for
modeling finite journal bearing combined with
Newton-Raphson iteration to  calculate the
equilibrium position of the static loaded bearing.

2. Analytical method and algorithm
2.1. Reynold equation and Cavitation modeling

The Reynold differential equation [2] was
written as, assuming the fluid is incompressible and
in a steady state condition:

L) = b (M
a a - a a-
L0 =5 (W 53) + % (W 3) o
b=6uUs

where p is pressure distribution vector, % is the film
thickness, U is the journal speed, x is the dynamic
viscosity.

Cavitation is taken into account when solving
Equation (1) (Eq. 1) within Reynolds boundary
condition. In the expansion of the oil film included
the active zone and the cavitation zone showed in
Fig.1:

- The active zone Q*: p > 0, the surface of shaft
and housing bearing is absolutely separated by
the lubrication oil film.

- The cavitation zone Q°: p = 0, where interlace
with vapor bubbles.
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Fig. 1. The expansion of oil film in journal bearing.
The film thickness is described as:

h=C(1+¢&.cos 0+ ¢,sin 0) 3)

X . . .
where 6 = = C is the radial clearance. &y, &, is the

dimensionless equilibrium position.
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Fig. 2. Geometry of the journal bearing.
Within a Sobolev space Hi(Q*) and
K={peH}Q");p=0inQ*} is a subset of the

Sobolev space; in H3(Q%) x H(Q%) by using a
symmetric and bilinear form as:

a() = [[= (h3 3}) +— (h3 :—Z) dxdz &
And a linear function in H} (Q*):
b() = [[ b()dXdZ (5)

Above equation can be express as an inequality
which is to find a function p € K and p = 0 satisfied:

a(p,q) = b(q) (6)

By using finite element method, p and ¢ can be
expressed as:

p=XipiN;=p.N
q=2%19iN;=§.N

where n is the total number of mesh points, N is the
global polynomials function vector.

Substitute (7) into (6) yields: find p = 0 that
(®)

where A = [a; j] is the “stiffness matrix” and b = [b;]
is the “load vector”. Here so a;; and b; can be taken
by substituting N; and N; into Eq. (4) and Eq. (5):

(€))

The discrete inequality is equivalent to the
linear equations: find p, § = 0 such that:

{Afi—qu
a'p=0

(7

vg =0, §TAp = §"b

a;; = a(N;, N;); b; = b(N;)

(10)

For all mesh points I, = {1,2,...,n} =1, U I,
where:
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{ViEla,piZOUélqi=0 (11

Viel,p;=0vaq; =0

I, is the number of mesh points in active zone,
I, is the number of mesh points in cavitation zone
and the boundary zone including the oil supply
elements. Eq. (10) can be rewritten as:

Aaa Aab] ﬁa Ea {0}
-1 =1 12
Apa  App {0} by dp (12)
Eq. (12) can be rewritten as:
Ap=b
{~ P (13)
g=Ap—->b
where
P DR A 01 = _ (2 b
a=la) =g 5=01={5) 09
a;, b;is determined as follow
dij=aijifi,j€ly; by=biifi€l,
dl-j=1; Bl‘=0i lfle Ib (15)
Ay =0if i€ Iy,jEl,if i€ IjEI
2.2. Oil film force and equilibrium equation
Once pressure distribution vector p is
determined, oil film force can be evaluated as:
f, — [ pcosdxdz
fx, y)—{"}— o (16)
fy — [f, psinfdxdz

Substitute the expression of p (7) to above
Eq.(16):

floy) = {}c"} = {:

Let the two constant vectors:

p [f, Ncosbdxdz
p Jf, Nsinfdxdz

S = [f,Ncos@dxdz R = [ Nsinfdxdz (18)
Then Eq. (17) becomes:
F,=-S'% F,=-R% (19)

The Jacobian matrix of the oil film force related
to the equilibrium position

OFx(xy) 0Fx(xy)
_ ox ady
]u[f(x:y)] - aFy(x,y) 6Fy(x,y) (20)
ox ady
Substitute Eq. (19) into Eq. (20) gives:
St s SPx  S'Dy
Julf Gyl = = {0} P Byl = —[Rtﬁx oy ] 1)
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. . 0P
where p,, = ,py p

The first of Eq. (13) can be rewritten as:

A(x,y).p = b(x,y)

Taking partial differentiation of above Eq. (22)
with respected to x, y yield:

(22)

A [px' py] [ x D + bx: - y p + by] (23)
A 0A & A & ab 1 ab
where A4, = x’AY =~ by =E’b3’ =5
The stiffness components 4, = [dij‘x] , A
[ay5].
b, = [bix), By = [Bi,y] is determined as:
A da;j Lo
aiij—](kZX}/)lfl] €l,
by = ab‘ (k=x,y)ifi €1, (24)

Eil:]',k = 0 (k - x:}’); bi,k - O(k - x:y) else

Substitute (9) into (4) and (5) then taking partial
derivatives with respect to x and y yields:

24 = [f,3h%cos 8 [ (n3 ) + 2 (n3 )] dxdz
"“” = [J,3h%sin 0 [ (h*22) + Z (n3 2)] dxdz

B, = [[,NsindXdZ B, = [ Ncos6dXdz

(25)

(26)

Thus, when those components (25) (26) was
calculated and p is obtained from (13), Eq. (22) can
be readily solved by using Newton-Raphson iterative
method. The load is put on housing and can be

denoted as w = [Wx, Wy]t and the dimensionless

equilibrium position is supposed to be u, = [£2, sf)]t,
and the oil film force f(x,y) = f(C.u).

The equilibrium equation is as follow:

F(C.ugy) - w=0 27

In order to solve the nonlinear equation,
Newton- Raphson method is commonly used due to
its rapidly convergence and highly accurate
approximation. So, the difficulty left is to determine
the Jacobian matrix which is described at Eq. (21).
Let u° be the initial value of the equilibrium position,
u® be the value of iterative step k. Thus, the iterative
process is given by:

ut =k =, (f(C.u). [F(C.u) —w] - (28)
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2
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[l () — w

= err
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Obtain journal equilibrium position u*,
and pressure distribution p*

END

Fig. 3. Algorithm diagram

This iteration process ends when the following
error bound condition err is satisfied:

lr )-w]|
wi

“

<err & <err

In this paper, err = 107> is applied, the closer
value of err to zero gives the more accurate results
but causes more iterative steps

The Fig.3 fully describes the programing
algorithm for the numerical simulation.
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3.Simulation results

The bearing expansion surface is divided into 4-
node quadrilateral element mesh. The program was
built on the MATLAB 2015a and applied to the
specific bearing described in Table-1. The oil supply
hole is at showed in Fig. 2 and at the center section of
the bearing along axial direction.

Fig.4 illustrates the pressure distribution of the
bearing at w = [Wx, Wy]t = [140,0] N and 300 rpm
of journal speed. The pressure distribution contains
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two regions: the active and the cavitation area. The
former has the pressure change in both axial and
circumference directions, otherwise, the pressure
remains constant in the latter area. The cavitation area
starts from about 80° to 238.5° in circumference
direction. Pressure distribution is symmetric and
decreases more and more along the middle section
toward two ends of the bearing.
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Pressure - P{Pa)

Fig. 4. Pressure distribution of journal bearing
w = [W,,W,]" = [140,0] N and 300 rpm of journal
speed
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Fig. 5. Pressure distribution and film thickness
different sections along the axial direction.

of

Table 1. The parameter of journal bearing

Bearing specification Value Unit
Journal diameter (D) 70 mm
Bearing length (L) 50 mm
Axial clearance (C) 0.05 mm
Lubricant viscosity (u) 0.015 Pa.s
Oil supply hole diameter (Ds) 5 mm
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Fig.5 illustrates the pressure distribution and the
film thickness of the different sections at the
circumference direction. In different sections of the
bearing, the starting and the ending position of the
cavitation is slightly different, the lowest cavitation
range occurs at the middle section z=L/2 (from 99° to
225°) and increases toward two ends of the bearing
z=0 (from 80° to 238.5°). The high pressure zone
occurs where the film thickness is about to decrease
and the max pressure position is close to the
minimum oil film thickness. Thus, the film thickness
is compatible with the oil pressure in load-bearing
area.

So as to study the stability of the journal bearing
at different parameters, by sequentially modifying the
applied load and the journal speed, the change of
equilibrium position is showed in Fig. 6 and Fig. 7.
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Fig. 6. Dimensionless equilibrium position at 300
rpm of journal speed respect to applied loads and
Sommerfeld numbers

Fig.6a shows that the more loads applied, the
distance from the equilibrium of housing bearing
position to the journal center (0,0) gets farther.
However, for each 30 N of the load increase, the
distance between the next balance point and the
previous point tends to decrease. It is reasonable
since these oil film forces are nonlinear function of
the housing bearing center [13].

As another expression with respecting to
2
s=%2(%)" in Figeb,

w \c
similarly, the values of €, and ¢, decrease when the

Sommerfeld number increases. At the lowest
Sommerfeld number, &, is about two times larger

than ¢,. Otherwise at the highest one, ¢, is very close

Sommerfeld number
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to zero, which means within the increase of the
Sommerfeld number values, as the decrease of load,
the equilibrium position moves closer to the y-axis.
Because the static load in this research is respect to x
direction, when the load decreases the equilibrium
position changes along x axis more than y axis.

Y - dimensionless (Ey)
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600 rpm

X - dimensionless (e )
= o o =
(=] (=3 (=3 o
o S w N

=
o
@

300 rpm

0.07

Fig. 7. Dimensionless equilibrium position with
different speeds of journal at 140 N of applied load

Fig.7 shows that the rise of the journal speed
causes the equilibrium point changes significantly,
get closer and closer to the journal center. This leads
to the descending of the maximum film thickness and
the ascending of the minimum film thickness which
usually causes the load-bearing zone to spread. Thus,
the higher speed gives the better effects of the
hydrodynamic lubrication, however, in reality the
speed depends on the specific demands of the
machine.

4. Conclusion

This research numerically simulates the
equilibrium position of the journal bearing by using
finite element method to solve Reynold equation in
static load condition. Cavitation is taken into account
which is related to the specification of Reynold
boundary condition.

As the result, at the different sections of
bearing, the starting disruption positions are different,
the middle section along the axial direction shows the
maximum pressure and gradually decreases toward
two ends of bearing. On the other hand, the more
loads applied, the distance from the calculated
equilibrium position to the journal center gets farther.
Within the increase of the Sommerfeld number
values, the equilibrium position moves closer to the
y-axis.
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When journal rotation speed increases, the
balance point gets closer to the journal center.

The result of this research is the foundation for
the dynamic loaded bearing studies.
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