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Abstract

"

This paper evaluates the performance of a direct numerical simulation (DNS) method called "front-tracking
for multiphase flows. The interface separating two fluids or two phases is represented by connected
elements that move on a fixed rectangular grid used for solving the Navier-Stokes equations. The phase’s
values of material properties are specified by an indicator function that is reconstructed from the interface
point location. The interface points are updated by the velocities, which are interpolated from the velocities
on the fixed grid. The method is evaluated through a thorough investigation of the performance using a
variety of verification and validation test cases including advection of the interface, computations of the
surface tension, and interplay of the viscous and interfacial tension terms. The method is then used fo
simulate the evolution of the Rayleigh—Taylor instability. Good agreement in comparison of the present
method with the previous literature proved the accuracy and capability of the method.
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1. Introduction

Multiphase flows play an important role in the
workings of nature and engineering problems. In
terms of mathematics, multiphase problems are very
difficult. Therefore, exact analytical solutions are
available only for the simplest problems. In addition,
experimental studies of multiphase flows are not easy
to carried out. Accordingly, computational fluid
dynamics, including direct numerical simulations
(DNS), becomes a standard tool in multiphase flow
research.

For DNS, it is necessary to solve the full Navier-
Stokes equations, and a number of different
approaches have been developed and applied. One of
the pioneering works calls back to Harlow and Welch
[1], in which the authors distributed marker particles
throughout the fluid region. They solved the
governing equations on a regular grid that covers the
fluid-filled and the empty part of the domain.
Accordingly, the method is called "marker-and-cell"
(MAC) method. The next generation of methods for
multiphase flows was developed gradually from the
MAC method. One of the most known methods is the
volume of fluid (VOF) method that was introduced
and discussed by Hirt and Nichols [2]. In the VOF
method, the different fluids are identified by a marker
function that takes different values in the different
fluids. Other maker function methods include the
level set (LS) method, the phase field method, and the

Corresponding author: Tel.: (+84) 915.058.146
Email: truong.vuvanl @hust.edu.vn

59

cubic interpolated pseudo-particle (CIP) method. For
further discussions of these methods, the reader is
referred to Sussman et al. [3] for the LS method, [4]
for the phase field method, and Takewaki et al. [5] for
the CIP method. Instead of advecting the marker
function directly, the interface between the different
fluids can be tracked using marker points, and then
the marker function is reconstructed from the
information of the interface points. These methods
are referred to as "front-tracking" (FT) methods. One
of the most popular FT method is that introduced by
Unverdi and Tryggvason [6]. Detailed description of
the method and its applications can be found in [7]. In
the above-mentioned approaches, only one single
field governing equations are used, and the boundary
conditions, e.g., the surface tension force, at the
interface are introduced to the equations as the source
terms. Accordingly, these methods are called "one-
fluid" approaches. A long with development of the
one-fluid formulation methods, other techniques were
also explored, such as the boundary-fitted lagrangian
method

The front-tracking method introduced in [6] has
been widely used in multifluid and multiphase
problems [7], and recently in our works [10-12].
Despite the wide use of the front-tracking method, its
evaluation has been confined to validation problems
specific to the particular applications of interest to the
respective authors. This calls to question the
performance of the method for the various multiphase
flow problems. Accordingly, this paper presents a
detailed analysis of the behavior of the method over a
wide range of verification and validation problems
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including advection of the interface, computations of
the interfacial tension, and interplay of the viscous
and interfacial tension terms. These problems are
commonly used to verify and validate the accuracy
and capability of the DNS methods for multiphase
flows. We focus here only 2D problems.[8], and the
lattice-Boltzmann method [9].

Fig. 1. An interface represented by connected
elements on a fixed grid. Information is passed
between the front points and the fixed grid

2. Numerical method

The fluids are assumed incompressible,
immiscible and Newtonian. All phases are treated as
one fluid with variable density = and viscosity «. In
terms of the one-fluid formulation, the governing
equations include:

o(zu)/ot+V (= uu)=—Vp+V-m(Vu+VuT)

+¢g+J.f¢énfd(X—Xf)dS (1

V-u=0 2)

Here, u is the velocity vector, p is the pressure, g is
the gravitational acceleration, and ¢ is time. The
superscript T denotes the transpose. The last term in
Eq. (1) accounts for the interfacial tension force at the
interface. At the interface, denoted by f, ¢ is the
interfacial tension coefficient, 4 is twice the mean
curvature, and ny is the unit normal vector to the
interface. The Dirac delta function J(x—xy) is zero
everywhere except a unit impulse at the interfaces x;.
The above equations are discretized using a second-
order centered difference approximation for the
spatial derivatives and an explicit predictor-corrector
method for time integration. The discretized
equations are solved on a fixed, staggered grid using
the MAC method [1].

The interface separating two fluids is
represented by connected points on a fixed grid (Fig.
1). The movement of the interface points is given as
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where V is the velocity at the front point, which is
interpolated from the fixed grid points using a smooth

weighting function [13]

V=2 wu, “4)
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1/(4h)| 1 2h) |, 2h
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where £ is the grid spacing (Fig. 1), and i and j is the
indices of the fixed grid point. The information of the
front points is used to reconstruct an indicator that
has a value of one in one fluid and zero in the other:

VI = L_d (x—x,)n,dS (7
Then the density and viscosity fields are updated:
7 =111+(1—1)22; m=m11+(1—1)m2 (8)

To calculate the interfacial tension force, we first
calculate the net force on each front element:

4F, =J.Asaénds=J.As¢ Ot/osds = (tz—t]) ®

where t is the tangents of the end points of each
element. After that, this force is transferred to the
fixed grid (so that it is included in the solution of the
Navier-Stokes equations) using the same smooth
weighting function, i.e. Eq. (6),

F, =Y «Fw, As /I’ (10)
/

Here As; is the length of the element. In the following,
we briefly describe the solution procedures.

Suppose n time steps have been completed, to
calculate the solution at time level n+1 carry out the
following steps:

1. Update the position of the interface points
[Eq. (3)]

2. Reconstruct the indicator function, update the
material properties, and calculate the interfacial
tension force

3. Calculate an intermediate velocity field:

u' = (AA" ++ "u")/¢ i (1n

where the advection, the diffusion, the gravitational
body force and the interfacial tension force in Eq. (1)
are denoted by A
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4. Find the pressure field by solving the Poisson
equation:

(vu"“—vu*)/m:—v- Vp (12)

n+l
2

where V-u""! =0

5. Compute the divergence-free time level n+1
fluid velocity field

u"=u —ArVp/. ™! (13)

This solution procedure for time integration is first
order, to produce a second-order scheme, the
technique described by Esmaeeli and Tryggvason
[14] is used. More detailed description of the method
can be found in [7].

3. Performance tests

The following, we present the verification and
validation of the method. The configurations to be
adopted in these tests follow directly from the
respective references, including dimensions and
velocity fields.

3.1. A notched disc in rotating flow

Solid body rotation of a notched disc introduced
by Zalesak [15] (Fig. 2) is a test commonly used for
evaluating the accuracy of a method in maintaining a
sharp corners. The initial data is a slotted circle
centered at (50,75) with a radius of 15, a slot width of
5, and a slot length of 25. The domain is 100x100.
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Fig. 2. Comparison of the Zalesak disk interface

before (top) and after one rotation (bottom)

The velocity field is given as:
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(u.v)=[£ (50— y)/314,6 (x—50)/314]  (14)

The grid resolution is 100x100. Fig. 2 indicates
that after one revolution, the interface of Zalesak's
disk is almost identical to the initial shape.

3.2. A circular drop in a vortical flow field

This accuracy test introduced by Bell et al. [16]
is to test how well a method to resolve thin filaments
on the scale of the mesh which can occur in stretching
and tearing flows. A circular drop with a radius of
0.15 is initially located at (0.5, 0.75) in a box of
1.0x1.0 (Fig. 3a). The velocity field is given as:

{u =2cos (¢ t/T)sin’ (& x)sin (& y)cos(z y)

15

v==2cos(& 1/T)sin* (¢ y)sin (& x)cos (¢ x)( )
where T is the period. This velocity field first
stretches the drop into a thinner filament that is
wrapped around the center of the box, then slowly
reverses and pulls the filament back into the initial
circular shape, i.e. at the end of the period 7, the
shape should be the same as the initial one (Fig. 3a).
The grid resolution is 32x32 with 7 = 8. Fig. 3b
shows the drop shape at time ¢t = T computed by the
present front-tracking method (FT) — the dash line in
Fig. 3b — in comparison with the initial shape.
Obviously, the difference is barely visible. In contrast,
the level set method (LS) [17] produced remarkable
difference (the dash-dot line in Fig. 3b) even though a
much finer grid 256x256 was used.

3.3. Stationary drop

This accuracy test is to test how well a method
to predict the pressure difference between the inside
and outside of the drop. This pressure difference is
induced by the surface tension force acting on the
interface, as given by Laplace's law. For a circular
droplet in equilibrium the velocity should be exactly
zero. However, because of numerical errors, the
velocity field is not zero, and is referred to "spurious
currents” (Fig. 4). A good method should produce the
accurate pressure difference with spurious currents as
small as possible. There are three dimensionless
numbers that characterize the flow: the Laplace

number La =+ ,Ds [m] where D is the drop diameter,

¢d/’zc

m, [, . The subscripts d and ¢ respectively represent

and density and viscosity ratios and

the fluids inside and outside the drop. The maximum
nondimensional velocity, i.e., the capillary number
Ca, is defined as Ca=w U, [e .
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We consider a circular drop with a radius of 0.5
placed at the center of a box of 2x2 with all other
properties set to unity except for ¢ (Fig. 4a). The grid
resolution is 64x64. Accordingly, the value of ¢ is
equal to the value of La. For instance, La = 0.12
yields ¢ = 0.12, and according to the Young—Laplace
equation the pressure difference iS Apexaer = ¢ /R =
0.24. Fig. 4 indicates that the method predicts the
pressure rise reasonable well with Ca = 2.65x10™. In
comparison with the VOF method implemented with
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Fig. 3. Accuracy test for the advection of the interface
points. (a) The initial shape (f = 0) and the shape at
half period (¢ = T/2). (b) The shape of the drop at the
end of the period (# = T') computed by the FT method,
i.e. the dash-line, compared with that computed by the
LS method [17], i.e. the dash-dot line (the solid line
representing the initial shape). The LS method was
used with a 256x256 grid resolution
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different techniques for computing surface tension,
e.g., the continuous surface force (CSF) and the
continuous surface stress (CSS) [18], the magnitude
of the spurious currents produced by the front-
tracking is much smaller as shown in Table 1.

3.4. A damped surface wave

To verify the interaction of the viscous term
with the surface tension term, we perform a
simulation a damped surface wave between two
superposed immiscible fluids, as shown in Fig. 5, and
compare the computational results with the initial
value theory of Prosperetti [19]. In a [0, 2£]x[0, 2¢]
domain, two fluids are initially separated by an
interface defined by
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Fig. 4. (a) The spurious currents generated by a
circular drop with La = 0.12 and (b) the distribution of
the resulting pressure field along the line y = 1.0. The
grid resolution is 64x64 with a domain of 2x2
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Table 1. Measurements of spurious currents with three surface tension methods

Number of grid points/D Ca
La z d/" c *q /mc
VOF FT CSS (VOF) | CSF (VOF) FT
0.120 1 1 30 32 6x1073 1.4x107? 2.6x10*
0.357 1 1 32 32 3x1073 1.2x10%? 2.7x10*
y=# + A, cos(2x/¢ ) (16)  oscillation frequency wo = yje /(= ,+=,) . Fig. 5b

where the wavelength ¢ is set to 2¢, and the initial
amplitude A is set to 0.01¢ . The boundary conditions
are shown in Fig. 5a. Three grid resolutions are used:
32x32, 64x64 and 128x128. The surface tension
coefficient ¢ is set to 2. The densities of two fluids
are identical and set to =z = =, = 1. The kinematic
viscosity « of both fluids is set to 0.064720863. The

time is non-dimensionalized by the inviscid
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Fig. 5. Damped surface wave: (a) computational
domain, and (b) evolution of the amplitude of the
wave versus nondimensional time # = ot
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shows the temporal evolution of the wave amplitude
normalized by ¢ in comparison with the theory of
Prosperetti [19]. The figure shows that while 32x32
predicts an incorrect frequency the finner grid
128x128 produces a satisfactory result. This confirms
that the method is capable of accurately predicting
this flow.

3.5. Rayleigh—Taylor instability

We consider the growth of a two-dimensional
Rayleigh-Taylor instability that has been studied by
numerous methods to characterize the quality of
interface transport methods, see, for example [20], as
shown in Fig. 6a. Two immiscible fluids with the
denser one at the top are placed in a box of 1x4. The
interface separating two fluids is defined as:

y=2+A,cos(2 x)

where Ao is taken to be 0.05. The top fluid has a
density = 1.225, while the bottom fluid has a
density of =, = 0.1694. Both fluids have the same
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Fig. 6. Rayleigh—Taylor instability problem
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Fig. 7. Temporal evolution of the interface computed by the front-tracking method (left) in comparison with the

results predicted by Herrmann [20] (right)

viscosity w1 = w>= 0.00313. The gravity acceleration
is set to 9.81. The boundary conditions are periodic at
the left and right sides, and no-slip at the top and
bottom. A grid resolution of 128x512 is used. As
time progresses, the heavy fluid (top) falls into the
lighter fluid (bottom) due to gravity, and rolls up into
two counter-rotating vortices as shown in Fig. 6b.

Fig. 7 shows the evolution of the interface shape
at different times in comparison with the results
predicted by another numerical method of Herrmann
[20] in which the author used a much finer grid of
512x2048. In each frame of Fig. 7, the left is the
present result while the right is Herrmann's result.
Excellent agreement has been archieved. This
confirms that front-tracking method produces the
accurate results for this multiphase problem.

5. Conclusion

We have presented the results of a number of
verification and validation problems for the front-
tracking method, which has been widely used for
multiphase problems. The interface separating two
phases or fluids is represented connected elements
that are used to calculate the interfacial tension force.
The discretized governing equations are solved by the
second-order predictor-corrector method. The various
problems have been solved: a notched disk in rotating
flow, a circular drop in a vortical flow field, a
stationary drop, and a damped surface wave. The
method is then used to simulate the Rayleigh-Taylor
problem. The numerical results produced by the
method are reasonably accurate and satisfactory. This
confirms and supports the accuracy of the method for
numerous multiphase problems. In comparison with
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some other direct numerical simulation methods, e.g.,
level set method and volume of fluid method for the
problems investigated in this study, with the similar
grid resolutions the front-tracking method yielded the
results which are more accurate, especially, in the
case of calculating surface tension forces. In addition,
the present 2D method is quite simple and very easy
to be implemented. This facilitates computations of
many multiphase problems.

However, the results presented in this paper are
limited to the 2D cases. Therefore, in future research,
we will investigate some 3D problems to evaluate the
performance of the 3D front-tracking method.

Acknowledgments

This research was supported by Hanoi
University of Science and Technology (HUST) under
grant number T2016-PC-028.

References

[1] F.H. Harlow, J.E. Welch, Numerical calculation of
time-dependent viscous incompressible flow of fluid
with free surface, Phys. Fluids. 8 (1965) 2182-2189.

C.. Hirt, B.. Nichols, Volume of fluid (VOF) method
for the dynamics of free boundaries, J. Comput. Phys.
39 (1981) 201-225.

(2]

[3] M. Sussman, E. Fatemi, P. Smereka, S. Osher, An
improved level set method for incompressible two-

phase flows, Comput. Fluids. 27 (1998) 663—680.
(4]

D. Jacqgmin, Calculation of two-phase Navier—Stokes
flows using phase-field modeling, J. Comput. Phys.

155 (1999) 96-127.

H. Takewaki, A. Nishiguchi, T. Yabe, Cubic
interpolated pseudo-particle method (CIP) for solving

[5]



Journal of Science & Technology 119 (2017) 059-065

(6]

(7]

(8]

(91

[10]

(11]

hyperbolic-type equations, J. Comput. Phys. 61 (1985)
261-268.

S.0. Unverdi, G. Tryggvason, A front-tracking
method for viscous, incompressible, multi-fluid flows,
J. Comput. Phys. 100 (1992) 25-37.

G. Tryggvason, B. Bunner, A. Esmaeeli, D. Juric, N.
Al-Rawahi, W. Tauber, J. Han, S. Nas, Y.-J. Jan, A
front-tracking method for the computations of
multiphase flow, J. Comput. Phys. 169 (2001) 708—
759.

C.W. Hirt, J.L. Cook, T.D. Butler, A Lagrangian
method for calculating the dynamics of an
incompressible fluid with free surface, J. Comput.
Phys. 5 (1970) 103-124.

X. Shan, H. Chen, Lattice Boltzmann model for
simulating flows with multiple phases and
components, Phys. Rev. E. 47 (1993) 1815.

T.V. Vu, S. Homma, G. Tryggvason, J.C. Wells, H.
Takakura, Computations of breakup modes in laminar
compound liquid jets in a coflowing fluid, Int. J.
Multiphase Flow. 49 (2013) 58—69.

T.V. Vu, G. Tryggvason, S. Homma, J.C. Wells, H.
Takakura, A front-tracking method for three-phase
computations of solidification with volume change, J.
Chem. Eng. Jpn. 46 (2013) 726-731.

65

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

T.V. Vu, G. Tryggvason, S. Homma, J.C. Wells,
Numerical investigations of drop solidification on a
cold plate in the presence of volume change, Int. J.
Multiphase Flow. 76 (2015) 73-85.

C.S. Peskin, Numerical analysis of blood flow in the
heart, J. Comput. Phys. 25 (1977) 220-252.

A. Esmaeeli, G. Tryggvason, Computations of film
boiling. Part I: numerical method, Int. J. Heat Mass
Transfer. 47 (2004) 5451-5461.

S.T. Zalesak, Fully multidimensional flux-corrected
transport algorithms for fluids, J. Comput. Phys. 31
(1979) 335-362.

J.B. Bell, P. Colella, HM. Glaz, A second-order
projection method for the incompressible Navier-
Stokes equations, J. Comput. Phys. 85 (1989) 257—
283.

D. Enright, R. Fedkiw, J. Ferziger, 1. Mitchell, A
hybrid particle level set method for improved interface
capturing, J. Comput. Phys. 183 (2002) 83-116.

G. Tryggvason, R. Scardovelli, S. Zaleski, Direct
numerical simulations of gas-liquid multiphase flows,
Cambridge University Press, Cambridge; New York,
2011.

A. Prosperetti, Motion of two superposed viscous
fluids, Phys. Fluids. 24 (1981) 1217-1223.

M. Herrmann, A balanced force refined level set grid
method for two-phase flows on unstructured flow
solver grids, J. Comput. Phys. 227 (2008) 2674-2706.



