

Journal of Science and Technology 131 (2018) 006-012

6

A Sentiment Analyzer for Informal Text in Social Media

Huong Thanh Le *, Nhan Trong Tran

Hanoi University of Science and Technology - No. 1, Dai Co Viet, Hai Ba Trung, Hanoi, Viet Nam
Received: May 05, 2018; Accepted: November 26, 2018

Abstract

This paper introduces an approach to Twitter sentiment analysis, with the task of classifying tweets as
positive, negative or neutral. In the preprocessing task, we propose a method to deal with two problems: (i)
repeated characters in informal expression of words; and (ii) the affect of contrast word in determining
sentence polarity. We propose features used in this task, investigate and select an optimal classifying
algorithm among Decision Tree, K Nearest Neighbor, Support Vector Machine, and a Voting Classifier for
solving Twitter sentiment analysis problem. Experiment results with Twitter 2016 test dataset shown that our
system achieved good results (63.7% F1-score) compared to related research in this field.

Keywords: sentiment analysis, word embedding, decision tree, kNN, SVM, Voting Classifier

1. Introduction*

Nowadays, social networking sites such as
Facebook and Twitter become more and more
popular with millions of users sharing either
information or opinions about personalities,
politicians, products, and events every day. They are
valuable resources for business analysis, marketing,
social analysis, etc. Because of that, Twitter
sentiment analysis has received a lot of interest from
research community.

The task of sentiment analysis is to classify a
review into one from some predefined categories.
Early works in sentiment analysis deals with long text
such as product review, movie review, restaurant
reviews etc. The system has to determine whether
such an expression is positive, negative, or neutral.
Classification algorithms such as Support Vector
Machines (SVMs) [1] work well with sentiment
analysis at this level since each document is well-
written and long enough for representing as a bag-of-
words. Exploring the sentiment of tweets is more
challenge than working with traditional text because
of the following reasons:

• Tweets are short. The size of a tweet is limited
to 140 characters, which provides not enough
information for classification algorithm working
correctly.

• The language used is very informal, with
creative spelling and punctuation, misspellings, slang,
new words, URLs, genre-specific terminology,
abbreviations and #hashtags. Such informal words
make tweets ambiguous and difficult to understand.

* Corresponding author: Tel.: (+84) 904.674.102
Email: huonglt@soict.hust.edu.vn

For example, "4" can be understood as the number
"four" or the preposition "for".

Examples below illustrate these difficulties:

Example 1: Ha-ha... I want to see. E macdonalds
here cheaper. Yum.

Example 2: Ya... She wans... But now so late dunno
still can arrange 4 tmr anot...

The sentiment of Example 1 can be recognized
as positive basing on words "want", "cheaper",
"yum". Example 2 is harder to automatically analyze
since it contains many informal words, "ya", "wans”,
“dunno", "4", "tmr", "anot", which are interpreted as
"yes", "wants", "don't know", "for", "tomorrow", "or
not", respectively. This example is considered as
negative basing on words "late" and "dunno".

The difficulties mentioned above reduce the
system performance dramatically when applying
traditional approaches in sentiment analysis. Several
efforts have been made to solve this problem.
Kiritchenko et al. [3] developed a linear-kernel SVM
classification using a variety of surface form,
semantic, sentiment, and negation features. The
sentiment features were primarily derived from novel
high-coverage tweet-specific sentiment lexicons.
These lexicons were automatically generated from
tweets with sentiment-word hashtags and from tweets
with emoticons. Deshwal and Sharma [2] combined
several feature types like emoticons, exclamation and
question mark symbol, word gazetteer, unigrams and
testing on six supervised classification algorithms.

Rouvier and Favre [4] used a CNN architecture
for learning three polarity classifiers, each of which
uses lexical, part-of-speech and sentiment words of
the tweet as the input. A final fusion step was

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Ajay%20Deshwal.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Sudhir%20Kumar%20Sharma.QT.&newsearch=true
http://dblp.dagstuhl.de/pers/hd/r/Rouvier:Mickael
http://dblp.dagstuhl.de/pers/hd/f/Favre:Beno=icirc=t

Journal of Science and Technology 131 (2018) 006-012

7

applied, based on concatenating the hidden layers of
the CNNs and training a deep neural network for the
fusion. Aueb [6] used supervised learning with GloVe
word embeddings for Twitter and weighted ensemble
of classifiers. Lango et al. [8] used Random Forests,
SVMs, and Gradient Boosting Trees for the
classification task, with a feature set including
ngrams, Brown clustering, sentiment lexicons,
WorldNet, and part-of-speech tagging. NLTK
WordNetLemmatizer was used in the preprocessing
step to get the stemmed form of words.

In this paper, we introduce our approach to
Twitter sentiment analysis, with the task of
classifying tweets as positive, negative or neutral,
concentrating on reducing the effectiveness of the
two problems mentioned above. A modified
application of word embeddings is proposed to deal
with informal expression and to compute semantic
meaning of words. We investigate a method to deal
with contrast words in determining sentence polarity.
We propose features and investigate an optimal
classification algorithms using these features to
obtain the best outcome. Decision Tree (DT), K
Nearest Neighbor (kNN), Support Vector Machine
(SVM) are chosen as classification algorithms for the
system. Since a tweet can be classified differently by
different algorithms, a voting algorithm is used to
vote from the above mentioned classifiers, in order to
get more reliable results.

The remainder of this paper is organized as
follows. Section 2 briefly describes word embeddings
and our method of using word embeddings in our
system. Section 3 introduces our approach to Twitter
sentiment analysis. Our experimental results with
different strategies to combine features are
represented in Section 4. Section 5 concludes the
paper and proposes directions for future work.

2. Word Embeddings

Word embedding is a technique to map words or
phrases from a vocabulary to a vector of real
numbers. This representation is more efficient and
expressive than the traditional bag-of-words. The
bag-of-words approach, especially in the case of
representing tweets, often results in huge, very sparse
vectors, where the size of each vector is equal to the
vocabulary size. Word embedding aims to create a
vector representation with a much lower dimensional
space. Basing on the idea that words appearing in the
same contexts share the same meaning, words are
embedded in a vector space where semantically
similar words are located to nearby points.

FastText [9] is a commonly used model for
word embedding. It is an extension of word2vec,
created by Facebook. It uses a fast and effective

method to learn word representations and perform
text classification. It has released pre-trained word
vectors for 294 languages, trained on Wikipedia.
However, these word vectors are not good for our
task since Wikipedia and Twitter use different text
types. Because of that, we create our own model in
300 dimensions by training FastText on
Sentiment140 1† [10] - a large Twitter dataset with
many word extensions created by repeating some of
its characters (e.g., "hello" vs. "helllooooo"). This
dataset is preprocessed by replacing all three or more
duplicate consecutive characters with two (e.g.,
niccccceeee to niccee) as described in Section 3.1
before being trained. The purpose is to reduce the
vocabulary of Sentiment140 before training, in order
to have a more concrete representation of word
vectors.

Fig. 1. Proposed system architectures

3. Proposed Twitter Sentiment Analyzer

The architecture of our proposed system is
shown in Fig.1. Our system has been implemented
with different scenario aiming at testing the
effectiveness of our proposed preprocessing steps and
finding the best classifying features. Numbers 1 to 6
in the preprocesing module correspond to six
processing steps mentioned in Section 3.1, in which
steps 5 and 6 are our proposed one. The boxes with
dot lines in Extracting Features and Training Process
modules indicate that only one of these boxes can be
used in the given module at a time. Details of our
testing scenario are discussed in Section 4.2.

†1 Available at http://help.sentiment140.com/for-
students

Test Data Training Data

Preprocessing

1 2

3 4 5

6

Classifier
Model

Preprocessing

Extracting Features

Unigram
Sentiment Negation

Semantic

 Training Process

DT kNN

SVM
Voting

Classifier

 Label

Journal of Science and Technology 131 (2018) 006-012

8

 The remained part of this section will discuss
about our proposed preprocessing steps and features
in details.

3.1 Preprocessing

As mentioned in Section 1, understanding
tweets is challenging since many informal
expressions with numerous spelling errors, url and
emoticon are used. Therefore, a crucial task is to
preprocess tweets to reduce text's ambiguities. It
helps to reduce the tweets' representation space and to
increase the similarity between two similar tweets
written in two different ways. Our preprocessing task
includes of the following steps:

1. Lowercasing all the input text;

2. Converting all url to URL and @username to
AT_USER;

3. Converting all abbreviations, slang and
emoticons to their meaning (e.g., :) to “happy”,
“dunno” to “don’t know”);

4. Removing all duplicate whitespace;

5. Replacing all three or more duplicate consecutive
characters with two (e.g., niccccceeee to niccee).

6. Extracting the main clause in a tweet having a
contrast relation

Since steps 1, 2, and 4 are simple, only step 3, 5,
and 6 are described in the rest of this section.

Step 3: Converting all abbreviations, slang and
emoticons to their meaning

To get the meaning of abbreviations, slang and
emoticons, a Twitter dictionary is manually
constructed from Webopedia Twitter dictionary 2‡
(including 119 Twitter slang words and
abbreviations) and other twitter corpora. A part of our
Twitter dictionary is shown in Table 1 below.

Table 1: A part of Twitter Dictionary

Twitter expression Meaning
:)

wat
hee

r

happy
what
here
are

Abbreviations, slang and emoticons can be solved
partly by using a Twitter dictionary. However, the
Twitter dictionary is never completed since new
abbreviations are created everyday and there is no
rule to generate such slang and abbreviations.
Another solution to this problem is to learn word

2‡http://www.webopedia.com/quick_ref/Twitter_Dicti
onary_Guide.asp

meaning from a large training data. Words need to
appear frequently enough to be learned by the system.
Beside the Twitter dictionary, word embedding
model is also used in our system to get the actual
meaning of slang and abbreviations.

Step 5: Replacing all three or more duplicate
consecutive characters with two

Another case of informal words is word
extensions being created by repeating some of its
characters (e.g., helllooooo). Several solutions have
been used by previous reseearch to solve this
problem. The simplest way is to use predefined rules
to normalize misspelling words by convert all repeat
characters into one. For example, 'yeeesss' is changed
to 'yes'. However, this approach also change correct
word into incorrect one (e.g., 'too' vs. 'to', 'loop' vs.
'lop', ‘hello’ vs. ‘helo’, etc.). We call this situation as
over-normalization.

Hamdan [7] addressed this problem by using
Brown corpus with 1000 hierarchical clusters over
217 thousand words. Original words and theirs
extensions are kept in one cluster (e.g. yes, yess,
yesss, yep). However, the Brown corpus cannot
foresee and store all words' extensions (e.g.,
yeeeesssssss). As a result, these words are
unrecognized by the system. Rouvier and Favre [4]
solved the problem of informal expressions by using
word embedding. However, many variants of words
still cause the sparseness of the feature space, thus
reduce the system's learning capability.

To solve the above mentioned problems
(unforeseeable/ new words and over-normalization),
first we remove all repeat characters in a word until
two repeat characters are remained. The output of this
step still contains misspelling words, which are not in
a word dictionary. However, this method can reduce
the representation space of tweets. Word vectors
generated by Fasttext word2vec are then applied to
get the semantic representation of words. At this
point, words with similar meaning and theirs
extensions will be located nearby in the semantic
space.

Step 6: Extracting the main clause in a tweet
having a contrast relation

In natural language, contrast relation is used to
connect two or more clauses with contrast meaning.
For example, "I thought it was good, but it was
awful." The first clause of the about sentence is
positive, however the sentence is negative as the
second clause is negative. Since tweets often are
ungrammatical sentences, we do not sepatate clauses
in a tweet based on a syntactic parser. Instead,
contrast words such as "but", "however", "on the
contrary", … are used to do this task. If there is a

http://dblp.dagstuhl.de/pers/hd/r/Rouvier:Mickael
http://dblp.dagstuhl.de/pers/hd/f/Favre:Beno=icirc=t

Journal of Science and Technology 131 (2018) 006-012

9

contrast word in a sentence, the text after this word
determines the sentiment polarity of the sentence.
Therefore in this step, if a sentence contains a
contrast word, the sentence is replaced by the text
after that word. A list of contrast words is manually
created in our system.

Steps 5 and 6 are our new proposed pre-
processing steps compared to other researches in this
field. Therefore these steps will be tested carefully in
our experiments, mentioned in Section 4.

3.2 Feature Selection

Different features have been implemented and
tested in our system in order to choose the most
useful features for sentiment classification. Our
proposed features are introduced next.

3.2.1 Word unigrams

Bag-of-Words is one of the most successful
feature representations in text categorization tasks. It
is also used in sentiment analysis (e.g., [7,8]) to
classify sentiment polarity, with each tweet being
represented as a vector of unigrams. This feature is
also used in our system to test the effectiveness of
unigram in sentiment classification. There are
1,749,910 unigrams in our unigrams dictionary in
total.

3.2.2 Semantic feature

Since tweets are very short and containing
various modifications of words, representing tweets
as vectors of unigrams as in some previous research
(e.g., [7,8]) will give us a large and spare vector
space, which will slow down the classification
process and result in inaccurate predict. To solve this
problem, instead of representing each tweet by a bag
of unigrams, semantic meanings of these words are
used. Based on our word2vec model trained by
Fasttext mentioned in Section 2, semantic values of
all words in a tweet are summed by each dimension
to get values for semantic features of the tweet. All
tweets are now represented by 300 dimension-vector
containing information about semantic meaning of
the tweet.

3.2.3 Sentiment feature

The sentiment score of a tweet is calculated by
summing word-sentiment associations of this tweet.
SentiWordNet [11] are used to get word-sentiment.
SentiWordNet is a lexical resource for sentiment
analysis which assigns to each synset of WordNet
three sentiment scores - positivity, negativity,
objectivity - between 0.0 and 1.0. It is used to find
semantically related words and to get words'
sentiment scores. Sample entries of SentiWordNet
can be found in Table 2.

Table 2: Sample SentiWordNet Entries

PO
S

ID PosSc
ore

NegS
core

SynsetT
erms

Gloss

a

01740 0.125 0 able#1 (usually followed
by `to') having the
necessary means …

a 19731 0.125 0.125 handy#1 easy to reach ...

In the above table, each line contains
information about part-of-speech, synset's ID,
positive score, negative score, synset term, and
glossary. POS with the value 'a' means that the synset
is an adjective. The sum of positive scores and the
sum of negative scores are added to the feature
vector.

3.2.4 Negation feature

Negation words such as “not”, "cant", and
"never" can change the sentiment of a sentence from
positive to negative and vice versa. Therefore, this is
an important feature in sentiment classification.

Some research uses question mark ("?") as a
negation feature. However, our empirical study find
that it is not always the case. For example, the
statements "Why am I feeling worse" is a negative
statement; "Why am I feeling worse?" is still a
negative notion. Therefore, question mark is not used
as a feature in our classification system.

If a sentence contains negation words, the
negation feature is 1, and 0 if otherwise. To detect
negation words, a negation dictionary is manually
constructed from Sentiment140 dataset, including 19
negation words and symbols.

3.3. Classification algorithm

We consider the task of classifying a tweet as
positive, negative, and neutral. Several classifying
algorithms are tested in order to find the best
performance one. K Nearest Neighbor and Support
Vector Machines are chosen since they are widely
used and provide high perfomance in this task. By
empirical study different values of k, the number of
neighbors (k) is set to 24, which gave us most
accurate results. Besides, a Voting Classifier - a
modifying version of Adaboost - is also used. This is
a type of "Ensemble Learning" where multiple
learners are employed to build a stronger learning
algorithm. Since Decision Tree is often used as a
default weak learner in Adaboost, it is also
considered as a classifier in our experiments.

Our Voting Classifier applies a soft voting
method to predict the class labels by averaging the
class-probabilities which taken from the outputs of

Journal of Science and Technology 131 (2018) 006-012

10

Decision Tree, kNN, and SVM. The soft voting for
each tweet is computed as:

yVoting Classifier = argmaxv(∑i wi*pi,v) (1)

where wi is the weight of the classifier i; pi,v is the
probability that the classifier i assigning sentiment
polarity v for the input tweet. wi≥0 and ∑ 𝑝𝑝𝑖𝑖,𝑣𝑣𝑣𝑣 = 1
for ∀i.

4. Experiments

4.1 Dataset

Three Twitters datasets were used in our
experiments: Sentiment140, Twitter 2013 in
SemEval2013 and Twitter 2016 in SemEval2016 for
task 4, subtask A§. Sentiment140 dataset with 1.6
millions tweets was used to train by word2vec model
to get its word embedding.Twitter 2013 and Twitter
2016 training and developing dataset were used to
train our sentiment classifiers. The total data in two
Twitter training datasets is more than 15000 samples.
Each sample has a link for retrieving data from
Twitter. However, some of the links were no longer
available on Twitter. As a result, only 19337 tweets
are retrieved with 8152 positives, 8133 neutral, and
3052 negatives. For the test dataset, 3547 tweets are
retrieved from 3813 ones in Twitter 2013 test dataset;
20632 tweets were retrieved form Twitter 2016 test
dataset with no tweet unavailable.

 Since the size of Twitter 2013 test corpus we
can get is smaller than actual dataset used in SemEval
2013 competition, we cannot directly comparable our
result with other research used Twitter 2013 test
dataset. Therefore, only Twitter 2016 dataset were
used for evaluating our system performance. The
detail description of the data available for download
is given in Table 3.

Table 3. Statistics of the successfully downloaded
part of the SemEval 2013 and SemEval 2016 Twitter
sentiment classification dataset.

Dataset Total Posit. Negat. Neutr.
Twitter 2013 (train) 9,684 3,640 1,458 4,586
Twitter 2013 (dev) 1,654 575 340 739
Twitter 2016 (train) 6,000 3,094 863 2,043
Twitter 2016 (dev) 1,999 843 391 765
Our training data 19,337 8,152 3,052 8,133
Twitter 2016 (test) 20,632 7,059 3,231 10,342

4.2 Experimental Setting

§Since we are unable to get Twitter dataset in
SemEval 2017, the datasets in SemEval 2013 and
SemEval 2016 are used in our experiments.

Since all systems that we compared withused macro-
averaged F1-score to evaluate the system
performance, this measure was also used in our
system. The first experiment was carried out to find
the best algorithm among four classification
algorithms mentioned in Section 3.3. Our proposed
feature sets used in this experiment including
semantic features, sentiment features, and negation
feature. Table 4 presents our system performance
withthese classifiers.

Table 4: Our System Performance with Four
Classifiers

Classifier F1-score (%)
DecisionTree 52.2
KNN 57.0
SVM 59.6
Voting Classifier 63.7

Table 4 points out that SVM is the best among
three classifiers Decision Tree, kNN, and SVM. The
weight wi of each classifier (i.e., Decision Tree, kNN,
SVM) were optimized during the training time of the
Voting algorithm. Different sets of weights have been
tested using the training data. The best values are
wDT = 1, wkNN = 1, wSVM = 2. Experimental results
shown that the Voting Classifier provided a better
result than SVM with the F1-score 4.1% higher.

By analyzing system results, we found one
reason for the low F1-score of sentiment analyzing
systems in general is that tweets (and maybe other
text types) often contain a mix of positive and
negative sentiment. For example, the text "Yup no
more already... Thanx 4 printing n handing it up."
can be classified as either positive or negative
sentiment. Putting such a tweet in only one class
(e.g., positive, negative) will reduce the system
accuracy.

To test the effectiveness of our proposed
preprocessing steps 5 and 6, unigrams, semantic and
negation features, we carried out experiments with
our best classifier - Voting Classifier, using the
following scenario:

1. using all preprocessing steps + unigrams +
sentiment + negation features

2. using all preprocessing steps + semantic +
sentiment + negation features

3. using all preprocessing steps + semantic +
sentiment

4. using preprocessing steps 1,2,3,4,6 +
semantic + sentiment + negation features

5. using preprocessing steps 1,2,3,4,5 +
semantic + sentiment + negation features

Journal of Science and Technology 131 (2018) 006-012

11

Experimental results are shown in Table 5
below.

Table 5. Our System Performance with Different
Feature Sets

Scenario 1 2 3 4 5

F1-score (%) 55.2 63.7 58.3 53.5 63.5

Table 5 proves that using semantic features
instead of unigrams does not only reduce the
representation space but also improve the system
performance (from 55.2% to 63.7%). It confirms that
replacing unigrams by semantic features is a good
choice in the sentiment analysis task for social
network text. The F1-score in scenario 3 drops from
63.7% (in scenario 2) down to 58.3%, proving that
negation feature is necessary for the sentiment
analysis task.

To investigate the effectiveness of Step 5 in our
preprocessing step, we removed this step from the
preprocessing task; retrained Fasttext's word
embedding model; retrained and tested the system
with the new preprocessing module. The F1-score in
this case fell dramatically from 63.7% to 53.5%. It
proves that this step is very important in dealing with
informal text as in social network.

The F1-score in scenario 5 reduces a little bit
(0.2%) comparing to the case using contrast words. It
indicates that using contrast words has a positive
effect in this task. Analyzing system outputs points
out that the text before the contrast word can be used
to determine the sentence polarity when the sentiment
polarity of the text after the contrast word is unclear.
We believe that integrating this idea into our system
can promote the system performance further. This
will be one of our future works.

Our experiments with different scenario gave us
the best result of 63.7%, when using the Voting
Classifier with the feature sets: semantic features,
sentiment features, and negation feature.

5. Comparison with other systems

Results of SemEval2016 competition prove that
deep learning is the most powerful approach, with all
top four systems use deep neuron networks. In this
experiments, our system was compared with the top
three systems at SemEval2016, which are
Switchcheese [12], Sensei-LIF [4], and Unimelb [5].
We also compared our system with Aueb [6] and
PUT [8]. Aueb achieved the highest result among the
ones did not used deep learning at this contest. PUT
[8] applied some boosting mechanisms (i.e., Random
Forests, Gradient Boosting Trees) similar to us.
However, it did not have the preprocessing steps 5

and 6 proposed by us. Note that each research used a
different training set. Sensei-LIF [4] used the train
and development corpora from Twitter 2013 to 2016
for training and Twitter 2016-dev as a development
set. Aueb [6] trained the system by using data from
SemEval-2013 Task 2 and SemEval-2016 Task 4.
Therefore, we did not seek for systems using the
same training set like us. Instead, our system and the
systems that we compared with must have the same
test set (Twitter 2016).

Table 6. Performance Comparison

 Rank in
SemEval 2016

F1-score
(%)

Switchcheese [12] 1 63.3
Sensei-LIF [4] 2 63.0
Unimelb [5] 3 61.7
Aueb [6] 5 60.5
PUT [8] 14 57.6
Our system 63.7

Since our research concentrates on improving
preprocessing task, investigating and proposing
important features for classification algorithms, deep
learning is not used in our system. However, Table 6
shows that our system outperforms the first ranked
system in SemEval 2016 campaign using deep
learning techniques. It proves that our preprocessing
step 5 is very efficient in promoting the system
performance. It boosts the F1-score of our system
from a value lower than that of the 14th ranked system
in SemEval 2016 to a value higher than that of the
first ranked one (see Table 5 - scenario 2 and 4, and
Table 6 for details).

6. Conclusions

This paper has introduced our approach to
Twitter sentiment analysis. In the preprocessing step,
we have proposed methods to deal with repeated
characters in informal expression of words and
contrast words in text. Different feature types have
been carefully investigated and selected for the
classification task. A voting classifier - a soft-voting
method has been proposed to combine results from
three classifications (i.e., Decision Tree, kNN, and
SVM). Our experiment results show that our
proposed system achieved good results compared to
related research in this field, using the same testing
dataset. Our future work include carrying out a more
carefully investigation on the use of contrast words,
as well as proposing new features using in classifying
algorithms. Deep learning methods are also one of
our research targets in order to improve the system
performance of our sentiment analyzing system.

Journal of Science and Technology 131 (2018) 006-012

12

References
[1] Corinna Cortes, Vladimir Vapnik, 1995. Support-

Vector Networks, Machine Learning, 20, pp.273-297.

[2] Ajay Deshwal,Sudhir Kumar Sharma. 2016. Twitter
sentiment analysis using various classification
algorithms. In Proceeding of CRITO 2016.

[3] Svetlana Kiritchenko, Xiaodan Zhu Xiaodan, Saif M.
Mohammad. 2014. Sentiment Analysis of Short
Informal Texts. Journal of Artificial Intelligence
Research 50 (2014) 723-762

[4] Mickael Rouvier, Benoît Favre: SENSEI-LIF at
SemEval-2016 Task 4: Polarity embedding fusion for
robust sentiment analysis. In Proceeding of NAACL-
HLT 2016, 202-208

[5] Steven Xu, Huizhi Liang, Timothy Baldwin:
UNIMELB at SemEval-2016 Tasks 4A and 4B: An
Ensemble of Neural Networks and a Word2Vec
Based Model for Sentiment Classification. In
Proceeding of NAACL-HLT 2016, 183-189

[6] Stavros Giorgis, Apostolos Rousas, John
Pavlopoulos, Prodromos Malakasiotis, and Ion
Androutsopoulos. 2016. Aueb.twitter.sentiment at
SemEval-2016 Task 4: A Weighted Ensemble of
SVMs for Twitter Sentiment Analysis. In Proceeding
of NAACL-HLT 2016.

[7] Hussam Hamdan. 2016. SentiSys at SemEval-2016
Task 4: Feature-Based System for Sentiment Analysis
in Twitter. In Proceeding of NAACL-HLT 2016,
190-197.

[8] Mateusz Lango, Dariusz Brzezinski, Jerzy
Stefanowski. PUT at SemEval-2016 Task 4: The
ABC of Twitter Sentiment Analysis. 126-132.
NAACL-HLT 2016.

[9] P. Bojanowski, E. Grave, A. Joulin, T. Mikolov.
2016. Enriching Word Vectors with Subword
Information. arXiv preprint arXiv:1607.04606

[10] Go, A., Bhayani, R., & Huang, L. 2009. Twitter
sentiment classiffcation using distant supervision.
Tech. rep., Stanford University.

[11] Stefano Baccianella, Andrea Esuli, and Fabrizio
Sebastiani. 2010. Sentiwordnet 3.0: An enhanced
lexical resource for sentiment analysis and opinion
mining. In Proceedings of the International
Conference on Language Resources and Evaluation.

[12] Jan Deriu, Maurice Gonzenbach, Fatih Uzdilli,
Aurélien Lucchi, Valeria De Luca, Martin Jaggi:
SwissCheese at SemEval-2016 Task 4: Sentiment
Classification Using an Ensemble of Convolutional
Neural Networks with Distant Supervision. In
Proceeding of NAACL-HLT 2016, 1124-1128

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Ajay%20Deshwal.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Ajay%20Deshwal.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Sudhir%20Kumar%20Sharma.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Sudhir%20Kumar%20Sharma.QT.&newsearch=true
http://dblp.dagstuhl.de/pers/hd/r/Rouvier:Mickael
http://dblp.dagstuhl.de/pers/hd/r/Rouvier:Mickael
http://dblp.dagstuhl.de/pers/hd/f/Favre:Beno=icirc=t
http://dblp.dagstuhl.de/pers/hd/f/Favre:Beno=icirc=t
http://dblp.dagstuhl.de/db/conf/naacl/index.html
http://dblp.dagstuhl.de/db/conf/naacl/index.html
http://dblp.dagstuhl.de/db/conf/naacl/index.html
http://dblp.dagstuhl.de/db/conf/naacl/index.html
http://dblp.dagstuhl.de/pers/hd/x/Xu:Steven
http://dblp.dagstuhl.de/pers/hd/x/Xu:Steven
http://dblp.dagstuhl.de/pers/hd/l/Liang:Huizhi
http://dblp.dagstuhl.de/pers/hd/l/Liang:Huizhi
http://dblp.dagstuhl.de/pers/hd/b/Baldwin:Timothy
http://dblp.dagstuhl.de/pers/hd/b/Baldwin:Timothy
http://dblp.dagstuhl.de/db/conf/naacl/index.html
http://dblp.dagstuhl.de/db/conf/naacl/index.html
http://dblp.dagstuhl.de/db/conf/naacl/index.html
http://dblp.dagstuhl.de/db/conf/naacl/index.html
http://dblp.dagstuhl.de/pers/hd/h/Hamdan:Hussam
http://dblp.dagstuhl.de/pers/hd/h/Hamdan:Hussam
http://dblp.dagstuhl.de/pers/hd/h/Hamdan:Hussam
http://dblp.dagstuhl.de/pers/hd/h/Hamdan:Hussam
http://dblp.dagstuhl.de/db/conf/naacl/index.html
http://dblp.dagstuhl.de/db/conf/naacl/index.html
http://dblp.dagstuhl.de/db/conf/naacl/index.html
http://dblp.dagstuhl.de/pers/hd/l/Lango:Mateusz
http://dblp.dagstuhl.de/pers/hd/l/Lango:Mateusz
http://dblp.dagstuhl.de/pers/hd/l/Lango:Mateusz
http://dblp.dagstuhl.de/pers/hd/b/Brzezinski:Dariusz
http://dblp.dagstuhl.de/pers/hd/b/Brzezinski:Dariusz
http://dblp.dagstuhl.de/pers/hd/b/Brzezinski:Dariusz
http://dblp.dagstuhl.de/pers/hd/s/Stefanowski:Jerzy
http://dblp.dagstuhl.de/pers/hd/s/Stefanowski:Jerzy
http://dblp.dagstuhl.de/pers/hd/s/Stefanowski:Jerzy
http://dblp.dagstuhl.de/pers/hd/s/Stefanowski:Jerzy
http://dblp.dagstuhl.de/pers/hd/s/Stefanowski:Jerzy
http://dblp.dagstuhl.de/pers/hd/s/Stefanowski:Jerzy
http://dblp.dagstuhl.de/db/conf/naacl/index.html
http://dblp.dagstuhl.de/db/conf/naacl/index.html
http://dblp.dagstuhl.de/db/conf/naacl/index.html
http://dblp.dagstuhl.de/pers/hd/d/Deriu:Jan
http://dblp.dagstuhl.de/pers/hd/d/Deriu:Jan
http://dblp.dagstuhl.de/pers/hd/d/Deriu:Jan
http://dblp.dagstuhl.de/pers/hd/g/Gonzenbach:Maurice
http://dblp.dagstuhl.de/pers/hd/g/Gonzenbach:Maurice
http://dblp.dagstuhl.de/pers/hd/g/Gonzenbach:Maurice
http://dblp.dagstuhl.de/pers/hd/u/Uzdilli:Fatih
http://dblp.dagstuhl.de/pers/hd/u/Uzdilli:Fatih
http://dblp.dagstuhl.de/pers/hd/u/Uzdilli:Fatih
http://dblp.dagstuhl.de/pers/hd/l/Lucchi:Aur=eacute=lien
http://dblp.dagstuhl.de/pers/hd/l/Lucchi:Aur=eacute=lien
http://dblp.dagstuhl.de/pers/hd/l/Lucchi:Aur=eacute=lien
http://dblp.dagstuhl.de/pers/hd/l/Luca:Valeria_De
http://dblp.dagstuhl.de/pers/hd/l/Luca:Valeria_De
http://dblp.dagstuhl.de/pers/hd/l/Luca:Valeria_De
http://dblp.dagstuhl.de/pers/hd/j/Jaggi:Martin
http://dblp.dagstuhl.de/pers/hd/j/Jaggi:Martin
http://dblp.dagstuhl.de/pers/hd/j/Jaggi:Martin
http://dblp.dagstuhl.de/db/conf/naacl/index.html
http://dblp.dagstuhl.de/db/conf/naacl/index.html
http://dblp.dagstuhl.de/db/conf/naacl/index.html

	1. Introduction0F

