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Abstract

This paper presents three analytical methods to determine optimal parameters of the passive mass-spring-
disc dynamic vibration absorber (DVA), such as the ratio between natural frequency of DVA and shaft, damping
ratio of DVA. The original model presented by Den Hartog, Luft and Warburton are solved and has shown in
good agreement. Three analytical methods is then adopted for torsional shaft model. The simulation results
indicate that the effectiveness in torsional vibration could be reduced. Finally, the optimal parameters of DVA
were applied to decrease the shaft torsional vibration considering the vibration duration and stability criterion.
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1. Introduction

The dynamic vibration absorber (DVA) or tuned-
mass damper (TMD) is a widely used passive vibration
control device. When a mass-spring system, referred to
as primary system, is subjected to a harmonic excitation
at a constant frequency, its steady-state response can be
suppressed by attaching a secondary mass-spring
system or DVA. This idea was pioneered by Watts in
1883 and Frahm in 1909. However, a DVA consisting
of only a mass and spring has a narrow operation region
and its performance deteriorates significantly when the
exciting frequency varies. The performance robustness
can be improved by using a damped DVA that consists
of a mass, spring, and damper. The key design
parameters of a damped DVA are its tuning parameter
and damping ratio.

The optimization technique for original model that
is described in detail by Den Hartog [1]. The optimum
tuning ratio of the neutralizer was found as a function of
the neutralizer’s mass given by

1
= 1
“ o 1+m ( )
and the damping ratio of the absorber
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where « is the ratio of the absorber’s mass to the
primary structure’s mass.

Since then, the fixed-points theory and DVA
structures have become one of the design laws used in
optimizing design of the damped and undamped
primary system [6-8].

Luft proposed methodology MEVR (maximum of
equivalent viscosity resistance) for the original model
[2]. Later, Warburton used minimum of quadratic
torque method (MQT) and found that the damping in
the neutralizer can also be optimized [3]. The results

was given by
x = |—
o 414w/ 2)(1+ )

Ny
o 1+ ’

This paper presents three analytical methods such
as FPM, MQT and MEVR to determine optimal
parameters of the dynamic vibration absorber (DVA)
for new shaft model such as the ratio between natural
frequency of DVA and shaft, the damping ratio of
absorber. Since then we compare and evaluate optimal
effectiveness of those methods. Based on the main idea
is to build a program that calculates to prove optimal
analytic solution of the original model, which applies to
torsion shaft model. Optimal parameters are presented
as very neat analysis. The simulation results indicate
that the effectiveness in torsional vibration reduction.
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2. Shaft modeling and equations of vibration

Fig.1. Modeling of the shaft system with DVA.

In this study, the shaft model shown in Figure 1 is
considered. The shaft is modeled as a torsion spring
which has stiffness k; and a disc which has moment of
inertia is J, and rotating at the constant angular
velocity Q is disturbed by harmonic torque M(z). The

passive mass-spring-disc dynamic vibration absorber
(DVA) is attached on the shaft to minimize the
torsional vibration of the shaft.

hub

Fig. 2. Modeling of the DVA

Figure 2 shows the model of the DVA used in this
study. The DVA contains a passive disk and springs-
dampers system. The radius and moment of inertia of
the passive disk are R, J,, respectively. The shaft and
the passive disc are linked together by springs and
dampers system. The stiffness of each spring is ks, The
viscous coefficient of each damper is c, n is the
number of springs-dampers. The angular displacement
of the rotor is 7 . and the torsional vibration of shaft

can be written as ¢ (1) =7 , —Qt .

The relative angular displacement between the rotor
and passive disk as7 , .

The system equations of motion can be expressed by

(J,+J,)g +J 7 +kg =M(1) @)
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The natural frequency of the DVA and the shaft,
respectively

Jag"+Ja;"a +ncaezz;"u +nkuelzj .=0

k k
S Q=T ©)
“ md Jr
Introducing the dimensionless parameters
w=ig =ty S Ay 28 @
m, 7, 7, 7,
a =w—“;£ =2 = S 8)
QS QS m{lw a
where w is the frequency of excitation torque
Therefore, Eqs.(4) and (5) can be expressed by
(14mk > )g +m f, + Qg =JM 9)
wh’g ¥k F AmaQal s+
9 7 asmb 7, (10)
+1a *Qlmg 7, =0
The matrix form of Eqs.(9,10) are expressed as
Mg+Cq+Kq=F (11

where q=1{5 7,

The mass matrix, viscous matrix, stiffness matrix
and excitation force vector can be derived as

2 2 0
M = 1+ wmd wih C= . (12)
0 ma,Qst

wh® ok’
O? 0 M©)
K =[ os oy 2} F={ J, (13)
na "L g 0

3. Determine optimal parameters of the DVA

3.1. Fixed-points theory for optimal design
The forced vibration of this system will be of the form
M) =Me"™ (14)

Thus, the stationary response of this system which can
be written as

g =g e, 7. ()=F,¢e" (15)

where gA and;", are complex amplitude vibration of

the primary system and DVA, respectively.



Journal of Science and Technology

Substituting Eqs.(14-15) into Eq.(11), this becomes

o 0
0 e Qg

Hence the stationary response of the primary
system is expressed as

~ A +iAp

M
T TN iAg

k

§

an

where
A== 2¢2n+£2é2; A, =—adn z.
A=a’dlumi’y’ +a 87 n—¢ % —ay n+d %’
A =ab b7 mn+ad’t’n—-ade’n

After short caculation the Eq.(17) we obtained the

real amplitude of the vibration response, which can be
written as

M

A12 + 271 2
ks

At AL

M
kS

()| = as)

where A is called the amplifier function that is
defined by

(19)
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Fig. 3 The graph of amplifier function

Figure 3 shows a plot of the amplifier fuction with

39

some of damping ratio. For ¢ = 0 or ¢ becomes infinite
so the amplifier fuction curve becomes infinite. That
means some where in between there must be a value of
damping ratio for which the peak becomes a minimum.
Two other curves are draw in Fig. 3, for £=0.1 and 0.4.

The first step of this method is to specify two
fixed points. Suppose that two points (S and T) with
horizontal coordinates as a f;, 2. The conditions for A
does not depend on the damping ratio is expressed as
follows

O0A
—=0 20
% (20
Substituting Eq.(19) into Eq.(20), this becomes
242 A2 42
- 5 3 AIZ + Zx 2
(A7 +47) AT AL
= AA -AA =0 (22)
From Eq.(22), we have
‘% |z:4, - % ‘;:4, (23)
4
‘% o =[] 4
3 Y

We obtain the value of A at two points (S, T) these
are expressed as follows

A=, e5)
‘4
4

A|T = sz |z =4, (26)

Den Hartog [1] reported that the graph of amplifier
function does not change in between the two peaks (S,
T) when the vertical coordinates of the S and T must be
equal. In this condition, we have

A=A 7)

T

The optimal parameter of o and p are specifed by
solving Eqs.(23-27) which can be written as

N 4

2 =a = (28)
9\/;(méz+l)
N " 1
60, =4¢,,=H /M2+2+méz+l (29)
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Then, the optimum absorber damping can be
identified as follows
0A
—=0 30
% (30)
Eq. (19) gives
A (A + A% )= AT+ A% 31

Taking derivative of Eq.(31) with respect to f3, this
becomes

2 64 (% ' o¢
r =— (32)
_aea, A 0A, _an A 0A P A %
oé o oé
Substituting Eq.(30) into Eq.(32) we obtain
—A? A, % +A %
T oé o¢ (33)
a 0A 0A,
“ACA A A T2
o T

Substituting Eqs.(28-29) into Eq.(33), this becomes

A pen O
PR o¢ (% (34)
T oA
od s
and
0A 0A,
A1 Y S A,
122 _ o¢ ol (35)
Az A2 8A
Bd

Brock [5] reported that the optimal value of
damping as follows

2 2
_ox_ [B +x,
xopt_x - 2

Substituting Eqs.(34-35) into Eq. (36) we obtain the
optimal value of damping ratio as following

it

(36)

3m

2n(l+ wh %) G
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3.2. Minimum of quadratic torque (MQT) for optimal
design

The state equations of Eqs.(9,10) are expressed as [3,9]:
y@) =By()+H M (1) (38a)

where
y=ls 7. ¢ 7. G

The system matrix B is derived in [4,9] and has the

form
0 E (380)
= C
-M'K -M'C
where E is matrix unit, E e R?
In this study, the B matrix can be obtained as
0 0 1 0
0 0 0 1
B=|-Q: na *Qlmg’ 0 ma Qo ’
(1+mk > )na *Qly (14w *) e *Q ?
N - é 2 - é 2
39

Matrix of excitation force is obtained as [4,9]

1

0o M'F| =0 0 s -7 o)
The quadratic torque matrix P is solution of the
Lyapunov equation [3]

BP+PB’ + SfoHfT =0 41)
where Sy is the white noise spectrum of the excitation
torque. The quadratic torque for vibration of shaft is
determined by solving the Eq.(41)

n’a 494(1+mé 2)2 +
2 (4w *) —
+n
1 6°a°g 2+ mh ) +4 "
By =ESf Q Ma ml 2m2 Zé 4 “2)
Minimum condition are expressed as
% =0; aaP” =0 (43)
a |, _.* (2

The optimal parameters of the DVA for design that was
determined by solving the Eqs.(42,43)
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3.3.Maximum of equivalent viscous resistance

(MEVR) for optimal design

The first step of this method is to specify these
quadratic torques. By solving the Eq.(41) these
quadratic torques for vibration of shaft were obtained as

Sf
e e o
s a4 27 ‘wn’ +a 47 ‘n’ +
b Lbeleine 20 e “
» 2Q nxa mtl 2mrzfz jé ¢

Sf(a 2¢2n—é %)

= 48
* 2ma Qe e ik “9
After short caculation the Eqs.(4,5) we obtained
m.z fg + kg =nk,e; ,+nc,ej , +M (49)

Hence the equivalent resistance torque on the primary
structure which was obtained as

M, =nke ,+nce;, (50)
Substituting Eqs.(7,8) into Eq.(50), this becomes
Meqv =nmga ZQfg 2y 3;’ L tmema Q) %y rz;"a (51)

Thus the equivalent resistant coefficient of the DVA on
the primary structure was obtained as

e ma €L % 3<;"ag.>+

im0 (s g ) |
&)

If the primary system is excited by random moment
with a white noise spectrum Sj; then the average value of
Eq.(52) are the components of the matrix P in Eq.(41),
Lyapunov equation, this means

{m maQ¢’ P, +}

Co=- (52)

+nma *Qlg°n 1P, 53)
c,=—
1d 1333

Maximum condition are expressed as

oc,,

Ox

=0 (54)

® =
2 =a v =¢

The optimal parameters of the DVA are determined by
solving the equation Eqs.(53-54)

N 4

P S (55)
" gn(l+mb )
2
o =F =7f—2 % (56)

4. Numerical simulations and discussions

In this paper, we survey the shaft with the
parameters in Table 2. The shaft rotating is disturbed by
the harmonic torque M(#) of amplitude 5 Nm and
frequency 18.849 rad/s.

Table 1. Value of optimal parameters

Parameters FPM MQT MEVR
@ 0.6670 | 0.6703 0.6737
x 0.0656 | 0.0537 | 0.0541

Table 2. The input parameters for simulation

Parameters Value Units
my 5.0 kg
My 0.1 kg
a 0.1 m
7 0.1 m
ep 0.06 m
2] 0.08 m
n 6 -
0.008 - [ !{\ {\ 5

RYRYAY

0001 003 005 008 0.10

T orsional vi bration, rad

=0.002 0.0006
)
gl -0.0004
-0.006 030507 09111 13 1.5
0 02 04 06 08 1 12 14 16 18 2
Time (s)
|—— FPM — — MQT — - — MEVR|

Fig. 4. Torsional vibration with optimized DVA

Table 1 describes the optimum value that
corresponding to the input data of Table 2. Simulation
results with optimal parameters described in Fig. 4.
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These results show that torsional vibration of shaft
without DVA has a harmonic form amplitude of about
0.02 rad.

Figure 4 shows that in the first 0.4s, the amplitude
of the torsional vibration reduces rapidly. Effectiveness
of the optimal DVA wusing FPM is highest in
comparison to the two other methods, however, the
difference between the viration response curves are
negligible, especially vibration responses of the system
with MQT and MEVR are nearly the same. This shows
the strength of the fixed-points theory compared to
other analytical methods. After the above period, the
torsional vibration of the shaft shifts to the steady state
with a very small amplitude of about 1.20E-03 rad. At
this stage, the vibration responses with optimal DVA
determined by all methods are almost identical.

5. Conclusions

In this paper, three analytical methods have been
developed and examined for new shaft model. The
same procedure as in the conventional analytical theory
has been used to derive the optimum tuning and
damping ratios of the device. Research results are
verified by numerical simulation with high reliability.
The optimal parameters were determined in analytical
form and furthermore leads to the simple explicit
formulas. The results presented in this paper may offer

new ways of using the device over the conventional one.
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