
 
Journal of Science & Technology 136 (2019) 055-059 

 

55 

 
An Innovative Image Denoising Method Using Curvelet Transform and 

Histogram Segmentation 
 

Nguyen Thuy Anh1*, Dang Phan Thu Huong1,2 
1 Hanoi University of Science and Technology - No. 1, Dai Co Viet Str., Hai Ba Trung, Ha Noi, Viet Nam  

2 University of  Labour and Social  Affairs Son Tay Branch - Huu Nghi Str., Xuan Khanh, Son Tay, Ha Noi, VN  
Received: April 30, 2019; Accepted: June 24, 2019  

 

Abstract 

A new image denoising method based on Curvelet transform and histogram segmentation is proposed. This 
paper first explores the concept and the propertites of the Curvelet transform for curved singularities analysis 
then applies Curvelet transform and histogram segmentation to estimate optimum threshold for image 
denoising. In the simulations, the Wrap (Wrapping-based transform) algorithm was used to realize the 
Curvelet transform, which adds a wrap step to the Unequally Spaced Fast Fourier Transform (USFFT) 
method. The simulation results show the denoising effectiveness of the proposed method, show that 
Curvelet transform has a better denoising result and a certain increase in PSNR (Peak Signal-to-Noise 
Ratio), especially for the images those contain curved singularities. 
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1. Introduction 

In recent years, Wavelet transform, especially 
second-generation wavelet transform, has been being 
used as an effective method for various applications 
such as astronomy, acoustics, nuclear engineering, 
voice, magnetic resonance imaging, optics, 
earthquake prediction, radar, partial differential 
equations, image processing, etc [1-2].  

Among image processing tasks, noise removal is 
basic step and it plays extremely important role in 
digital image processing. The purpose of noise 
removal is to obtain a good estimate of the original 
image from its noised version meanwhile preserving 
important structures of images such as edge and 
curve. Traditional wavelet based denoising algorithm 
proposed by Donoho and Johnstone basically shrinks 
the wavelet coefficients on adopting an universal 
threshold with dimension N, 2ln= Nλ σ  and 
adopting also hard-soft shrink wavelet (detail) 
coefficients [3]. 

Curvelet transforms are recently developed as 
mathematical tools that overcome the weakness of the 
separable wavelet transform in representing curves1 
and edges. Curvelet transform shows better 
performance than wavelet transform in represent 
multiscale edge [4]. 

In this paper, we analyse Curvelet properties and  
propose an innovative image denoising algorithm 
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based on segmentation threshold for Curvelet 
shrinkage. We know that basic property of the 
Curvelet transform is piecewise smooth with 
discontinuities. In order to remove noise while 
preserving important information of images, we 
divide an image into different regions by gray level 
histogram. Each segmentation provides threshold for 
Curvelet shrinkage. The total shrinkage is mean of all 
threshold values. 

The rest of the paper is organized as follows. In 
section 2, the necessary background is given about 
Curvelets for image denoise. In section 3, the 
proposed method is shown with histogram 
segmentation. Section 4 provides simulation results 
of the proposed method. Finally, the conclusions of 
this paper are for concluding remarks, and 
suggestions for further researches. 

2. Methodology 

2.1. Curvelet transform 

Curvelet transform is defined in both continuous 
and digital domain and for higher dimensions. The 
basic structure of Curvelets is derived from a ridge-
like form called Ridgelet [5]. Curvelets are obtained 
by parabolic dilations rotations and translations of 
elementary function φ and are indexed by scale 
parameter a satisfying 0<a<1, location parameter b 
and orientation parameter θ. Curvelets have the 
approximate form as 

( ) ( )( )3 4
, ,

1 0
,

0 1a b a a

a
x a D R x b D

aθ θϕ ϕ−  
= − =  
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Journal of Science & Technology 136 (2019) 055-059 

 

56 

 Da is the parabolic scaling matrix, Rθ is the rotation 
by θ radians and 1 2( , )x xϕ , 2

1 2,x x ∈  is an 
admissible profile. Thus, if φ is supported near the 
unit square, the envelope of a,b,θϕ  is supported near 

an a a×  rectangle with the minor axis pointing in 
the direction of θ. 

Curvelets obey the principle of harmonic 
analysis: It is possible to decompose and reconstruct 
an arbitrary function 1 2f (x , x )  as a superposition of 
Curvelets. If the scale, rotation and location are 
discretized as: 

2−= j
ja , where 0,1,2,= j             (2) 

2 2
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So that ( ),
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ϕ = ϕ j l
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, the function f can be 

expressed in terms of the Curvelet family ( ), ,ϕ j k l  as 
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(a)                                            (b) 

 
                     (c)                                       (d)                             

Fig. 1. Spatial and frequency representation of 
Curvelet elementary functions; (a) spatial, (b) 
frequency representation of two Curvelets at different 
scales, rotations and translations; (c) and (d) 
illustrates a synthetic image, which comprises two 
intersecting reflectors, and its representation as a sum 
of weighted Curvelet elementary functions.  

The elementary functions are not isotropic and 
highly oscillatory in a direction. The oscillations in 
different elementary functions can occupy different 
frequency bands which is a multi-resolution property 
[6]. 

  
                            (a)                                                           (b)                                                          (c)  

Fig. 2. Curvelet coefficients magnitude of an image. (a) Original image, (b) Red rectangle represents one 
direction at one scale, (c) Inside area of two red rectangles is one scale of all directions. 

Curvelet transform provides a strong directional 
characterization in which elements are highly 
anisotropic at fine scales. With these properties, 
Curvelet solve the isotropic and limited directional 
analysis of classic wavelet transform. Unlike the 
wavelet transform, it has directional parameters. The 
decomposition into Curvelet coefficients cannot only 

be used for image analysis but also for image 
manipulation [7]. 

In the Curvelet transform, most of the energy is 
localized in only a few coefficients as 

, , , ,w ,= ϕ
j k l j k lf . A Curvelet intersecting a 

discontinuity parallel to its longitudinal support will 
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have coefficients of significant amplitude and if a 
Curvelet intersects a discontinuity at an arbitrary 
angle, it will have small coefficients. A Curvelet not 
intersecting a discontinuity will have zero coefficients 
[8]. 

2.2. Fast digital Curvelet transform (FDCT) 

The second generation Curvelet transform is 
faster and less redundant compared to its first 
generation version. There are two different digital 
implementations of FDCT: Curvelets via USFFT 
(Unequally Spaced Fast Fourier Transform) and 
Curvelets via Wrapping. FDCT wrapping is the 
fastest Curvelet transform [12]. The algorithm of the 
fast digital Curvelet transform by wrapping is as 
follows: 

Algorithm 1: 

1. Apply the two dimensional fast Fourier transform 
(2D-FFT) and obtain Fourier samples 
 [ ]1 2 1 2, , 2 , 2f n n n n n n− ≤  ;  

2. For each scale j and angleθ , form the product 
 [ ]  [ ], 1 2 1 2, ,jU n n f n nθ  ; 

3. Wrap this product around the origin and obtain 

 [ ] ( )[ ],, 1 2 1 2, , ,jjf n n W U f n nθθ =  Where the range for 

1n  and 2n  is now 1 1,0 jn L≤   and 2 1,0 jn L≤   (for 
θ  in the range ( )4, 4−π π ; 

4. Apply the inverse two dimensional fast Fourier 
transform (2D-IFFT) to each  ,jf θ  , hence collecting 
the discrete coefficients ( ), ,Dc j kθ  . 

This algorithm has computational complexity of 
( )2 logO n n . 

3. Proposed method 

The objective of image thresholding is used to 
extract objects or regions of interest in an image from 
the background. Especially for discontinuos curve 
that we have to preserve. The thresholding is based 
on its gray level distribution. Image histograms are a 
useful tool to help discover some properties from 
images, and even directly obtain thresholds from 
them. We use the histogram approach. In this 
approach, the gray level distribution of pixels and the 
average gray level distribution of their neighborhood 
are used to select the optimal threshold vector. The 
algorithm for histogram segmentation is as follows: 

Algorithm 2: 

1. I = Noise input Image; 

2. Calculate the histogram values ih , bin width w i ,
1..=i N  of the image I, where N is number of bins of 

gray of the image; 

3. Set the initial threshold value: 1

1

w
=

=

∑
=

∑

N

i i
i

N

i
i

h

init
h

T ; 

4. Segment the image using initT . This will produce 
two groups of pixels I1 and I2; 

5. Repeat step 2 and step 3 to obtain the new 
threshold values for each group: 1groupT  and 2groupT ; 

6. Compute the new threshold value: 
1 2( )

2
+= group groupT T

newT ; 

7. Repeat the steps from 2 to 6 until the difference in 
initT for successive iterations is small enough; 

8. Apply Curvelet shrinkage with threshold newT ; 

Schematic diagram of proposed method is shown on 
Fig. 3. 

 
Fig. 3. Schematic diagram of proposed method for image denoising using Curvelet transform and histogram 
segmentation 
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4. Simulations and results 

4.1. Evaluation Parameters 

Image enhancement quality is difficult to assess. 
For the problem of estimating the distortion or the 
loss of information, we use PSNR parameter. PSNR 
is used for measuring the quality of the image and 
involve deviation of the enhanced image from the 
original image with respect to the peak value of the 
color level that affects the fidelity of its 
representation. It is an approximation to human 
sensitivity of reconstruction quality. A higher PSNR 
generally indicates that the reconstruction is of higher 

quality. PSNR is most easily defined via the mean 
squared error (MSE) as 

2 1
1020 − =  

n

MSE
PSNR Log  (dB)       (7) 

where n is the number of bits/pixel used in 
representing the pixel of the image and the mean 
squared error is defined as 

[ ]
1 1

21

0 0
( , ) ( , )

− −

= =

= −∑∑
m n

mn
i j

MSE I i j K i j          (8) 

where m, n represent number of rows and columns in 
the input image. I(i,j) and K(i,j) denotes the noise free 
and noisy pixel image respectively. 

 
PSNR = 29.26 

 
PSNR = 27.32 

 
PSNR = 35.8965 

 
PSNR = 28.53 

 
PSNR = 27.76 

Fig. 4. Test images with Gaussian noise (σ = 15) and corresponding PSNR; (left) original input image i.e. 
without noise, (center) image contaminated with white Gaussian noise, (right) denoised image of the 
proposed method. 
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4.2. Experiment results 

We test our algorithm with images that contain 
circles and curves, especially the forth image with 
train rail. The tested images shown on Fig. 4. are 
corrupted with Gaussian white noise with noise 
standard deviation (σ) varies. In the pictures with 
curves, we see that the curve is preserved clearly. 

We proceeded to eliminate noise of 8-bit gray 
level images by proposed method, with each being a 
different noise variance (sigma). The results are 
obtained in the following table 

Table 1. Denoising results expressed by PSNR 
parameter 
Sigma Lady with 

circle hat 
One Pilar 
Pagoda 

Tranditional 
Vietnamese 

Hat 

Train Train 
Track 

15 29.38 27.46 35.97 28.62 27.89 
25 26.72 24.69 33.75 25.80 24.93 
35 25.10 23.17 32.04 24.18 23.18 
45 24.06 22.18 30.71 23.06 22.04 
55 23.16 21.36 29.90 22.20 21.14 
65 22.55 20.75 28.87 21.55 20.43 
75 21.97 20.33 28.13 20.91 19.83 

In order to prove the effectiveness of the 
proposed image denoising method, we made a 
comparison with some other denoise methods such as 
median filter, Wiener filter, Hard thresholding, Soft 
thresholding. And this is the result of implementing 
the above methods: 

Table 2. Comparision of different denoising methods 
Noise 
image 

Wiener 
filter 

Median Hard 
thresholding 

Soft 
threshoding 

Proposed 
method 

28.23 33.28 32.12 32.67 32.90 34.20 

5. Conclusion 

In this paper, we presented an innovative image 
denoising method using Curvelet transform and 
histogram segmentation. Image denoising is one of 
the important fields in the restoration area because the 
degradation of images will affect the processes of 
feature recognition, segmentation, edge detection, etc. 
The comparison of the denoised image from the 
proposed method was made. Based on the 

experimental results, Curvelet transforms give far 
better performance than the wavelet transforms. 
Although Curvelet transforms is promising and 
efficient for noise removal, still onedrawback arises 
must be regarded in future. The drawback is the 
quality of the reconstructed plat areas in the images. 
Scraches apprears in reconstructed plat areas. 

References 
[1] Kulkarni SM, Anuja RS; Multi resolution analysis for 

Medical Image Segmentation Using Wavelet 
Transform. International Journal of Emerging 
Technology And Advanced Engineering, Vol.6, pp. 
102-109, 2014. 

[2] Miller.M and Kingsbury, Nick; Image Denoising 
Using Derotated Complex Wavelet Coefficients, 
IEEE Trans. Image Processing vol. 17, No.9, pp. 
1500-1511, 2008. 

[3] Kour G, Singh SP; Image Decomposition Using 
Wavelet Transform. International Journal Of 
Engineering And Computer Science vol. 2, pp. 3477-
3480, 2013. 

[4] Jean-Luc Starck, Emmanuel J. Candès, and David L. 
Donoho; The Curvelet Transform for Image 
Denoising, IEEE Transactions on image processing, 
vol. 11, no. 6, june 2002. 

[5] Min Li , Xiaoli Sun;  Curvelet Shrinkage Based 
Iterative Regularization Method for Image Denoising, 
12th International Conference on Computational 
Intelligence and Security (CIS), pp. 103 – 106, 2016. 

[6] K. S. Jeen Marseline, C. Meena; Combined Curvelet 
and ASF with neural network for denoising sonar 
images, 2015 International Conference on Advanced 
Computing and Communication Systems, pp. 1-6, 
2015 

[7] Guillaume T, et al; Application of the Curvelet 
Transform for Clutter and Noise Removal in GPR 
Data; IEEE Journal of Selected Topics in Applied 
Earth Observations and Remote Sensing, Vol 10 , 
Issue 10, pp. 4280 – 4294, 2017. 

[8] Paul H, Alin A; Mohammed E. Al-Mualla; David B, 
Contrast Sensitivity of the Wavelet, Dual Tree 
Complex Wavelet, Curvelet, and Steerable Pyramid 
Transforms; IEEE Transactions on Image Processing, 
Vol.2, Issue 6, pp. 2739 – 2751, 2016.

 


