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Abstract 

Using of mathematical tools to calculate, simulate the technical problems is widely used by many 
researchers. This study was developed based on the Wolfram Mathematica software to determine the 
temperature spectral and temperature gradient transmittance in the mold’s wall and core, in order to 
determine the influence of the material thermal conductivity to the mold temperature gradient, as well as 
evaluating the effect of changing the position of the mold surface to the thermal gradient in the mold. The 
calculations demonstrated that the increasing of the coefficient of thermal conductivity of the mold material 
would reduce the temperature gradient of the mold, and the mold walls were identified to have higher 
thermal gradient than in the mold’s core that were in similar working conditions. The experiments had also 
shown that TiN and CrN had the same temperature and temperature gradient spectrums as the SKD61, but 
the gradient values on their surfaces were higher than those of SKD61 and the slopes were higher, too. 
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1. Introduction* 

Using mathematical tools to solve the heat 
transfer problem was investigated in the field of 
mathematics while physics or informatics studies the 
ability of software to solve the problem of heat 
transfer by software [1]. In the field of foundry 
research, the author [2] has given the mathematical 
solution to the problem of heat transfer in the mold in 
a static state by using error function. Some other 
researchers used simulation softwares to simulate the 
thermal processes in the mold [3, 4]. 

Thermal fatigue was one of the major failures of 
in high pressure die casting (HPDC) mold, which was 
a widespread and unavoidable phenomenon [5-9]. 
Numerous researches had shown that the thermal 
stresses occur in the HPDC mold due to heat 
gradients and temperature raise in the mold. The 
temperature of mold was always increased due to the 
contact of the mold surface and the molten metal, so 
the stress component due to the temperature rising 
was an inevitable factor component. This study 
focuses on the influence of the physical properties of 
the material on the thermal gradients of the die 
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casting mold and on the mold surface characteristics 
in the mold to the thermal gradient. 

In temperature field of the mold, due to the 
difference in temperature between the locations in the 
wall, according to the laws of thermal expansion of 
the material, the mold material expanded unevenly 
between the positions, which caused stress in the 
mold. The stress produced in a tiny part of mold was 
proportional to the difference in elongation of the 
edges following a x direction, thus the thermal 
gradient stress is: 

. .
. . . .x

x
grad u dx

E E E grad u
dx

α
σ ε α= ∆ = =  (1) 

The equation (1) shows that the temperature and 
gradient of mold greatly affect to the stresses at 
different positions of the mold during processing. 
Further studies determined the thermal together with 
gradient spectrums of the mold that occur to further 
clarify the thermal stresses of the mold. Considering 
two models of heat transfer: through flat wall 
(equivalent to heat transfer through mold walls) and 
into square root (equivalent to thermal transfer of 
core). 

Thermal equation for heat transfer (Fourier 
equations) [10]: 
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 (2) 

Here, u is the temperature; t is time and x, y, z 

are coordinates with 
.P

a
c
λ
ρ

=  determinate by λ - The 

specific heat of the material, ρ - Specific mass of the 
material. The values λ, cP, ρ for some materials [11] 
related with this study were shown in Table 1. 

Table 1. Specific heat (C), density (ρ), heat transfer 
coefficient (λ) and thermal conductivity (a) 

Material Specific 
heat, C 
(kJ/kg.K) 

Density, 
ρ 
(g/cm3) 

Heat 
transfer 
coefficient, 
λ(W/m.K) 

Thermal 
conductivity, 
a (mm2/s) 
 

Steel 0.45-0.50 7.8 50 14.24-12.82 
SKD61 0.46-0.59 7.6-7.8 24.3-27.5 ≈6.78 

(100-300 °C) 
TiN 0.78 5.22 19 4.67 
CrN 0.73 6.14 12 2.68 
W 0.14 19.3 173 64.03 

Initial condition of the differential equation is 
the mold temperature at the start state, choosing 
ambient temperature. In this case the ambient 
temperature is 22 °C. 

The boundary conditions of the differential 
equation were the surface temperature of the mold. In 
the case of wall part, the surface of the mold is the 
surface of the molten liquid contact, with a thermal 
cycle described as curve 1 (Fig.1a), the outer surface 
is a cyclic air contact surface as shown by curve 2 
(Fig.1a), in the case of the core of the mold, all the 
faces of the mold part are cast metal contact surfaces, 
and all of them use the spectral 1 in Fig.1a. In this 
case, Fig.1a is a graph of mold temperature from the 
document of casting machines (company Z117 - 
Ministry of Defense). These curves took similar 
forms to the results of other researches in [3, 12, 13]. 

 
Fig.1. Temperature variation at points in the mold 
over time: (a) real charts and (b) simulation chart 

2. Numerical Modeling 

2.1. Setup the differential functions 

There are 2 main cases of heat transfer on the 
mold. Heat transfer through the wall and heat transfer 
into the core. 

In the first case, in order to simply the problem, 
considering the remaining 2 other directions of the 
wall are large enough, the problem can be seen as one 
direction heat transfer. In this case, there is no y and z 
components in differential equation, so equation (3) is 
the form of equation (2) in this case. The equation 
can be shown as equation (4) in the software. 

2

2

u ua
t x

∂ ∂
= −

∂ ∂
 (3) 

D[u[x,t],t]==a*D[u[x,t],x,x] (4) 

For the second case of heat transfer in the mold: 
When heat is transferred to the square core, the z 
component is not involved in the differential 
equation, in this case the equation (2) is expressed as 
equation (5) and (6). 

2 2

2 2

u u ua
t x y

 ∂ ∂ ∂
= − + ∂ ∂ ∂ 

 (5) 

D[uu[x,y,t],t] == a*(D[uu[x,y,t],x,x] +   

                              + D[uu[x,y,t],y,y]) (6) 

The value of thermal conductivity (a) in the 
functions (3, 4, 5, 6) depends on specifically material 
as shown in Table 1, in these experiments, we use 4 
“a” values of mold material SKD61, hard coating 
material TiN, CrN and W. 
2.2. Initial conditions and boundary conditions 

As indicating, the initial condition of the 
problem is that the mold temperature at the starting 
time of the process is the ambient temperature. This 
initial condition is described as follows: 

u[x,0] == 22 (7) 

uu[x,y,0] == 22 (8) 

In these cases, we use Dirichlet Boundary 
Condition by describing the mold surfaces’ 
temperatures. To simply describe the thermal of mold 
surface in the differential equation, the charts (shown 
in Fig.1a) is rescaled, divided into sort parts, 
linearized and define by the form of function as Eq. 9. 
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 (9) 

Two functions that defined by the Mathematica 
software’s Function Piecewise ndbmkhuon[t] and 
ndmnkhuon[t] have been created. Fig.1b shows the 
charts of the functions ndbmkhuon[t] and 
ndmnkhuon[t] in the software. Comparison of Fig.1a 
and Fig.1b shows that the charts of the functions are 
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similar to the origin chart, so we can use these 
functions in models. 

2.3. Solving the models 

To solve the differential equations (4), (6) with 
the initial conditions (7), (8) and the boundary 
conditions as ndbmkhuon[t] and ndmnkhuon[t] 
functions, we use the NDSolve function. The full 
setup functions are shown as equation (10) and (11). 

nhiet=NDSolve[{D[u[x,t],t]==a*D[u[x,t],x,x], 
u[x,0]==22,u[0,t]==ndbmkhuon[t], u[50,t]== 
ndmnkhuon[t]},u,{x,0,50},{t,0,300}] (10) 

nhiet2=NDSolve[{D[uu[x,y,t],t]== 
a*(D[uu[x,y,t],x,x]+D[uu[x,y,t],y,y]),uu[x,y,0]==22, 
uu[0,y,t]==ndbmkhuon[t],uu[50,y,t]==ndbmkhuon[t
],uu[x,0,t]==ndbmkhuon[t],uu[x,50,t]==ndbmkhuon
[t]},uu,{x,0,50},{y,0,50},{t,0,300}] (11) 

The equation (10) is used to solve the 
temperature function u[x,t] in the case of 1D thermal 
transfer. The equation (11) is used to solve the 
temperature function uu[x,y,t] in the case of 2D 
thermal transfer. 

The thermal gradient in the material is 
illustrated by taking the derivative of the temperature 
function u[x,t] or uu[x,y,t] along the x-axis with the 
function D[u[x,t],x] or D[uu[x,y,t],x]. 

3. Discussions 

Usage of the Plot and Plot3D function for 
representing the interpolation values of the heat 
transfer functions in the 2 and 3-dimensional charts to 
fully observe the temperature fields and the 
temperature gradient distribution field in various 
materials or shapes. 

3.1. Effect of thermal conductivity to thermal 
gradient 

The equation (10) has been solved with different 
values of “a” to evaluate the effect of the thermal 
conductivity “a” on the thermal spectrum and thermal 
gradient spectrum. In Fig.2, 3, 4, the temperature and 
thermal gradient changed for cases a = 2.68, a = 4.67 
(low enough “a” values), a = 6.78 (coefficient of 
thermal conductivity of the SKD61 mold), and a = 
64.03 (high enough “a” value). 

As the thermal conductivity increases from 2.68 
to 4.67, 6.78 and 64.03, the faster the material 
reached the stable state (from the 10th cycle to the 7th 
cycle) as shown in Fig.2. Fig.2 and 3 also showed 
that, as the thermal conductivity increased, the 
influence of thermal oscillations was deeper (from 
less than 10 mm to greater than 40 mm). Temperature 
variations at points in the mold wall are consistent 
with the results in the previous study [3]. Fig.4 

illustrates that the thermal gradients reached the 
highest value on the mold surface, which was 
achieved at 275.7s (or 5.7s of the cycle). Fig.5 shows 
the thermal gradient spectrum of the mold in a section 
along the thermal transmission direction also 
recognizes the highest gradient values on the mold 
surface. These maximums depended on the thermal 
conductivity of the material. The lower thermal 
conductivity of material is (CrN, a = 2.68; TiN,               
a = 4.67), the higher gradient value had achieved on 
the surface (about 29 °C/mm and 22°C/mm). On the 
contrary, the better heat conducting material (W,             
a = 64.03) had the lower gradient value on the mold 
surface (about 7.5°C/mm). 

The thermal gradients dropped drastically near 
to the surface and then slowed down further when 
deeper. The thermal gradients on the surfaces of the 
less heat conduction materials (CrN, TiN) decreased 
faster (slope of CrN is 6.6°C/mm2 at the surface, 
2.4°C/mm2 at 5mm depth, the slope of TiN decreased 
from 3.75°C/mm2 on the surface to 1.9°C/mm2 at 
5mm depth) than the better thermal conductivity 
material’s (W has 0.28°C/mm2 on the surface and 
0.24°C/mm2 at a depth of 5mm) as shown in Fig.5. 

Fig.4c and 5c presented that SKD61 had a 
gradient value up to 18,383 °C/mm on the surface at 
275.7s. 

The thermal conductivities of the two coating 
materials in these simulations were lower than those 
of SKD61 and close to the coefficient of thermal 
conductivity of SKD61. The charts of these two 
materials are similar to those of SKD61 but the 
maximum value (on the surface) of the highest 
thermal gradient and the slope of the charts is higher 
than the charts of SKD61 (2.54°C/mm2 on the surface 
and 1.54°C/mm2 at the depth of 5mm) as shown in 
Fig.5. 

  

  
Fig. 2. Temperature spectrums in first 10 cycles by 
materials: (a) CrN (a =2.68); (b) TiN (a = 4.67);  
(c) SKD61 (a =6.78) and (d) W (a = 64.03) 
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Fig. 3. Temperature spectrums in the 10th cycle by 
materials: (a) CrN; (b) TiN; (c) SKD61 and (d) W 

  

  
Fig. 4. Thermal gradient spectrums in the 10th cycle 
by materials: (a) CrN; (b) TiN; (c) SKD61 and (d) W 

  

  
Fig. 5. Thermal gradient spectrums in a section along 
the thermal transmission at the time of 275,7s by 
materials: (a) CrN; (b) TiN; (c) SKD61 and (d) W 

 
Fig. 6. Thermal spectrums in the (square) SKD61 
core: (a) temperature spectrum in the first 10 cycles; 
(b) temperature spectrum in the 10th cycle; (c) thermal 
gradient spectrum in the 10th cycle; (d) temperature in 
a cross section at 275.74s; (e) thermal gradient 
spectrum along the section at 275.74s  

3.2. Effect of position in the mold to the temperature 
field 

Fig.6 shows the results of the thermal process 
simulation taking place in the SKD61 core by solving 
the differential equation (5) with the boundary 
conditions ndbmkhuon as the equation (11). Fig.6d 
shows that the longitudinal section at the center of the 
core resulted in the highest thermal gradient. The 
maximum value of the thermal gradient appeared at 
275.74s on the mold surface (Fig.6c). In comparison 
with the wall case (Fig.2c), Fig.6a shows that in the 
case of a mold core, thermal processes were rapidly 
gaining stability (from the eighth cycle). In contrast 
to wall case (Fig.2c and 3c), Fig.6a and 6b showed 
that the heat in the core affects to the entire cross 
section of the core. 

Fig.6c and 6e showed that the thermal gradient 
reached the maximum value on the mold surface at 
16°C/mm. Fig.6e also showed that the slope of the 
heat gradient graph in the case of the core was also 
smaller than that of the wall at the near surface 
(2.8°C/mm2 on the surface and 1.5°C/mm2 at 5mm 
depth). 

4. Conclusion 

The thermal conductivity factor had influence 
on the spectral shape and the maximum gradient 
value on the surface. Thermal conductivity of CrN as 
2.68, which was the lowest value of these simulations 
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in our researched materials. Simulation illustrated 
that the gradient of CrN was the highest value (about 
29°C/mm) by contrast to W (a = 64.03) with the 
gradient value of 7.5°C/mm. 

The thermal conductivity of the cores quickly 
attained stability (at the eighth cycle toward) over the 
walls (at the tenth cycle toward). After achieving 
stability, each cycle time ~5.7s would be the time 
when the mold surface temperature and the thermal 
gradient on the mold surface was highest. In general, 
the thermal gradient of the mold core (16°C/mm) was 
smaller than that of the wall profile (18,383 °C/mm). 

Gradients dropped very fast (6.6°C/mm2 – CrN, 
3.75°C/mm2 – TiN, 2.55°C/mm2 – SKD61) on the 
surface, then changed slowly in deep points 
(2.4°C/mm2 – CrN, 1.9°C/mm2 – TiN, 1.75°C/mm2 – 
SKD61 at 5mm) of the mold. 

The thermal stresses of coating materials were 
higher than that value of SKD61, the coating layer 
had great thermal gradient, so the mold substrate 
lifetime was extended as shown in [2]. 

The results of temperature evolution 
calculations are consistent with previous study [3]. 
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