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Abstract

In the mechanisms and machines operating at high speeds, the elastic vibration of links is inevitable. In this
paper the dynamic modeling and controller design for a flexible four-bar mechanism are studied. The fully
coupled non-linear equations of motion are obtained by using the Lagrange’s equations with multipliers for
constrained multibody systems. The resulting differential-algebraic equations are solved using numerical
methods. A simple PD controller is designed to reduce the influence of the elastic link on the desired motion.
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1. Introduction

Traditionally, dynamic analysis and control of
mechanisms have been based on the assumption that
the links behave as rigid bodies. The demand for high
speed lightweight machinery requires a redesign of
the current mechanisms. Unfortunately, reducing the
weight of four-bar mechanisms and/or increasing
their speed may lead to the onset of elastic
oscillations, which causes performance degradations
such as misfeeding in the case of the card feeder
mechanism in Sandor et al [1]. Therefore, the
dynamic analysis and control vibration of flexible
mechanisms are required. Although dynamic analysis
of flexible mechanisms has been the subject of
numerous investigations [1-6], the control of such
systems has not received much attention [2-4]. Most
of the work available in the literature which deals
with vibration control of flexible mechanisms employ
an actuator which acts directly on the flexible link.
The effect of the control forces and moments on the
overall motion is neglected. An alternative method
would be to control the vibrations through the motion
of the input link.

The current study deals with the control of a
four-bar mechanism with a flexible coupler link. An
actuator is assumed to be placed on the input link
which applies a control torque. A simple PD control
is designed which requires measurements of the
position and angular velocity of the input link only.

2. Equations of motion of the four-bar mechanism
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A four-bar mechanism OABC is shown in
Figure 1. The mechanism consists of the rigid crank
OA of length 1;, the flexible rod AB of length 1, and
the rigid rod BC of length I3, the distance OC is lo, ©
is the external torque acting on the crank joint. e!”

and e} are the unit vectors of the fixed coordinate

system Oxoyo. €, and e, are the unit vectors of the

reference coordinate system Axy which is rotated
with an angle ¢, to the fixed one. Three
variables ¢, @2 and @3 are the angles between the xo-
axis and crank OA, the x¢-axis and flexible link AB,
the xo-axis and output link BC, respectively.
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Fig. 1. Diagram of the four-bar mechanism

It should be noted that in general the constraint
equations depend on the elastic deformations. In this
study, the transverse deformations are neglected.
Therefore, the constraint equations here depend on
the longitudinal deformations:

fi =1, coss, +(l2 +u(lz,t))cos;' ,—l;cos7 ;—1,=0
f, =1, sing , +(1, +u(lz,t))sin;' ,—l;sing ;=0
(1)
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Ritz-Galerkin method is applied to the coupler
link. The axial deformation of the coupler link is
written as [7, 8]

N
w(x1)="y X,(x)q(t) ©)
i=1

where qi(t) are the modal coordinates and X;(x) are
the mode shapes of the rod. The boundary conditions
are as follows:

uon=0; pa2L0_g 3)
ox
The mode shapes are given as [7]:
Xi(x)zBisin[Zl_I'{;—x) @)
2

To simplify the equation (4) take B; = 1.

The kinetic energy of the four-bar mechanism
shown in Figure 1 is given by

1, ., 1

I
. 1% .
T=Tp+Tpe+Ty 25107' 12 +=17 32 +5J."”"151dx(5)
0
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where Io and Ic are the mass moments of inertia of
the input and output links with respect to the joint
axes, respectively, p is mass per unit length of the
coupler link, and ry is the position vector of a point
M on the coupler link given as

ry =r, +(x+u)e] (6)

The coordinates of the point M in the fixed
coordinate system are given as:

Xy =1,cos7 ,+(x+u)coss ,

(N

w =1, sing , +(x+u)sing ,

By differentiating the equations (7) combined
with equation (4), and then substituting into the
equation (5), the kinetic energy is obtained as

wl)l}
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where C, =]Z'Xl.dx,Di = TxXidx 5 my =]Z.XiX_,dx
0 0 0

The strain energy according to Reddy [9] is given by

7 ‘—EAI(auj d"-éEAzzkuq 49,

=1 j=1

€)

I,
where k, :J‘X,.’X;.dx
0

The Lagrange's equations for constrained
holonomic systems are [8]:

der ) or op 2, of,
Nl P AN A4 3 o 10
dILGZj] o4, o4, [; S MU

J

where m; are the generalized coordinates which
include rigid body coordinates ©i1, @2, @3 as
well as elastic modal coordinates qj; fx are the
constraint equations, A; and A, are Lagrange
multipliers; and Q; are the generalized forces. By
substituting equations (1, 8, 9) into equation (10), we
obtained the equations of motion of the system as:
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wherei=1,2,..,N;
3 1 when i=2k+1,k=12,..
TVl wheni=2k k=12,.
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3. Dynamic analysis

A set of (3+N) differential equations (11-14) and
two algebraic constraint equations (1) are the motion
equations of mechanism with an elastic link.
Therefore, we have (5+N) differential-algebraic
equations with (5+N) variables given as

M(s,t)s +® (s,t)A=p,(s,51)

fis,))=0

where s =[@1 @2 03 q1...qn M A2]T; A is vector of
Lagrange multipliers; f is the vector of constraint
equations. In this paper, the Lagrange multipliers
partition method is used to solve the system of
differential-algebraic equations (15) and (16)
numerically. Some other algorithms can be found in
Khang [8].

(15)
(16)

For comparison purposes, another set of
simulations is carried out by assuming that the
coupler link behaves as a rigid body (i.e., neglecting
the longitudinal deformations). The values of the
parameters used in the simulations are given in Table
1. The torque on the input link is given by:

z,sin(26t/T,) t<T,
z(t)= 17
(1) {0 L

m

where 7y is the peak torque and Ty, is the duration of
the torque.

The initial conditions are selected as follows:
angle of input ¢;0 = /2, angular velocity of input link
7 ,0=0, eclastic deformations gio = 0 and elastic

deformations velocity g,, = 0. By using the Newton -

Raphson method for solving constraint equations (1a,
b) with the initial conditions as above, we obtain the
initial positions of the other links as:

70 =06752rad 7 4, =2.1564 rad .7 , =0, 7 ;, =0.

Figures 2 and 3 compare responses of rigid and
flexible mechanism with a peak torque magnitude of
70 = 0.03 Nm and Ty, = 1s. As mentioned in section 1,
because of the fully coupled nature of the equations,
the rigid body coordinates (e.g., input and output link
angular displacements) are affected by the elastic
deformation of the coupler link. However, this effect
is negligible when the peak of torque is small.

Another set of simulations is carried out with a
peak torque magnitude of 1o = 0.1 Nm, Ty, = 1s and
the simulations are performed during the period from
0 to 3s. The responses for the flexible and rigid
models of the four-bar mechanism are shown in
Figures 4 through 6. The effect of flexibility is now

clearer, since the larger torque causes larger elastic

deformations.

Table 1. Parameters of four-bar mechanism

Constant Description Value
[unit]
lo[m] Length of the ground link | 0.4064
[;[m] Length of the input link 0.0635
[>[m] Length of the coupler link | 0.3048
I3[m] Length of the output link | 0.3048
Iolkgm?] Moment of inertia of the | 7.466
input link x10®
Iclkgm?] Moment of inertia of the | 2.002
output link x103
lkg/m] Mass per unit length 0.2237
E[N/m?] Modulus of elasticity 2.06x10"!
Alm?] Cross-sectional area of | 8.19
the coupler link x10¢
mikg] Mass of the input link 0.0142
mzlkg] Mass of the coupler link 0.0682
mslkg] Mass of the output link 0.0682
25
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Fig. 2. Crank angle, 7o = 0.03 Nm.
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Fig. 3. Output angle, 1o = 0.03 Nm.

- rigid, —— flexible.
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Fig. 4. Crank angle, 7o = 0.1 Nm
............ rigid, —— flexible.
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Fig. 5. Output angle, 1o = 0.1 Nm.
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Fig. 6. Longitudinal deformation of flexible coupler
link, To = 0.1 Nm.

4. Control flexible four - bar mechanism

The governed equations are highly non-linear
differential equations. Most control designs require a
linear unconstrained model. In this case a
straightforward linearization is not possible since it
may be difficult to find an operating point. However,
the equations can be linearized around a rigid body
trajectory. Since the main goal of the controller is to
suppress vibrations, a rigid body trajectory can be
used as the nominal trajectory and the deviations
from this can be assumed small. The real trajectory of
flexible mechanism can be obtained as follows

71571t

7257212

73573 tY;

Ysri =4
where @4, @24, @34 represent the rigid mechanism
trajectory; y;, y2, ¥3 are deviation of flexible trajectory

versus rigid trajectory. It is assumed that y;, y2, ys3,
y3+; are small.

(18)

In order to investigate whether it is possible to
suppress vibrations of the flexible link by a control
torque applied to the input link, a simple control
strategy, in particular PD controller is used. The
target of the controller is that y;, y2, y3, y3+ approach
zero when time approaches infinity (or large
enough). The control torque applied to the input link
is given by:

¢, =-K,y,—K;y, (19)

where K, Kgq are the PD controller gains,
Y, =7,-7 145 Y,=7,—7 .- Thus, the total torque
acting on the input link is T + tc.
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Fig. 7. Crank angle with PD controller, 7o = 0.1 Nm
------------ rigid, —— flexible.
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Fig. 8. Output angle with PD controller. 1o = 0.1 Nm.
rigid, —— flexible.
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Fig. 9. Longitudinal deformation of flexible coupler

link with PD controller, 7o = 0.1 Nm.
rigid, flexible.

Now, we will suppress vibrations in case the
peak torque magnitude of 7o = 0.1 Nm and T, = 1s
(e.g., Figures 4 — 6). The parameters used in the
simulations are given in Table 1. The controller gains
are chosen as K, = 0.5, Kg = 0.2. The calculating
results are shown in Figs 7 9. These
results show that controller is able to suppress the
vibrations and control the link angular motions. In
Figure 9 the longitudinal deformation is suppressed
within 0.85 s.

5. Conclusions

In this study, dynamic modeling and control of a
four-bar mechanism with flexible coupler link has
been investigated and it was assumed that there is
only axial deformation. The non-linear equations of
motion are obtained through a constrained
Lagrangian approach and described by a set of
differential-algebraic  equations. The governed
differential-algebraic equations are solved

10

numerically to simulate the system behavior. A
simple PD controller was designed which does not
require measurement of the elastic deformations. The
controller has been shown to be efficient in
suppressing the vibrations of the flexible link as well
as controlling the rigid body motion.
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