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Abtract 

In this paper, the problem of synchronization of two uncoupled chaotic Hindmarsh-Rose (HR) neurons is 
addressed. First, the dynamic behaviors of a single HR neuron stimulated by an external applied current are 
studied. By using the concept of fast/slow dynamic analysis, the bursting mechanism of the HR neuron is 
investigated. Considering the applied current as a bifurcation parameter, the chaotic behavior as well as 
other dynamic behaviors is reported. Second, the author formulated a method for synchronization of two 
uncoupled chaotic HR neurons. By using a Lyapunov function, a nonlinear feedback control law is designed 
that guarantees that the two uncoupled neurons are globally asymptotically synchronized. Finally, in order to 
verify the effectiveness of the proposed method, numerical simulations are carried out, the results of which 
are provided herein. 
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I. Introduction 

Neurons*are the basic building blocks of the 
nervous system. In order to understand the dynamic 
behaviors of individual neurons and further 
comprehend the biological information processing of 
neural networks, a variety of mathematical neuronal 
models have been proposed [1-4]. Among them, the 
Hodgkin-Huxley model [1] is the most important one. 
This model gives an explanation on the ionic 
mechanisms underlying the initiation and propagation 
of action potentials in the squid giant axon. A main 
conceptual drawback of the Hodgkin-Huxley model 
is that its numerical complexity (e.g., solve a large 
number of nonlinear differential equations). In 
addition, some important dynamic behaviors that are 
observed in real biological neurons such as bursting, 
chaos, etc. cannot be described by using the original 
Hodgkin-Huxley equations. The HR model [4], a 
simplification of the Hodgkin-Huxley model, can 
provide very realistic descriptions on a number of 
biological features such as rapid firing, bursting, and 
chaos. Therefore, the HR model is getting more 
attention in the study of many features of brain 
activity. Individual neurons can exhibit chaotic 
behavior, whereas ensembles of different neurons 
might synchronize in order to process biological 
information or to produce regular, rhythmical activity 
[5]. Therefore, the study of synchronization processes 
for populations of interacting neurons is basic to the 
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understanding of some key issues in neuroscience. 
Recently, many researchers have focused on the 
synchronization of two chaotic neurons, which is one 
of the fundamental issues in understanding the 
neuronal behaviors in networks. The two neurons 
synchronization can be classified into two groups, 
namely, self-synchronization and controlled 
synchronization. The self-synchronization can be 
achieved when the intensity of an external noise 
exceeds a critical value [6, 7]. Other results have also 
shown that self-synchronization occurs when the 
coupling coefficient is strong enough [8, 9]. 
Alternatively, in the case that the conditions for self-
synchronization do not satisfy, various modern 
control methods have been proposed to synchronize 
two coupled chaotic neurons [9-15]. In [10], two 
different adaptive control laws were proposed to 
synchronize two coupled chaotic HR neurons under 
the assumption that the structure of two neuron with 
unknown parameters is identical. A sufficient 
condition for self-synchronization of two coupled 
chaotic HR neurons that related to the coupling 
coefficient was clearly shown in [11]. In addition, 
another nonlinear control law was proposed to 
achieve the synchronization of two coupled chaotic 
neurons [11]. 

In the present study, we first investigate the 
dynamic behaviors of a single HR neuron under 
external electrical stimulation. Then the 
synchronization of two uncoupled HR neurons is 
studied. By using a Lyapunov function, a nonlinear 
feedback control law is proposed to guarantee that 
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two neurons are globally asymptotically 
synchronized. 

The layout of this paper is organized as follows: 
Section 2 describes the dynamics of a single HR 
neuron. In Section 3, the synchronization problem is 
studied. The details of the design of the nonlinear 
feedback control law for synchronization of two 
uncoupled chaotic HR neurons are provided. Finally, 
conclusions are drawn in Section 4. 

2. Dynamics of a single HR neuron 

2.1 Model description 

The HR neuron model [4], a modification of the 
Hodgkin-Huxley model, is a genetic model of the 
membrane potential which enables to simulate 
spiking, bursting and chaos phenomena in real 
biological neurons. This model is described as 
follows: 

  3 2x y ax bx z I= − + − + , (1) 

  2y c dx y= − − , (2) 

  ( ){ }ez s x x zε= − − , (3) 

where x, y, and z represent the membrane potential, 
the recovery variable associated with the fast current 
of Na+ or K+ ions, and the adaptation current 
associated with the slow current of, for instance Ca+ 
ions, respectively. I is the applied current that mimics 
the membrane input current in biological neurons, 
and a, b, c, d, ε, s, and xe are the constant parameters. 
These parameters are set as: a = 1.0, b = 3.0, c = 1.0, 
d =5.0, ε = 0.006, s = 4.0, and xe = -1.56. By varying 
the amplitude of the applied current I, various firing 
patterns such as tonic spiking, regular bursting, 
chaotic bursting, etc. can be observed. 

2.2 Bursting mechanism 

To understand the bursting mechanism of the 
HR neuron, the fast/slow dynamic analysis method 
[16] is used. The idea of this method is to divide the 
neuronal system into two subsystems according to the 
different of time scales, in which the fast subsystem is 
responsible for the generation of spikes while the 
slow subsystem contributes to the variation of burst 
duration. For the HR neuron model, the membrane 
potential x and the recovery variable y are considered 
as fast variables, while the adaptation slow current z 
is considered as a slow variable. 

 
3 2

2

x y ax bx z I
y c dx y

= − + − + 


= − − 





 Fast subsystem (4) 

 ( ){ }ez s x x zε= − −        Slow subsystem (5) 

Consider the fast subsystem (Eq. (4)) by setting ε = 0 
and considering z as a bifurcation parameter. The 
bifurcation diagram of the membrane potential x 
versus the slow variable z is depicted in Fig.1. Here, 
the thick solid curve presents stable equilibria while 
the dotted curve presents the unstable ones. The 
maxima and minima of the stable limit cycle is 
indicated by the thin curve. 

When z is small, the fast subsystem has a unique 
stable equilibrium corresponding to the resting state. 
As z is increased, the equilibrium loses its stability 
via a supercritical Hopf bifurcation and the fast 
subsystem oscillates periodically. In order to generate 
bursts, the fast subsystem must exhibit bistability for 
a certain range of the slow variable z. As indicated in 
Fig.1, in the bistable regime the fast subsystem 
exhibits two steady states: the lower steady state 
corresponds to the resting state and the upper one 
corresponds to a periodic spiking. The transition from 
the resting state to the periodic spiking is caused by a 
saddle-node bifurcation (the stable node and the 
saddle point of Eq. (4) approach each other as z is 
decreased). In contrast, the transition from the 
periodic spiking to the resting state is caused by a 
homoclinic bifurcation (the limit cycle becomes a 
homoclinic orbit to the saddle point as z changes). 

Now consider the slow subsystem in Eq. (5). It 
is noted that the direction of change of the slow 
variable z plays a crucial role in the generation of 
burst.  

Fig.2 shows the magnification of the bistable 
regime in Fig.1 with the z-nullcline of the slow 
subsystem ( 0z = ), along with the phase portrait of 
the bursting oscillation. 
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Fig. 1. Bifurcation diagram of the fast subsystem 
described in Eq. (4). 

The bursting mechanism is explained as follows. 
When x is in the lower steady state, it can be seen 
from Fig.2 that z  is negative, therefore z is depleted 
slowly. As z approaches the z-nullcline in the left 
hand side, z  changes its sign become positive and x 
is transited to the upper state via a saddle-node 
bifurcation. Then the fast subsystem will generate a 
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periodic spiking. While x is in the upper state, z is 
increased slowly until it approaches the z-nullcline in 
the right hand side, therefore z  becomes negative 
which results in the transition of x from the periodic 
spiking to the resting state via a homoclinic 
bifurcation. Following the classification proposed in 
[17], this type of bursting mechanism is called as a 
fold/homoclinic bursting. The corresponding time 
courses of x and z are shown in Fig.3. 
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Fig. 2. Fold/homoclinic bursting mechanism in the 
HR neuron model. 

 

 
Fig. 3. Time responses (x – membrane potential, z – 
recovery variable) of bursting behavior in the HR 
neuron model. 

2.3 Bifurcation diagram 

In order to convey more information about 
dynamic behaviors of a single HR neuron under 
varying amplitude of the applied current, we 
investigate the bifurcation of the interspike intervals 
(ISIs) as a function of the applied current I, as shown 
in Fig.4. Fig.4 reveals that for small values of the 
applied current I < 1.15, the neuron is in the quiescent 
state. When the applied current is increased beyond I 
= 1.15, the period-one firing patterns appear and this 
behavior is maintained for the current up to I ≈ 1.41. 
The period-two, -three, and -four firing patterns can 
be found in the regions 1.41 ≤ I < 1.98, 1.98 ≤ I < 
2.49, and 2.49 ≤ I < 2.75, respectively. It is obvious 
from Fig.4 that the HR neuron exhibits chaotic 
bursting for the values of the applied current in the 

region 2.75 ≤ I < 3.25. After that, the HR neuron 
exhibits again the period-two and -one firing patterns 
with 3.25 ≤ I < 3.32 and I ≥ 3.32, respectively. The 
time course of the membrane potential that shows the 
chaotic behavior of the HR neuron for I = 3.1 is 
illustrated in Fig.5. 

 
Fig. 4. Bifurcation diagram of interspike intervals vs. 
the applied current of a single HR neuron model. 

 
(a) 

 
(b) 

Fig. 5. Chaotic behavior of the HR neuron model: (a) 
membrane potential, (b) x-y-z phase portrait. 

3. Synchronization of two uncoupled chaotic HR 
neuron 

Based on Eqs. (1)-(3), the two uncoupled HR 
neurons can be described as a master-slave system as 
follows. 

  

( ){ }

3 2
1 1 1 1 1

2
1 1 1

1 1 1

,
,

,e

x y ax bx z I
y c dx y

z s x x zε

 = − + − +
 = − −
 = − −







 (6) 
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( ){ }

3 2
2 2 2 2 2

2
2 2 2

2 2 2

( ),
,

,e

x y ax bx z I u t
y c dx y

z s x x zε

 = − + − + +
 = − −
 = − −







 (7) 

where xi, yi, zi (i = 1, 2) are the state variables and u(t) 
is the control signal. Let e1 = x2 – x1, e2 = y2 – y1, and 
e3 = z2 – z1 be the error signals between the states of 
the system described in Eqs. (6)-(7). 

Definition: The two HR neurons described in Eqs. 
(6)-(7) are said to be globally asymptotically 
synchronized if, for all initial conditions (x1(0), y1(0), 
z1(0), x2(0), y2(0), z2(0)), lim ( ) 0it

e t
→∞

=  (i = 1, 2, 3). 

From Eqs. (6)-(7), the error dynamics can be obtained 
as follows. 

{ }2 2
1 1 2 1 1 2 2 1 2 3( ) ( )e b x x a x x x x e e e u= + − + + + − + , (8) 

2 2 1 1 2( )e d x x e e= − + − , (9) 

( )3 1 3e se eε= − . (10) 

Let define the state-dependent terms in Eq. (8) and 
Eq. (9) as follows: 

 2 2
1 1 2 1 1 2 1 1 2 2( , , ) ( ) ( )h x x e b x x a x x x x= + − + + , (11) 

 2 1 2 2 1( , ) ( )h x x d x x= − + . (12) 

Then Eqs. (8)-(10) are reduced to 

 1 1 1 2 1 1 2 3( , , )e h x x e e e e u= + − + , (13) 

 2 2 1 2 1 2( , )e h x x e e= − , (14) 

 ( )3 1 3e se eε= − . (15) 

The synchronization problem is now replaced by 
finding a suitable control law u such that the error 
dynamics described in Eqs. (13)-(15) are globally 
asymptotically stable at the origin. 

Chose the Lyapunov function as 

( )2 2 2
1 2 3

1 0
2

V e e e= + + ≥ . (16) 

The derivative of V along Eqs. (13)-(15) are given by 

 1 1 2 1 1 1 2 1 3 1
2 2

2 1 2 1 2 2 1 3 3

( , , )

( , )   .

V h x x e e e e e e ue

h x x e e e se e eε ε

= + − +

+ − + −



 (17) 

Then let chose 

{ }1 2 1 1 1 2 1 2 2

3

( ) ( , , ) ( , ) 1
(1 ) ,

u t h x x e e ke h x x e
s eε

= − − − +

+ −
 (18) 

where k is the positive constant. Substituting Eq. (18) 

into Eq. (17), we obtain 
 2 2 2

1 2 3 0V ke e eε= − − − ≤ . (19) 

According to Lyapunov theory [18], the global 
asymptotic stability at the origin of Eqs. (13)-(15) 
holds, which is equivalent to the fact that two 
uncoupled HR neurons described in Eqs. (6)-(7) are 
globally asymptotically synchronized. 

To demonstrate the effectiveness of the 
proposed control law, numerical simulations are 
performed. Here, we set I = 3.1 such that individual 
neurons exhibit chaotic behavior (see Fig.5). The 
initial conditions of the master and the slave neurons 
were chosen as (x1(0), y1(0), z1(0)) = (0.3, 0.3, 3.0) 
and (x2(0), y2(0), z2(0)) = (-0.3, 0.4, 3.2), respectively. 
The positive constant k in Eq. (18) is chosen as k = 
0.2. The total simulation time is set as t = 1000. The 
control law in Eq. (18) is applied at time t = 500. As 
shown in Fig.6(a), the synchronization errors between 
two neurons, e1 = x2 – x1, e2 = y2 – y1, and e3 = z2 – z1, 
converge asymptotically to zero within a finite period 
of time after applying the control law. The phase 
portraits x1–x2 before (dashed line) and after (solid 
line) application of the control law are plotted in 
Fig.6(b). 

 
(a) 

 
(b) 

Fig. 6. Synchronized dynamics of the uncoupled HR 
neurons with the proposed control law in Eq. (18) at   
t = 500: (a) synchronization errors, (b) x1-x2 phase 
portrait. 
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4. Conclusion 

In this paper, we first studied dynamic behaviors 
of a single HR neuron. The bursting mechanism was 
analytically investigated by using the fast/slow 
dynamic analysis method. By varying the amplitude 
of the applied current, a full range of dynamic 
behaviors was reported. Second, we studied the 
synchronization of two uncoupled chaotic HR 
neurons. On that basis, we formulated a nonlinear 
Lyapunov function-based control law that guarantees 
the synchronization between two uncoupled chaotic 
HR neurons. The effectiveness of the proposed 
control law is verified through numerical simulations. 

The obtained results of this study are promising 
to contribute a method for deep brain stimulation area 
as well as for synchronization of two practical chaotic 
systems. 
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