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Abstract 

Numerical modelling for the interaction between fluid flow interacting and moving object is a quite complicated 
problem in computational engineering. Such modelling requires solving simultaneously Navier-Stokes 
equation for fluid flow and Newton equation for object motion. Due to the motion, computational mesh needs 
to be re-generated in every time step, making the modelling complicated and time consuming. In this paper, 
we introduce a numerical method which utilizes immersed boundary to represent motion of solid object under 
effect of 3-dimension fluid flow. In the current method, we developed a numerical method for enforcing viscous 
boundary conditions on the immersed boundary. The method was validated and applied to simulate the inertial 
focusing of solid particle in spiral channel, obtained result well matches with experimental observation 
indicating the accuracy of the developed method. 
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1. Introduction* 

In computational fluid dynamics, simulations of 

fluid-structure interaction problems are normally 

obstructed by complexity of computational domain 

and the motion of the structure which leads to the 

change of the computational mesh during solving 

process. Finite volume and finite element methods 

have been shown to be usable approaches for 

simulating such problems. However, these methods 

are computationally expensive for moving object 

simulation where the unstructured mesh requires 

regeneration in each time step. In 3D, parallel 

simulation, process of mesh regeneration takes a long 

time to generate new mesh, redistribute the mesh over 

the processes community, and re-calculate the 

discretization matrix… 

An alternative method recently employed in 

simulation of fluid-structure interaction is the 

immersed boundary method (IBM). In this method, the 

presence of structure in flow field is represented by an 

additional forcing term in the equations for fluid flow 

rather than a body-fitted mesh. Therefore, flow over a 

complex geometry can be easily handled with 

orthogonal, structured mesh. The advantages of the 

IBM are reducing computation time, and easy mesh 

generation.  

In this study, we present an immersed boundary 

method for fluid-structure interaction. Boundary 

conditions for fluid flow and structure are satisfied by 
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a set of procedures which enforcing the conditions at 

the spatial location of structure-fluid boundary. The 

method was validated and applied to simulate the 

inertial focusing of solid particle in spiral channel, 

obtained result well matches with experimental 

observation indicating the accuracy of the developed 

method and showing feasible ability of applying the 

method in developing a numerical solver for predicting 

and optimizing design of microfludics sorting devices 

using in medicine.  

In the following sections, we first present the 

numerical method for solving the coupling of fluid 

flow and object motion. A validation for the method is 

then provided, and  we apply the method in simuation 

an actual microfluidics inertial sorting and separating 

problems.   

2. Numerical method 

We consider problem model of an object moving 

freely in fluid flow as sketched in Fig. 1. Having 

assumption that the object is solid; the fluid flow and 

object motion are governed by Navier-Stokes 

equations and Newton equations, respectively: 
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In above equations, ( )u , ,x y zu u u=  is fluid 

velocity vector, p is static pressure, 

( )u , ,p px py pzu u u=  is translational velocity of the 

object, ( )ω , ,p px py pz  =  is angular velocity of the 

object, is the hydrodynamic stress tensor cause by the 

motion of particle in the fluid, n is the normal vector 

outward pointing from the particle surface, g is the 

gravitational acceleration, r is the vector connecting 

the center of particle and a point on its surface ( p ). 

Other parameters including  , f , pm , pV , p , 

pI are kinematic viscosity, volume density of the fluid, 

mass of the particle, volume of the particle, volume 

density of the particle, and moment of inertia of the 

particle, respectively. 

In IBM, computational domain is defined by a 

fixed Cartesian grid. A solid object in the 

computational domain is represented by an immersed 

boundary which is defined by a number of points 

(which are referred as Lagrangian force points). The 

Cartesian grid and immersed boundary are illustrated 

in Fig.1. The Lagrangian points are not required to be 

coincident with Cartesian grid points (which are 

referred as Eulerian points). In term of IBM, effects of 

the solid object on the fluid flow are represented by the 

addition of a forcing term in the equation for the 

conservation of momentum (1). 

 

Fig.1. Fixed Eulerian for physical domain 

representation and Lagrangian grid for structure’s 

surface. 

The forcing term, f, in the momentum equation 

(1), is a kind of external force exerting on the flow field 

to represent the mutual interaction between fluid and 

immersed boundary. The forcing term takes a non-zero 

value at grid points that are in the vicinity of the 

boundary, but has no effect on the computation of grid 

points away from the boundary. Magnitude of the 

forcing term is determined in such a way that the 

boundary condition on the immersed boundary is 

satisfied. To determinethe forcing term , we rearrange 

(1) to yield 
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Writing the above equation at the Lagrangian 

points (denoted by capital letters) gives a similar 

equation  
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Make use of the Euler forward method to 

approximate the transient term,  
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where, the superscripts k+1 and k denote continuous 

time levels. By introducing a temporal velocity, which 

satisfies the momentum equation at Lagrangian points, 

we get 
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Because of the satisfaction of the momentum equation 

at Lagrangian points, the above equation reduces to 

1 ˆU U
F

k k

t

+ −
=


 

To enforce the boundary condition on the immersed 

boundary surface, the velocity 
1Uk+
 is set to the value 

of boundary velocity (e.g, velocity of particle surface). 

Thus, we can write, 
( ) ˆU U

F
b k

t

−
=


 

In the most cases, Lagrangian points are not at location 

of Eulerian points. Therefore, force at Eulerian points 

is calculated from force at Lagrangian points using 

discrete delta function [3] 
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where lV  is discrete volume associating with each 

Lagrangian point. ( )x xh l −  is the delta function.  
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( ) ( ) ( ) ( )1 1 1x x D D D

h l h l h l h lx x y y z z   − = − − −  With 

( )1D

h lx x − is the regularized one-dimensional delta 

function. 

In order to couple the Navier-Stokes and Newton 

equations, we solve the Navier-Stokes equations by 

using a fractional-step method for enforcing 

continuity, a three-step Runge-Kutta scheme for 

convective terms, and the Crank-Nicholson method for 

the viscous terms. The spatial derivatives are evaluated 

by second-order finite different schemes on a 

staggered grid sketched. The algorithm for solving 

flow equations, including the fluid-solid coupling 

terms, and motion equations, in a Runge-Kutta step, 

starts by advancing the Navier-Stokes equations 

without forcing term: 
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Velocity at Eulerian points is then spreaded to 

Lagrangian points using the delta function 

formulation: 
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Forcing term is then calculated at Lagrangian points, 

and spreaded back to Eulerian points: 
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The Navier-Stokes equation is then resolved with the 

obtained forcing term at Eulerian points. 
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Equations for translational and angular motion of 

object is solved using forcing term at Lagrangian 

points:  
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In the above equation, ,k k   and k are the 

coefficient of the three-step Runge-Kutta scheme. As 

given in [5],  

1 1 1 2 24 /15, 8 /15, 0, 1/15, 5 /12,    = = = = =

2 17 / 60 = − , 3 31/ 6, 3 / 4 = =  , and 3 5 /12 = −   

 

Fig 2. Flow streamlines at time step before (a) and after 

5000 (b) vortex shedding forms 

3. Results and disscussion 

3.1. Validation case 

To validate the proposed method, we consider a 

fluid flow around a stationary circular cylinder. The 

cylinder is represented by an immersed boundary with 

by 80 Lagrangian points distributing regularly on the 

surface. To validate our simulation result, we compare 

the drag and lift forces acting on the cylinder with the 

published data. Flow streamlines at an early time step 

when the flow is still symmetry is plotted in Fig.2. As 

time passed, the flow becomes unstable and the 

symmetry breaks up, fluid flow oscillates, vortex 

shedding appears. Table 1 shows the drag and lift 

coefficients obtained with the presented numerical 

method and method by another author at Re = 100. As 

can be seen, our results are in a good agreement with 

the published results [1,2,3]. 

Table 1. Drag and lift coefficients of the cylinder 

calculated for Re=100. 

 CD CL 

Braza et al. [2] 1.36 0.25 

Liu et al. [3] 1.35 0.3 

Calhoun et al. [1]  1.33 0.30 

Present 1.37 0.32 

 

Fig. 3. Model of infinite spiral channel. Position of 

particle in the spiral channel is defined using a 

cylindrical coordinate system. 
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3.2. Particle in realistic Dean flow 

In order to further validated the method, we are 

going to carry out simulation result for inertial sorting 

problem presented in the work published by Guan et 

al. (2013) [6]. In the study, Guan shown experimental 

results for focusing behavior of micro-size particles 

with various diameters in spiral channel. The results 

are very useful in designing device for extracting 

circulating tumor cell (CTC) out of blood. We conduct 

simulation for particle traveling in a spiral channel 

which is 15mm in diameter, 600µm in width and 

120µm in depth. The cancer cells are modeled by 

spherical particles which are 15.5µm of diameter. The 

spiral channel is sketched in Fig. 3. The fluid flow 

volumetric rate in the channel is set at 2ml/min, this 

flow rate is equivalent with average velocity of 

0.46m/sec of fluid flow in the channel  

 
Fig. 4. Secondary flow field around particle at 

different time step. Secondary flow near the bottom 

wall push the particle towards the inner wall 

 

Fig. 5. Cylindrical coordinate of particle A which was 

located initially near the bottom wall of spiral channel. 

In this problem, we concern the position of 

particle at steady state. Thus, we first solve for flow in 

the channel to obtain the steady state flow. Then, 

particle is located into the flow to examine its steady 

motion. To achieve a general result and save 

simulation time, particles are located at different 

positions: near the bottom wall where the Dean flow is 

coming towards the inner wall, near the symmetry 

plane where the Dean flow is coming towards the outer 

wall. 

Due to the multiscality of the problem, particle 

size is much smaller than the channel size, the 

numerical model requires a fine mesh for accurate 

modeling results. In the current simulation, a mesh of 

9.5 million elements is used. The mesh is distributed 

over 32 processes. 

For convenience in analysis, all quantities 

presented in this section are dimensionless. These 

quantities can be converted into dimensional values 

using the following scales: Length scale 0 15l mm= , 

velocity scale 0 0.46 / secv m= . In dimensionless 

formulation, the channel diameter is 1, the channel 

width is 0.04, the channel height is 0.004, and the 

particle diameter is 0.001. 

Particle focusing  

In the Fig.5, position of particle is presented in 

cylindrical coordinates (r,z). As can be seen in Fig. 4, 

due to the Dean flow near the bottom wall the particle 

is pushed towards the inner wall. When the particle is 

at a distance of 0.463 from the channel centroid (or 

45µm from the inner wall), it seems to be unable to 

come closer to the inner wall (as shown in Fig. 5, from 

t=0.43 to 0.52). Comparing this ‘stable state’ position 

of particle to the corresponding outlet position in 

experiment (marked by the yellow arrow Fig. 6), we 

can see an agreement between the experimental and 

numerical results.  

Effect of Dean flow on particle motion 

We examine effect of the Dean flow on the 

particle by plotting secondary velocity field around 

particle at different time steps (denoted by t1, t2, t3, t4 

in Fig. 5). The velocity fields are shown in Fig. 4.  

At early time steps (t1, t2), when particle is still 

far from the inner wall, it moves along the secondary 

flow near the bottom wall. However, the closer to the 

wall, the stronger wall-induce inertial lift force; the 

opposing forces (Dean drag force and the wall-induce 

force) result in a ‘stagnation zone’ (Fig. 4). The 

stagnation zone is expanding while the particle comes 

closer to the inner wall (Fig. 4). It should be noted that 

this ‘stagnation zone’ is defined with respect to the 

secondary flow (flow in channel lateral direction), the 
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zone of course is still flowing with the main flow in the 

longitudinal channel direction.  

When the particle moves to a critical position, 

where the Dean drag and wall-induce inertial lift forces 

seem to be balanced, the particle is not able to come 

closer to the inner wall. The fluid volume surrounding 

the particle seems to be confined (by the Dean flow), 

the fluid flow inside this volume causes a small 

fluctuation of particle as seen in the interval [t3, t4] in 

Fig. 5.  

Particle fluctuation in the z-direction 

As can be seen from Fig. 5, after a number of time 

steps, the particle starts fluctuating in the z-direction at 

constant amplitude. This fluctuation is believed to be 

the effect of interior flow in a volume forming around 

the particle. Such volume doesn’t exist at early time 

steps (t1, t2).  

 

Fig. 6. Experimental results for particle position at 

channel outlet (Goufeng Guan et al. [6]). The case 

corresponding to our simulation model is marked by 

the yellow arrow (120µm×600µm, Rectangluar cross 

section at 2mL/min flow rate). By comparing, we can 

see an agreement between the experiment result and 

the simulation result (Fig. 5).       

 4. Conclusion 

In this study we presented an immersed boundary 

method for solving flow-structure interaction problem. 

The method uses a forcing term to enforce boundary 

condition for fluid flow on structure surface. The 

method was validated and applied to simulate the 

inertial focusing of solid particle in spiral channel, 

obtained result well matches with experimental 

observation. The method can be applied for predicting 

and optimizing design of microfludics sorting and 

separating devices using in medicine.    
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