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Abstract 

This article presents an indoor positioning algorithm using accelerometer, gyroscope, and magnetic sensors 
to determine the location of travel users, to provide location-based services for users on intelligent travel guide 
systems. The main contributions of the proposal method on this paper are the application of a Kalman filter to 
eliminate interference of sensor signals that are received from integrated sensors on common smartphones, 
to handle the time velocity drift when user moving smartphone while standing in place, and therefore, to in-
crease the positioning accuracy. The experiment results show that the proposed positioning algorithm 
achieves decimeter accuracy in indoor environment, which is suitable for positioning applications such as 
smart-tour applications. 
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1. Introduction 

The*most common and widespread positioning 
method today is the Global Positioning System (GPS). 
Unfortunately, GPS is not an effective way for posi-
tioning in indoor environments such as inside build-
ings or underground works. Sensor-based indoor pos-
iting techniques can be used for applications which re-
quire high accuracy in indoor environments such as au-
tomated travel guides, navigation in the shopping cen-
ter. In this article, we propose and develop an indoor 
positioning algorithm that exploited three types of 
basic sensors integrated in common smartphones: ac-
celerometer, gyroscope, and magnetic sensors to deter-
mine the location of travel users. To achieve accuracy 
requrement in a sensor-based indoor positioning, it is 
necessary to solve some problems such as eliminating 
the interference, eliminating cumulative errors. More-
over, the proposed method must be simple, stable and 
consume less resources of smartphones. 

2. Preliminary 

2.1 Accelerometer Sensor 

Accelerometer is an electromechanical device 
that measures proper acceleration value as acceleration 
in three axes. The acceleration is the measurement of 
the change in velocity or speed divided by time. Using 
accelerometer sensor can measure the movement of 
the object according to the corresponding axis (Fig.  
1a). For example, the accelerometer detects the direc-
tion of the smartphone and rotates the screen according 
to landscape or portrait mode. 
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2.2. Gyroscope Sensor 

Gyroscope Sensor, also known as angular rate sensor, 
is a device that senses angular velocity. In simple 
terms, the angular velocity is the change in rotational 
angle per unit of time. Angular velocity is generally 
expressed in deg/s (degree per second). The gyroscope 
is used in smartphones to find the location and orien-
tation of the device. Similar to the accelerometer, the 
measured value of gyroscope sensor is taken from the 
x, y, z-axes as shown in Fig.  1b. Combined the gyro-
scope with an accelerometer sensor allows the device 
detecting the motion of six axes: left, right, up, down, 
forward and back as well as pitch, roll, and yaw for 
more accurate motion sensation. 

   
Fig.  1. Accelerometer and gyroscope sensor. 

2.3. Magnetic Sensor 

A magnetic or compass sensor is a device for de-
tecting and measuring magnetic fields. It provides mo-
bile phones with a simple orientation in relation to the 
Earth’s magnetic field. Under the influence of noise, 
smartphones do not use the conventional magnetic 
compass, which uses a different technology to deter-
mine the direction of the device. Especially, smart-

 



  
Journal of Science & Technology 128 (2018) 014-019 

15 

phones will measure signals with extremely low fre-
quency coming from a certain direction (South or 
North). With the help of the accelerometer sensor, the 
compass sensor of smartphones can give an accurate 
orientation of users. The principle of magnetic sensor 
is based on the Hall effect discovered by Hall in 1879. 
The effect is based on the interaction between moving 
electric carriers and an external magnetic field. In 
metal, these carriers are electrons. When an electron 
moves through a magnetic field, upon it acts a side-
ways force [1].  

2.4. Kalman Filter 

2.4.1. Introduction to Kalman Filter 

The Kalman filter is a set of mathematical equa-
tions that provides an efficient computational (recur-
sive) means to estimate the state of a process, in a way 
that minimizes the mean squared error [2]. The filter is 
very powerful in several aspects: it supports estima-
tions of past, present, and even future states, and it can 
do so even when the precise nature of the modeled sys-
tem is unknown. The Kalman filter estimates a process 
by using a form feedback control. Accordingly, the fil-
ter evaluates the state of the process at a time after the 
response from the (noise) measurements. As such, the 
Kalman filter equations are divided into two groups: 
time update equations and measurement update equa-
tions. The time update equations are responsible for 
projecting forward (in time) the current state and error 
covariance estimates to obtain the a priori estimates for 
the next time step. The measurement update equations 
are responsible for the feedback, i.e. for incorporating 
a new measurement into the a priori estimate to obtain 
an improved a posteriori estimate. The time update 
equations can also be thought of as predictor equa-
tions, while the measurement update equations can be 
thought of as corrects equations. Indeed, the final esti-
mation algorithm resembles that of a predictor-correc-
tor algorithm for solving numerical problems. 

2.4.2. The discrete Kalman filter 

The Kalman filter addresses the general problem 
of trying to estimate the state 𝑥𝑥 ∈ 𝑅𝑅𝑛𝑛  of a discrete 
time-controlled process that is governed by the linear 
stochastic difference equation: 

Xk = Axk-1 + Buk-1 + wk-1, 

with a measurement 𝑧𝑧 ∈ 𝑅𝑅𝑚𝑚  that is 

 zk = Hxk + vk. 

The random variables w and v represent the pro-
cess and measurement noise (respectively). They are 
assumed to be independent (of each other), white, and 
with normal probability distributions p(w) ~ N(0,Q) 
and p(v) ~ N(0,R). In practice, the process noise covar-
iance Q and measurement noise covariance R matrices 

might change with each time step or measurement, 
however here are assuming they are constant. The 
𝑛𝑛 × 𝑛𝑛 matrix A relates to the state at the previous time 
step 𝑘𝑘 − 1  to the state at the current step 𝑘𝑘, in the ab-
sence of either a driving function or process noise. The 
𝑛𝑛 × 1 matrix B relates to the optional control input ... 
to the next state x. The 𝑚𝑚 × 𝑛𝑛 matrix H relates the state 
to the measurement 𝑧𝑧𝑘𝑘.  

In the actual implementation of the filter, the 
measurement noise covariance R is usually measured 
prior to operation of the filter. Measuring the measure-
ment error covariance R is generally practical (possi-
ble) because we need to be able to take some off-line 
sample measurements in order to determine the vari-
ance of the measurement noise. The determination of 
the process noise covariance Q is generally more diffi-
cult as we typically do not have the ability to directly 
observe the estimating process. Sometimes a relatively 
simple (poor) process model can produce acceptable 
results if one “injects” enough uncertainly into the pro-
cess via the selection of Q. Certainly, in this case, one 
would hope that the process measurements are reliable. 
In either case, whether or not we have a rational basis 
for choosing the parameters, often times superior filter 
performance (statistically speaking) can be obtained 
by tuning the filter parameters Q and R. The tuning is 
usually performed off-line, with the help of another 
Kalman filter in a process generally referred to as sys-
tem identification [3]. 

2.4.3. The Kalman filter for sensor signals 

The sensors signal from the smartphone is af-
fected by many noises (e.g., the process noise and 
measurement noise). We will design a Kalman filter to 
estimate the best value of these values. To create the 
Kalman filter we need to define parameters in the 
equations of the filter. With this case, we can see the 
system does not affect the sensor signals, the control 
input matrix B and the control vector u are equal to 0. 
We assume that the value of the current signal is equal 
to the signal at the previous time, so the state transition 
matrix A = 1. In fact, the matrix H also changes but in 
this case is the singularity input so we set H = 1 to sim-
plify the problem. There are the equations of Kalman 
filter:  

Time Update: 

xk = xk-1; 

 Pk = Pk-1 + Q 

Measurement Update: 

 K = Pk / (Pk + R) 

 Xk = xk + K(zk – xk) 

 Pk = (1 - Kk)Pk 
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In order to filter the noise for the sensor signals, 
choosing the process noise covariance Q is not easy. It 
is necessary to go through many experiments and use 
the statistical method to obtain the filtered signal as de-
sired. After several experiments, we set the process 
noise covariance Q = 0.001. The choice of the meas-
urement noise covariance R affects the system’s esti-
mated speed. According to the equation for calculating 
the coefficient K, we can see that K is inversely pro-
portional to R. If the value R is large then the estima-
tion speed is slower, and the estimated value seems 
less reliable than the measured value. In contrast, the 
smaller value R, the estimation speed is faster and 
more reliable. So, choosing the measurement noise co-
variance R is quite important. It is possible to set R as 
a fixed value or a mutable value. In this paper, we se-
lect the measurement noise R approximately 1% of the 
measured value (R = 0.01). 

3. The Proposal Sensor-based Indoor Positioning 
Algorithm 

3.1 Diagram of the Proposal Algorithm 

The implementation of the proposal algorithm is 
shown in Fig.  2. Input data is the values received from 
the accelerometer sensor, gyroscope sensor and the in-
itial direction from the magnetic sensor and estimate 
the direction of gravity using current quaternion. After 
that, we normalize the accelerometer data according to 
the acceleration of Earth’s axis. Then we use the inte-
gral to obtain the velocity. Because velocity is always 
drifted over time due to the affection of noises so we 
need to create a method to eliminate the drift. Finally, 
an integral is used to calculate the corresponding coor-
dinate and update the use position step-by-step. 

 
Fig. 2. Diagram of the proposal algorithm. 

 

 
Fig.  3. Acceleration normalization process. 

3.2. Acceleration Normalization 

The received data from the accelerometer sensor is ac-
cording to three axises Ox, Oy, Oz of the device. To 
normalize data in the acceleration of Earth’s axis we 
follow the process as shown in Fig.  3. Step 1: Initial-
izing the original angle using the magnetic sensor. Step 
2: Fusing data from the gyroscope sensor and accel-
erometer to calculate the quaternion matrix. Step 3: 
Updating the angle and direction with the quaternion. 
Step 4: Calculating the rotation matrix from the angle 
and direction. Step 5: Multiplying the rotation matrix 
with acceleration to obtain the acceleration by Earth's 
reference system. 

3.2.1. Quaternion 

The development of Quaternion is attributed to W. R. 
Hamilton in 1843. Quaternions are very efficient for 
analyzing situations where rotation in 𝑹𝑹𝟑𝟑 space are in-
volved. A quaternion is defined as below: 

 q = q0 + q1i + q2j + q3k = q0 + qω 

 i2 = j2 = k2 = -1 

ij = -ji = k 

 jk = -kj = i 

ki = -ik = j 

According to the Quaternion’s theorem 1 [4] we can 
see that for any quaternion unit:  

0 2 2
 os  + sinq q q c

θ θ
ν= + = .        (1) 

And for any vector 𝒗𝒗 ∈ 𝑹𝑹𝟑𝟑, the action of the operator 
2* 2

0 0( ) ( ) 2( . ) 2 ( )qL v qvq q q v q v q q q v= = − + + ×   (2) 

on v is equivalent to a rotation of the vector through an 
angle 𝜃𝜃 about u as the axis of rotation. Let p and q be 
two unit quaternions. We first apply the rotation oper-
ator Lp to the vector u and obtain the vector v. Contin-
uing the rotation operator Lq on the vector v we then 
obtain the vector w. Equivalently, we apply the com-
position Lq◦Lp of the two operators [4]:  

𝑤𝑤 = 𝐿𝐿𝑞𝑞(𝑣𝑣) = 𝑞𝑞. 𝑣𝑣. 𝑞𝑞∗ = 𝑞𝑞. (𝑝𝑝.𝑢𝑢.𝑝𝑝∗).𝑞𝑞∗ 
               = (𝑞𝑞.𝑝𝑝).𝑢𝑢. (𝑞𝑞.𝑝𝑝)∗ = 𝐿𝐿𝑞𝑞𝑞𝑞(𝑢𝑢)         (3)            

3.2.2. Rotation Matrix 

A rotation matrix is a matrix that is used to perform a 
rotation in Euclidean space. The new coordinates 
(x’,y’) of the point (x,y) after rotation are: 

 𝑥𝑥′ = 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝜃𝜃 − 𝑦𝑦𝑥𝑥𝑦𝑦𝑛𝑛𝜃𝜃 

 𝑦𝑦′ = 𝑥𝑥𝑥𝑥𝑦𝑦𝑛𝑛𝜃𝜃 + 𝑦𝑦𝑥𝑥𝑥𝑥𝑥𝑥𝜃𝜃 

Write in the matrix form: 

Sensors’ 
input

Accelerometer 
normalization

Accelerate
Rotation by 
Earth axis

Velocity 
conversion by 

Earth axis

Velocity drift 
removal

Real velocity 
of smartphone

Distance 
calculationUser location

ʃdt

Initialize 
original angle

Gyro 
sensor

Acceleration 
sensor

Angle conversion 
by Earth's axis

Quaternion

Rotation
matrix 

Acceleration by 
Earth's reference 

system
× 
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 �𝑥𝑥′𝑦𝑦′� = �𝑥𝑥𝑥𝑥𝑥𝑥𝜃𝜃 −𝑥𝑥𝑦𝑦𝑛𝑛𝜃𝜃
𝑥𝑥𝑦𝑦𝑛𝑛𝜃𝜃 𝑥𝑥𝑥𝑥𝑥𝑥𝜃𝜃 � �

𝑥𝑥
𝑦𝑦� 

In three dimensions, when rotating an angle 𝜃𝜃, the ro-
tation matrix form is: 

𝑅𝑅𝑥𝑥(𝜃𝜃) = �
1 0 0
0 𝑥𝑥𝑥𝑥𝑥𝑥𝜃𝜃 −𝑥𝑥𝑦𝑦𝑛𝑛𝜃𝜃
0 𝑥𝑥𝑦𝑦𝑛𝑛𝜃𝜃 𝑥𝑥𝑥𝑥𝑥𝑥𝜃𝜃

� 

𝑅𝑅𝑦𝑦(𝜃𝜃) = �
𝑥𝑥𝑥𝑥𝑥𝑥𝜃𝜃 0 𝑥𝑥𝑦𝑦𝑛𝑛𝜃𝜃

0 1 0
−𝑥𝑥𝑦𝑦𝑛𝑛𝜃𝜃 0 𝑥𝑥𝑥𝑥𝑥𝑥𝜃𝜃

� 

      
𝑅𝑅𝑧𝑧(𝜃𝜃) = �

𝑥𝑥𝑥𝑥𝑥𝑥𝜃𝜃 −𝑥𝑥𝑦𝑦𝑛𝑛𝜃𝜃 0
𝑥𝑥𝑦𝑦𝑛𝑛𝜃𝜃 𝑥𝑥𝑥𝑥𝑥𝑥𝜃𝜃 0

0 0 1
� 

For example, rotating the vector (1, 0, 0) around the 
axis z of  𝜃𝜃 = 90⁰ can be represented by a matrix: 

𝑅𝑅𝑧𝑧(90°) �
1
0
0
� = �

𝑥𝑥𝑥𝑥𝑥𝑥90° −𝑥𝑥𝑦𝑦𝑛𝑛90° 0
𝑥𝑥𝑦𝑦𝑛𝑛90° 𝑥𝑥𝑥𝑥𝑥𝑥90° 0

0 0 1
� �

1
0
0
� = �

0
1
0
� 

Other rotation matrices can be obtained from these 
three using matrix multiplication:  

𝑅𝑅 = 𝑅𝑅𝑥𝑥(𝛼𝛼)𝑅𝑅𝑦𝑦(𝛽𝛽)𝑅𝑅𝑧𝑧(𝛾𝛾) 

represent a rotation which yaw, pitch and roll angles 
are 𝛼𝛼,𝛽𝛽, 𝛾𝛾 respectively. 

3.3. Velocity Drift Elimination 

The acceleration signal is always unstable due to the 
influence of many factors that lead to the drift of esti-
mated velocity. In addition, the velocity is calculated 
by the acceleration integral so accumulation error is 
quite large. The consequence is that within a short time 
the position of an object is significantly altered even 
the subject is not moving. So, we need to reduce the 
drift of velocity in order to improve the accuracy of the 
algorithm. It must be based on the characteristics of 
each system. In this case, we use the step detection al-
gorithm to handle the drift. 

3.3.1. Step Detection 

By detecting the user’s steps, we will reset the velocity 
value 𝑣𝑣(𝑡𝑡) = 0. The block diagram of the step detec-
tion algorithm is shown in Fig.  4 [5]. 

Step 1: Use the measured acceleration values, 
calculate the average value of the acceleration by the 
formula: a = �(𝑎𝑎𝑥𝑥)2 + (𝑎𝑎𝑦𝑦)2 + (𝑎𝑎𝑧𝑧)2. 

Step 2: Filter the noise of the average accelera-
tion to smooth out the data by the Kalman filter. 

Step 3: If the filtered average acceleration is less 
than a pre-decided threshold value, we will update the 
velocity to zero. 

Step 4: Repeat from step 1 until all velocity data 
samples are updated. 

Step 5: Combine the correct v(t) during the sta-
tionary periods and v(t) during non-stationary periods 
together to yield zero-velocity updated v(t). 

Fig.  5 shows the graph of average acceleration 
when user is moving. The blue line (the Norm line) 
represents the average acceleration signal. The green 
line is the threshold of acceleration (ath = 0.5, deter-
mined experimentally). When user is standing or feet 
are placed on the ground, we can see that the average 
acceleration value is less than the threshold. In some 
steps, there are many times the average acceleration is 
lower than the threshold (red circles in Fig.  5) but it is 
not the moment when user completes the step. To solve 
this issue, it is necessary to give the data through the 
designed Kalman filter. Fig.  6 shows the results of step 
detection algorithm using the Kalman filter. The green 
graph is the average acceleration signal before filter-
ing. The red graph represents the filtered average ac-
celeration signal. 

 
Fig.  4. Diagram of step detection algorithm. 

 

 
Fig.  5. Raw data of accelerometer sensor. 

 

 
Fig.  6. Acceleration before and after filtering. 

Acceleration
a(t) Norm a(t)

Accelerated 
integration

Kalman
Filter

Set 
v(t) = 0

Drift 
handling 

combination

a(t) > ath

v(t) Yes

No
v(t)
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Fig.  7. Velocity with drift. 

 
Fig.  8. Velocity after use is removing drift. 

 
Fig.  9. Results of enhancement drift removal. 

   
Fig.  10. Trajectory of user on test scenarios. 

 
Fig.  11. Positioning in smart-tour application. 

Because the only moment when the user com-
pletes a step the velocity is set to zero, the drift still 
exists during that step as we can see in Fig.  7 (red cir-
cled). Therefore, the drift caused by integration must 
be removed. 

3.3.2. Enhancement  Drift Removal  

At each moment, the velocity value is drifted a 
certain value which accumulates after each footstep. 
The algorithm for enhancement drift removal is imple-
mented as in the following process: 

Step 1: At each user’s footstep, detect the mo-
ment when the user puts his foot on the ground and 
determine the velocity at this point as 𝑣𝑣𝑓𝑓 (Fig.  8). 

Step 2: Calculate the drift rate by dividing 𝑣𝑣𝑓𝑓 by 
the total of samples on each footstep.  

Step 3: At each sampling cycle of the footstep, 
calculate the drift velocity by multiplying the drift rate 
D by the index I of the cycle: 𝑣𝑣𝑑𝑑𝑑𝑑𝑑𝑑𝑓𝑓𝑑𝑑 = 𝐷𝐷 × 𝑦𝑦. 

Fig.  9 shows the result of the step detection al-
gorithm that combines the enhancement drift removal, 
whereby the drift velocity is removed. 

4. Experimental Results 

To evaluate the accuracy of the proposed algo-
rithm, we conduct variety of test scenarios. A user 
holding a smartphone that have been installed the pro-
posed sensor-based indoor positioning algorithm. 

4.1. Scenario 1: User Goes Straight 

In this scenario, user goes straight forward and 
back to the original position (Fig.  10a). The start co-
ordinates of the user are (x,y)=(0.0,0.0), the user's co-
ordinates after moving back are (x,y)=(0.06,0.3) me-
ter. The error for x axis is 6 cm, for y axis is 30 cm. 

4.2. Scenario 2: User Moves Around 

The next scenario, user moving around in larger 
area. As in scenario 1, the user start coordinates are 
(x,y) = (0.0,0.0). After moving a loop, the end coordi-
nates are (x,y) = (0.06, -0.13) meter. The error for x 
axis is 6 cm, for y axis is 13 cm (Fig.  10b). 

4.3. Scenario 3: User Moves Freely 

To verify the accuracy and applicability of the 
proposed positioning algorithm for our smart-tour ap-
plication, the results are plotted in Fig.  11. From the 
start point, the user walks through corridors and the 
mobile application will mark the user’s location corre-
sponding to the actual one. A blue dot indicates the 
current location of the user, the red dots are the posi-
tion of steps measured. 

5. Conclusion 

Experimental results show that the proposed al-
gorithm has positioned the user with high precision 
and small error. Also, the problems encountered such 
as the drift velocity has been resolved thoroughly. 
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