
  
Journal of Science & Technology 136 (2019) 006-011 

 

6 

 
Active Disturbance Rejection Based Approach for Velocity Control of a 

Three-Mass System 
 

Do Trong Hieu*, Nguyen Duy Vinh*, Nguyen Tung Lam 
Hanoi University of Science and Technology, No. 1, Dai Co Viet, Hai Ba Trung, Hanoi, Viet Nam 

Received: March 01, 2019; Accepted: June 24, 2019  
 

Abstract 

The paper deals with a velocity control problem of a three-mass system. The equations of motion of the 
system with limited shaft stiffness and damping is derived via d’Alembert principle. Based on the system 
dynamics, an active disturbance rejection control is developed for the system via a support of an extended 
state observer. The designed process with systematic and simple approach shows better performances 
compared to PID control. Several numerical simulation scenarios are carried out to verify the robustness of 
the control. 
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1. Introduction* 

Guaranteeing motion performance in drive 
systems is always a challenging task for design and 
control engineers. Normally treated as a lumped-mass 
system, finite stiffness, viscous and damping effects 
of the transmission shaft greatly affect the system 
motion quality [1]. Research works on multi-mass 
system can be extensively found in the literature. In 
order to tackle resonances and varying rotational 
inertia, a filter and an adaptive speed control is 
developed in [2]. In driving systems, a three-mass 
system which represents driving, coupling, and load 
inertia can be considered as a fundamental problem 
and can be expanded to multi-mass system without 
loss of generality. An extensive control design 
comparison can be found in [3], where control 
performances of an electrical drive system with 
elastic coupling when using PI, predictive speed, and 
cascade control backed by force dynamics controls. It 
is shown that PI control give worst performance when 
facing system parameter changing. Similar idea of 
using force dynamics control in position control of 
two-mass system with speed sensor located at the 
motor side is found in [4]. In multi-mass system, it is 
challenging to gather all system parameter 
information, due to the limitation, a system 
identification is presented in [5], however, the 
accuracy of the proposed method is heavily depended 
on system identification setup process and excitation 
signal. Other control approaches to multi-mass 
systems such as model predictive control, 
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backstepping control and fuzzy control are examined 
in [6, 7] and [8], respectively. Several researches 
dedicate to attenuate backlash affects in multi-mass 
system [3]. Although many strategies have been 
proposed, robustness and other practical concerns 
continue to pose challenges. 

In recent years, Active Disturbance Rejection 
Control (ADRC) is interested in to replace the 
traditional PID controller. This concept was 
originally proposed by J. Han [9, 10] but only 
become transparent to application engineers since a 
new parameter tuning method is proposed in [11]. 
This control method shows several advantages for 
disturbance rejection and for process with inaccurate 
parameters. ADRC is a powerful control method 
where system models are expanded with a new state 
variable, including all unknown kinetic and 
disturbance, that commonly happens in system 
formulation. The new state is estimated by using the 
Extended State Observer (ESO). An application of 
ADRC for rigid coupling motion control system can 
be found in [12]. In [13, 14], the authors referred to 
decoupling control for multivariable system using 
ADRC. An ADRC based solution for resonance 
suppression in motion control of two-inertia systems 
is proposed in [15]. These studies show the 
advantages and potential of ADRC approach in 
system control. 

In general, the control of the three-mass system 
requires speed feedback at the input of the third 
inertia, practically, speed sensor is deployed to 
measure driving inertia speed. Based on this 
configuration, the paper develops a velocity tracking 
performance based on active disturbance rejection 
control backed with extended state observer. The 
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proposed control structure is simple and practical. 
The tracking result shows highly improved 
performances compared to classical PID control. This 
paper is structured as follow. The three-mass system 
modeling is presented in section 2. In section 3, we 
present the velocity control design of three-mass 
system based on ADRC approach as well as the 
parameters tuning procedure of the ADRC. 
Subsequently, some simulation results are given, 
followed by several concluding remarks in section 4. 

2. System Modeling 

Consider a mechanical system as shown in Fig 1 
with an assumption of ignoring backlash, friction and 
elascity of the system. This three-mass system 
consists of three rigid bodies with moment of inertia 
J1, J2, J3 and two flexible connected shafts with 
coefficients of elasticity k1, k2 and the damping 
coefficients b1, b2. me is the input torque of the 
electric motor and mL is the load torque of the 
working machine. θi (i=1,2,3) is angular position. 

Fig. 1. Three- mass system with flexible connection. 

Using the principle of d’Alembert, the equations 
of motion for the three-mass model are as follow 
[16]: 
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A simple calculation shows that 
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where 1 is angular speed of motor, 2  and 3 are 
angular speed of load 1 and load 2.  

It should be noted that when b1 = b2 = 0, the 
equations in (3) will be the model of three-inertia 
system studied in [17, 18]. In this paper we will 
consider the general case where bi ≠ 0. 

The three-mass system can be also described in 
the state space form as: 
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From the state space equation, we have the 
following transfer functions that characterize the 
relationship between input torque and speed: 

4 3 2
1 2 3 41

5 4 3 2
1 2 3 4

( )
( )

o

e

c s c s c s c s cs
m s s d s d s d s d s
ω + + + +

=
+ + + +

 

' 2 ' '
3 0 1 2

5 4 3 2
1 2 3 4

( ) . .
( ) . . . .e

s c s c s c
m s s d s d s d s d s
ω + +

=
+ + + +

 

With:   

1
o J

1c =
  321

231322
1 JJJ

bJbJbJc ++
=

 

321

21231322
2 JJJ

bbkJkJkJc +++
=

 321

1221
3 JJJ

kbkbc +
=

 

321

21
4 JJJ

kk
c =

 



  
Journal of Science & Technology 136 (2019) 006-011 

 

8 

321

231131221132
1 JJJ

bJJbJJbJJbJJ
d

+++
=  

321

231131221132213212211
2 JJJ

kJJkJJkJJkJJbbJbbJbbJd ++++++
=

321

211213122212123121
3 JJJ

kbJkbJkbJkbJkbJkbJd +++++
=

321

213212211
4 JJJ

kkJkkJkkJd ++
=

 

321

21
o JJJ

bb'c =
   321

1221
1 JJJ

bkbk'c +
=

 321

21
2 JJJ

kk'c =
 

3. Velocity Control Design 

3.1 Controller design 

In common practice, the sensor is mounted at 
the motor end, where only the motion of the motor is 
measured and fed back even though the objective is 
also to control the motion  

of the load. This setup is called motor feedback 
configuration. In this paper, we aim to control the 
motor velocity and load velocity using this 
configuration. 

First equation in (3) can be rewritten as: 
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According to [9], the generalized term f(ω1, ω2, ms1) 
is insignificant while only its real time estimate f̂  is 
important. An extended state observer (ESO) is 
constructed to provide f̂ such that we can compensate 
the impact of f(ω1, ω2, ms1) on our model by means of 
disturbance rejection. This allows the control law: 
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to reduces the plant in (5) to a form of: 
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The ESO was originally proposed by J. Han [9] and 
made practical by the tuning method proposed by 

Gao [11], which simplified its implementation and 
made the design transparent to engineers. The main 
idea is to use an augmented state space model of 
equation (5) that includes f, short for f(ω1, ω2, ms1)) as 
an additional state. In particular, let x1 = ω1, x2 = f. 
The augmented state space form of equation (5) is 
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with l1, l2 are observer parameters to be determined, 
provides an estimate of the state of equation (8). z1, z2 
will track y (ω1) and f respectively. The convergence 
of ESO is extensively discussed in [19]. 

Then the control law 
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reduces equation (5) to: 

0 21
0 1. .( )P ref

u zd f b u K z
dt b





     (11) 

where ωref  is the set point for velocity. 

Taking the Laplace Transform of (11), one has: 
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The velocity control based on ADRC for the system 
is then constructed as depict in Fig. 2. 

 
Fig. 2. ADRC structure for 3-mass system. 

The parameters of ADRC KP, l1 and l2 can be 
determined according to [20]: 

• Get the desired settling time Tsettle. 

• Kp can be calculated from the desired first-order 
system with 2%-settling time: 
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• Since the observer dynamics must be fast 

enough, the observer poles 1/2
ESOs  must be placed 

left of the close-loop pole sCL, for suggestion: 

1/2 (3...10).ESO ESO CLs s s   with CL
ps K  

• The observer parameters can be computed from 
its characteristic polynomial: 

 
 Then 

 
3.2 Simulation  

This section dedicates to numerical verification of the 
closed-loop performance. The parameters of the 
system are given as: 

 

Symbol Value (Unit) 

J1 1.88x10-3 kg.m2 

J2 1.57x10-3 kg.m2 

J3 1.57x10-3 kg.m2 

k1 186 N.m/rad 

k2 186 N.m/rad 

b1 0.008 N.m.s/rad 

b2 0.008 N.m.s/rad 

 

The observer gains and controller gains of ADRC are 
selected as follow: Kp = 20, 1 600l  , 2 90000l  .  

In this section, the proposed method is tested in 
simulation and the results are compared to the 
responses of PID controller. The transfer function of 
this PID controller is: 
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The parameters of PID controller are determined by 
using tuning tool in Matlab/Simulink with: 

P = 0.1166, I = 0.0217, D = -0.0025, N = 45.1412 

In these tested simulations, the reference 
command input is 30 rad/s at 0s, and the disturbance 

input mL is applied at 1.5s with the value of 0.1 N.m. 
The simulation results show that the ESO can 
estimate the value of disturbance almost correctly. 
Fig. 3 shows that the velocity of motor, load 1 and 
load 2 reach the desired value with settling time of 
0.1s. Compare to PID controller, the designed 
velocity controller gives smoother response and has 
no overshoot as shown in Fig. 4. The control signal is 
shown in Fig. 5 and the estimation f̂ of f is presented 
in Fig. 6 where one can see that the ESO has good 
performance. 

 
Fig. 3. Velocity responses of the system with 
designed controller. 

 
Fig. 4. Tracking and disturbance rejection 
performance of the system (load 2 velocity response) 

 
Fig. 5. Control signal 

 
Fig. 6. Estimation of f 
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The ADRC shows better performance in term of 
lower overshoot and shorter settling time while 
bearing a simple design approach.  

3.3 Robustness 

In order to test the robustness of the designed 
controller, some situations are considered. In the first 
case (Fig. 7), only the values of b1 and b2 are changed 
b1=0.008 N.m.s/rad, b2=0.016 N.m.s/rad. Other 
parameters are kept as in section 3.2. The second case 
(Fig. 8) is considered when b1 = b2 = 0. 

 
Fig. 7. Load 2 velocity response  

(b1 = 0.008 and b2 = 0.016). 

 
Fig. 8. Load 2 velocity response (b1 = b2 = 0). 

And in the last case (Fig. 9), we supposed that the 
parameters of the system are changes with J1=1.5x10-

3 kg.m2, J2=1.57x10-3 kg.m2, J3=1.57 kg.m2, k1=175 
N.m/rad, k2=175 N.m/rad, b1=0.005 N.m.s/rad, 
b2=0.005 N.m.s/rad. 

 
Fig. 9. Tracking and disturbance rejection 
performance (load 2 velocity response) when the 
parameters of the system are modified.  

As seen in Fig. 7, Fig. 8 and Fig. 9, the PID controller 
show bad performance when b1 = b2 = 0 while the 
designed controller still has good response in all the 
situations. It can be concluded that ADRC have better 
robust properties compared to classical PID. 

4. Conclusion 

This paper has proposed an approach for the velocity 
control problem of three-mass system based on 
Active Disturbance Rejection Control. From the 
positive performances in term of reference tracking 
and disturbance reduction of the closed-loop system, 
one can observe that the use of ADRC method has 
advantages such as less dependence on the modeling 
and simple implementation. ADRC method requires 
little knowledge of the plant, is simple in tuning 
method and promises strong robustness. This 
approach can be considered as a control tool for 
practitioners. ADRC can be considered as a 
promising practical method, not only for robotic 
engineering, but also for many other systems that 
share the flexibility nature such as crane systems and 
liquid transfer process. 
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