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Abstract 

Foil-air bearings have been drawing much scientists’ attention to application into high-speed rotating machines 
for environmentally friendly performance. Due to their compliant foil structure, foil-air bearings are able to resist 
being seized-up (because of high heat or centrifugal effect), thereby lengthening their service time. However, 
during working time, foil-air bearings are supposed to demonstrate their non-linear effects that need 
investigating, especially on rotor’s performance. In this paper, an improved foil dynamic model with bending 
moment included is proposed to determine the effective stiffness of foil structure. The results are compared to 
published experimental data. From that, influences of some geometry parameters on rotor’s stability are 
investigated based on a model of turbocharger with foil-air bearings.  

Keywords: foil-air bearing, effective stiffness, non-linear dynamics 

 
1. Introduction1 

Foil-air bearings (FAB) have been widely studied 
and applied into turbomachinery thanks to their 
outstanding advantage [1,2]. For conventional air self-
acting bearing, the radial clearance needs to be small 
enough for air pressure generation; however, seizing 
can occur because shaft growth (due to high 
temperature) can surpass this clearance. This kind of 
hard contact can be avoided by soft contact between 
shaft surface and a compliant foil structure in a foil air 
bearing as shown in Fig 1. When stationary, shaft can 
be forced to contact the foil by preload. As rotating, 
the foil is pushed away and shaft will be airborne by 
aerodynamic pressure. The compliant foil structure 
consists of two foil layers: a planar sheet metal (top 
foil) generates aerodynamic pressure and an outside 
foil (bump foil) acts as an elastic foundation (with the 
corrugated shape - bump foil - as the most commonly 
used). Both of these foils are open loops, which have 
one edge welded onto the bearing sleeve, and the other 
is free. 

Before dynamic response of a FAB-rotor system 
is investigated theoretically through characteristic 
equations [2,3], the foil structure needs to be modelled 
to find out its stiffness. The bump stiffness was 
formulated in Roger Ku’s [4] and Iordanoff’s [5] 
research. However, the bending moment at contact 
points between bump ends and bearing sleeve was 
omitted while it needs to be considered in elastic 
deformation. In another way, Arghir [6] modelled the 
bump foil as a set of linear springs with different 
stiffnesses connecting together. 
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Nevertheless, the bump shape was presumed to 
remain circular even after load exertion. Furthermore, 
top foil and all the bumps are assumed to stay in 
contact all the time while there may be some zones 
where aerodynamic pressure can be lower than 
ambient pressure. 

 
Fig. 1. Schematic diagram of a foil-air bearing 

In this paper, bump stiffness is formulated taking 
bending moment at bump ends as well as change in 
curvature radius into account. From that, the effective 
stiffness of bearing is defined with real assumptions 
and compared with other experimental study. Then 
steady equilibrium state of a whole FAB-rotor system 
in a turbocharger is analyzed through evaluating effect 
of some geometry parameters. 
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2. Governing equations 

 

 

 

 

 

 

Fig. 2. Schematic diagram of a turbocharger shaft 

A common turbocharger structure is illustrated in  
Fig 2, where the shaft is supported by two bearings. 
From the aspect of dynamic model, the rotor-FAB 
system can be analyzed into three subsystems which 
connect and interact with each other: rotor, air film and 
bump foil, as illustrated in Fig 3. The minor deflection 
of top foil can be neglected, and rotor is considered as 
a rigid body. As a result, three governing equations of 
motion can be established.  

 
Fig. 3. Schematic diagram of a FAB-rotor system 

The Reynold equation defining pressure 
distribution in the air film for compressible gas [7]: 
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The rotor displacement can be formulated as [8]: 

{𝜀𝜀′′} = 1
Ω2
��𝐾𝐾𝑓𝑓�{𝑓𝑓} + {𝑆𝑆} + [𝐾𝐾𝑢𝑢]{𝑢𝑢} + �𝐾𝐾𝑔𝑔�{𝜀𝜀′}�  (2) 

in which {𝜀𝜀} = �𝜀𝜀𝑥𝑥1, 𝜀𝜀𝑦𝑦1, 𝜀𝜀𝑥𝑥2, 𝜀𝜀𝑦𝑦2�
𝑇𝑇 denote the relative 

eccentricities of journal centers; {𝑆𝑆} = {0,−𝑔𝑔, 0,−𝑔𝑔}𝑇𝑇 
are gravitational force; {𝑢𝑢} are centrifugal forces; 
{𝑓𝑓} = �𝐹𝐹𝑥𝑥1,𝐹𝐹𝑦𝑦1,𝐹𝐹𝑥𝑥2,𝐹𝐹𝑦𝑦2�

𝑇𝑇are reaction forces from air 
film. 

The foil deflection is governed by the equation 
[9]: 

𝑑𝑑𝑤𝑤�(𝜃𝜃)
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where  𝐾𝐾𝑡𝑡𝑑𝑑 = 𝑘𝑘𝑏𝑏. 𝐿𝐿. 𝑐𝑐/𝑝𝑝𝑎𝑎 while 𝑘𝑘𝑏𝑏 is the stiffness per 
unit area of the foil structure, L is bearing width, c is 
nominal clearance and pa is ambient pressure; 𝜂𝜂 is the 
loss factor and 𝐹𝐹(𝜕𝜕) is calculated by integrating 
pressure mesh along the axial direction. 

It can be seen that stiffness of the foil plays an 
important role in determining foil deflection, while foil 
deflection 𝑤𝑤�  impacts the air film thickness, changing 
reaction forces and affecting rotor stability. Therefore, 
an improved foil structure model is used in this paper 
to determine the stiffness.  

3. Analysis of improved foil structure model 

3.1 Elasticity model of the bump foil 

By the action of hydrodynamic pressure from air 
film, the foil structure is deformed. It was researched 
that the deformation of top foil (sagging effect [10]) 
was negligible and can be omitted. Therefore, only 
bump foil deformation is taken into account in this 
paper. 

The difference in curvature under the action of 
bending moment can be described in the equation 
below [11]: 

𝑀𝑀 = 𝐸𝐸𝐸𝐸. � 1
𝜌𝜌𝑜𝑜
− 1

𝜌𝜌
�      (4) 

where 𝜌𝜌𝑜𝑜,𝜌𝜌 are the radii of curvature before and after 
bending, E is the elastic modulus of bump material, I 
is the moment inertia of cross section and M is the 
internal bending moment.  

Under pressure from the top bearing foil, each 
bump of the supporting foil can respond in various 
modes. In this paper, three typical cases are 
considered, as shown in Fig. 4abc. 

Discretizing the bump-foil model by n elements 
with length Δ𝑐𝑐 along the length of the bump and using 
backward difference method result in the following 
equations, we have: 

1
𝜌𝜌𝑖𝑖

= 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑖𝑖−𝑑𝑑𝑖𝑖−1
Δ𝑑𝑑

  (5) 
 Then, with 𝑋𝑋𝑁𝑁,𝑌𝑌𝑁𝑁 – reaction forces at the end of 
the bump, equation (4) can be rewritten as follow. 
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(a) Fixed - Roller 

 
(b) Fixed - Slider 

 
(c) Fixed - Blocked  

(d) Fig. 4. Boundary condition of a single bump 

  
Fig. 5. Bump stiffness in case (a) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Bump stiffness in case (b) 
 

a) For elements from the right end to the acting point 
of the pressing force F 

𝑑𝑑𝑖𝑖−𝑑𝑑𝑖𝑖−1
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𝑖𝑖=1

−𝑌𝑌𝑁𝑁 . �∑ 𝑏𝑏𝑖𝑖 . 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑖𝑖 𝛥𝛥 𝑐𝑐 − ∑ 𝑎𝑎𝑖𝑖 . 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑖𝑖 𝛥𝛥 𝑐𝑐𝐿𝐿
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 (6a) 

b) And for elements from the fixed end to the acting 
point of the pressing force F 
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 (6b) 
where N, F, L in sigmas define the elements at the end, at 
force F and at ith element, respectively; with the boundary 
conditions are defined by: 

Case (a):  � 𝑦𝑦𝑁𝑁 = 0
𝑠𝑠𝑜𝑜 = 𝑠𝑠𝑜𝑜1

⇔ �∑ 𝑎𝑎𝑖𝑖 . 𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 𝛥𝛥 𝑐𝑐𝐿𝐿
𝑖𝑖=1 = 0

𝑠𝑠𝑜𝑜 = 𝑠𝑠𝑜𝑜1
 

• Case (b): � 𝑦𝑦𝑁𝑁 = 0
𝑠𝑠𝑜𝑜 = 𝑠𝑠𝑜𝑜1

⇔ �∑ 𝑎𝑎𝑖𝑖 . 𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 𝛥𝛥 𝑐𝑐𝐿𝐿
𝑖𝑖=1 = 0

𝑠𝑠𝑜𝑜 = 𝑠𝑠𝑜𝑜1
 

• Case (c): �
𝑦𝑦𝑁𝑁 = 0
𝑠𝑠𝑜𝑜 = 𝑠𝑠𝑜𝑜1
𝑥𝑥𝑁𝑁 = 0

⇔ �
∑ 𝑎𝑎𝑖𝑖 . 𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 𝛥𝛥 𝑐𝑐𝐿𝐿
𝑖𝑖=1 = 0

𝑠𝑠𝑜𝑜 = 𝑠𝑠𝑜𝑜1
∑ 𝑎𝑎𝑖𝑖 . 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑖𝑖 𝛥𝛥 𝑐𝑐 = 0𝐿𝐿
𝑖𝑖=1

 

Solving equations (5a,b) with one of the 
boundary conditions using Newton-Raphson 
algorithm for 𝑠𝑠𝑖𝑖, the stiffness of the bump can then be 
calculated as follows: 

𝐾𝐾𝑏𝑏𝑢𝑢𝑏𝑏𝑝𝑝 = 𝐹𝐹
𝑣𝑣𝐹𝐹

    (7) 
in which 𝑣𝑣𝐹𝐹 = 𝑦𝑦𝐹𝐹0 − 𝑦𝑦𝐹𝐹 is the deflection at the acting 
point of the force F. 

Fig 5. shows the stiffness of one bump as a non-
linear function of vertical displacement. As can be 
seen, there is a dramatic surge in the stiffness 
corresponding to early rise in displacement. This can 
be explained that the displacement is insufficient to 
overcome static state of the system, making the 
stiffness grow. In later periods, when the displacement 
continues increasing to prevail the static state, the 
bump end is gradually sloping, causing the stiffness to 
decrease (because the curvature radius increases). 

The change tendency of the stiffness in case 
Fixed-Slider (Fig 6.) is deemed to be the same as in 
case Fixed-Roller. However, the decrease in later 
periods is slower because the curvature radius is forced 
to increase more quickly by roller than by slider 

From Fig 7. there is no reduction in the stiffness 
when the displacement continues rising but it 
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significantly increases when the bump is blocked at the 
free end. 

 

 

. 

 

 

 

 

 

 
Fig. 7. Bump stiffness in case (c) 

3.2 Effective stiffness of foil-structure 

Since the bump foil is continuous, the effective 
stiffness of the bearing can be estimated using the 
roller-bearing approach. Fig. 8 shows the bump 
reaction forces onto the top foil when pressed down by 
the circular journal of the rotor. 

 
Fig. 8. Bump reaction forces 

With a given deflection 𝛿𝛿0 of the center of shaft, 
the total force can be calculated by: 
𝐹𝐹𝑟𝑟 = 𝐹𝐹0 + 2𝐹𝐹1 𝑐𝑐𝑐𝑐𝑐𝑐 𝜂𝜂 + 2𝐹𝐹1 𝑐𝑐𝑐𝑐𝑐𝑐( 2𝜂𝜂)+. . . +2𝐹𝐹𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐(𝑚𝑚𝜂𝜂) 
(8)  
where 𝐹𝐹𝑖𝑖 = 𝐾𝐾𝑏𝑏𝑢𝑢𝑏𝑏𝑝𝑝 × 𝛿𝛿𝑖𝑖 

The effective stiffness of the bearing can be 
determined by: 

𝐾𝐾𝑒𝑒𝑓𝑓𝑓𝑓 = 𝐹𝐹𝑟𝑟
𝛿𝛿0

       (9) 

Some experimental coefficients and values 
shown in Table 1 are used for calculation of the 
effective stiffness in this paper. With the typical foil 
bearing presented in works done by Kim et al [3], the 
total effective stiffness of the foil structure is shown in 
Table 2. 

Table 1. Main experimental parameters  

Parameters symbol Value Units 
Air viscosity µ 1.95x10-

5 
N.s/m2 

Ambient pressure pa 101325 Pa 
Nominal radial 

clearance 
Co 32 µm 

Loss factor  η 0.25  
Number of bumps nbump 26  

Bump-foil 
thickness 

t 102 µm 

Rotor mass mr 3 kg 

Table 2. Comparison of effective stiffness Keff  

Kim test 
data [2] 

Fixed-
roller (a) 

Fixed-
slider (b) 

Fixed- 
blocked (c) 

1.069E7 7.976E6 1.187E7 3.282E10 

It has shown that the stiffnesses of elastic model 
in this paper with boundary conditions (a), (b) and 
from experiment by Kim [2] are nearly the same. The 
similarity has reinforced acceptable accuracy of the 
elastic model proposed by the authors. Remarkably, 
the stiffness shows a sharp increase in Case (c) where 
two ends of the bump are fixed and blocked. 

4. Effect of geometry parameters 

It is clearly that bump foil’s geometry parameters 
have significant influence on the effective stiffness, 
leading to impact on rotor stability. For computation 
of Keff, three important parameters of bump foil are 
considered: thickness (t), radius of the bump before 
bending (Ro) and number of bumps (nbump). 

Table 3. Computation of Keff with different thickness 

t (µm) Keff (N/m) 
102 1.19 × 107 

202 9.46 × 107 
302 1.93 × 1011 

402 1.03 × 1014 

502 3.36 × 1015 

602 2.87 × 1016 

702 1.18 × 1017 

802 3.20 × 1017 

902 6.68 × 1017 

1002 1.19 × 1018 

From Table 3, it can be apparently observed that 
together with increasing thickness of the bump foil, the 
effective stiffness shows go-up tendency. Notably, 
corresponding to thickness of from 202 to 602 µm, 
there is a sharp rise in effective thickness, where the 
greatest increase is about 0,5 × 103 N/m.  
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Fig. 9. Relationship between Keff and number of bumps Fig. 10. Relationship of Keff and radius of curvature  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Effect of geometry parameters on stability 
zone 

Fig 9. demonstrates a relatively linear 
relationship between effective stiffness and number of 
bumps. With bump quantity of from 10 to about 40, 
the effective stiffness of foil structure shows a gradual 
growth. It is argued that from assumption made in 
Fig.7, the number of bumps concerned in supporting 
the top foil increases, establishing more contact with 
the top foil, then causing smaller circumferential 
deflection. 

Impact of radius of curvature on effective 
stiffness is illustrated in Fig 10. In general, the radius 
curvature does not have the same big influence on 
effective stiffness as the bump-foil thickness. From 
Fig. 9, it can be inferred that the more radius of 
curvature increases, the more effective stiffness 
decreases. This tendency can be reasoned that being 
acted by an up-to-down force, the outward movement 
of bump end is taken more easily with greater radius 
of curvature, causing bigger circumferential 
deflection. 

Effect of geometry parameters on effective 
stiffness plays an important part in stability zone of 
rotor supported by foil air bearings. 

In Fig. 11, λ is the leading eigenvalue of Jacobian 
of differential equations of motion (1,2,3) at an 
equilibrium. When 𝑅𝑅𝑅𝑅( 𝜆𝜆) ≤ 0, rotor’s motion is 
considered to be in equilibrium, while 𝑅𝑅𝑅𝑅(𝜆𝜆) > 0, 
rotor will work unstably [10]. It can be seen that the 
general trend of rotor performance is in equilibrium at 
some starting revolutions, in unstable state when 
rotating faster, then back to equilibrium state again and 
maintain until certain revolutions. At low speed, thin 
gap between rotor and top foil forms an air film that is 
small enough to generate hydrodynamic pressure 
suffering rotor’s weight, and the whole system 
performs in equilibrium state. At greater speed, first 
Hopf bifurcation occurs and the system moves to 
unstable state with orbit of limit cycle. When the speed 
gets higher, eccentricicy of rotor center decreases due 
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to balance between air pressure and air-film thickness, 
the system perform in almost equilibrium state. 
However, when the speed reaches a certain value, the 
wedge shape of air film disappears and the equilibrium 
state is unable to maintain. In general, graphs in Fig.11 
indicate that when the effective stiffness gets bigger, 
the system moves to unstable state more quickly, 
return to equilibrium state more slowly, but is able to 
maintain longer. With the thickness of 402 µm, the 
system returns to equilibrium state at around 40000 
rpm and maintain up to 100000 rpm. Meanwhile, when 
the thickness of 102 µm, the system can only maintain 
up to about 63000 rpm. Similarly, in case the radius of 
curvature is 1.86 µm and number of bumps is 38, the 
system is able to remain in equilibrium state at 100000 
rpm. The predicted performance can be reasoned that 
with higher stiffness, the deflection is smaller. Then, at 
starting speeds, the air-film thickness is smaller, 
generating higher hydrodynamic pressure, causing the 
system to move to unstable state faster. However, also 
with high stiffness, the eccentricity of rotor center 
decreases more slowly when returning to equilibrium 
state, helping the system to maintain at greater speed. 

5. Conclusion 

The paper has presented an improved model of 
foil structure and used some computing techniques to 
investigate effect of some geometry parameters on 
stability zone of rotor-FAB system. The results can be 
considered suggestions for designing and selecting 
suitable foil structure to apply foil air bearing into 
different situations.  
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