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Abstract

This paper presents a build of improving algorithm adaptive control in joint space for the motion system of
the Almega16 manipulator. The proposed controller eliminates the need for on-line computation of the
regression matrix by replacing joints position and velocity with the desired joints position and velocity. In a
adaptive control algorithm, the kinetic parameters identification system always provides state information
update on the time-variant parameters. The true value is compared to the reference set-point and its
evaluation result is input to the controller for adjustment. The results from Matlab - Simmechanic simulations
and experiments show that the motion system of Robot Almega16 satisfies the requirement of a control
system: the errors of rotating joints quickly converge to zero within a short transient time, so that closed-loop

system is stable based on Lyapunov method.

Keywords: Robot Almega 16, Desired compensation Adaptation Law, Lyapunov method.

1. Introduction

We has studied to develop adaptive control
algorithm Li — Slotine [2, 6] for Robot Almega 16
and the new approach has shown the highlighted
advantage, namely the system worked -exactly
without knowing the dynamical parameters of the
robot dynamics Almega 16, the controller solved the
problem by estimating the parameters based on law
Li - Slotine, the controller solved the problem by
estimating the parameters based on law Li - Slotine,
by the way the number of calculation would be
reduced significantly while ensuring Robot Almega
16's operational flexibility, concurrently rejecting the
erroneous components of the joint angle & the last
phase's positional errors, as a result, the Almega 16
motion system works stably and precisely with a
small transitional period. However, adaptive
controller still has weak points, it requires a large
amount of the online caculation and unstable with
interferences. One of the disadvantages of the
adaptive“Li-Slotine control algorithm in [2, 6] is that
the regression matrix (e.g., the matrix Y(.) ) used as

feedforward compensation must be calculated on-line.

The regression matrix must be calculated on-line
since it depends on the measurements of the joint
position q and velocity q . However, one — line

computation of the regression matrix can be very
difficult if one desires to control a manipulator with
many degrees of freedom. To eliminate the need for
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on — line computation of the regression matrix, we
will now examine the desires compensation
adaptation law. The desires compensation adaptation
law eliminates the need for on — line computation of
the regression matrix by replacing qand q with the

desired joint position q, and q, velocity. That is the

desired compensation adaptation law only depends on
desired trajectory information; therefore, the desired
compensation adaptation law regression matrix can
be calculated a priori off - line. This paper will be
design and simulate the desired compensation
adaptation law for the three-link arm is almega 16
robot.

Fig. 1. Six-link Almega 16 arm
2. Object Control

The Almega 16 robot is shown in Fig. 1, as
follows [6]. This is a vertical welding robot with fast,
rhythmic and precise movement characteristics,
including six—link axes, each one link axes is
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equipped with a permanent magnet synchronous
servo motor and closed loop control. In the article
using only three-link axes as the research object,
specifically the main specifications of the three joints
as follows.

First joint: Rotation angle: £135°. Center tops
from top to bottom: 28cm. Center line of axis I to the
center of the cylinder: 35cm. Second joint: Rotation
angle: +135°% The length between the center of the
axis I and II is 65cm. Third joint: Angle of rotation:
90° and -45°. The length between the two centers of
axis I and II is 47cm. The total volume of the
Almegal6 Robot: V = 0,12035 m®. Total weight of
the robot: 250kg. The mass of joints is as follows:

mo = 100 kg, m; = 67 kg, mp = 52 kg, m3 = 16 kg,
my = 10 kg, ms = 4 kg, me = 1 kg.

The motion system Almegal6 Robot is a
nonlinear system that has constant model parameters
and is interfering with the channel between the
component motion axes. According to the literature
as follows [3], the first three joints have fully
integrated the dynamics of the freedom arm. The
motor connected to the joint is usually a planetary
gear and Small air gap. It is influenced by friction
such as static friction, friction, viscous friction and so
on. Therefore, the first three joints are the basic chain
that ensures movement in 3D (X, Y, Z) space. The
basis for the study of the next steps in robot
manipulator motion systems. The problem with the
controller is that: should design the quality control
ensures precise orbit grip that does not depend on the
parameters of the model uncertainty and the impact
on channel mix between match-axis error between
joint angles and the angle joints actually put a small
(<0.1%).

3. Desired Compensation Adaptation law
3.1 Dynamic Model of Robot Manipulators

The dynamic of an n-link rigid manipular,
[1L[2L,[31.[41.[6] can be written as

D

Where q is the n x [ joint variable vector, T isanx [
generalized torque vector M(q) is the nxn inertia

.z =M(q)4+H(q,q)q+G(q) +F,q .

matrix, H(q,q) is the n x [ Coriolis/centripetal
vector, G(q) is the n x/ gravity vector and F; is the

n x n positive-definite, diagonal matrix that is used to
represent the dynamic coefficients of friction, and all
other quantities are as defined in Chapter 3, [3].
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3.2 Controller Design
The controller design problem is as follows:
Given the desired trajectory q,(#) , and with some or

all the manipulator parameters being unknown, derive
a control law for the actuator torques such that the
manipulator output () tracks the desired trajectory

after an initial adaptation process.

In Chapter 6, [3], adaptive control of robot
manipulator involves separating the known time
functions from the unknown constant parameters is
given by

Y()7 = M((I)(iid +é)+ H(q,fl)(qd +e)+ G(CI) + qu
2)

where Y(.) is the n x r regression matrix that

depends only on known time functions of the actual
and desired trajectory, and 7 is the r x I vector of

unknown constant parameters.
We define the joint tracking error to be
3)

In the desired compensation adaptation law, this
separation of parameters from time functions is given
by

Y, (y =M(@q, +H(q,,q,)q, +G(q ) +F,q,

e=q,—q

“)

where Y,(.) is the n x r regression matrix that

depends only on known functions of the desired
trajectory? Note that if we substitute q, and q, for

qand q, respectively, into (2), the regression matrix
formulation given by (2) is equivalent to that given
by (4).

Utilizing the regression matrix formulation
given in (4), the desired compensation adaptation
law is formulated as

¢ =Y, () +kr+ke+k,[¢ r 5)

where kv,kp,ka are scalar, constant, control gains,
# is the r x I vector of parameter estimates, and the
filtered tracking error is defined as

©)

The desired compensation adaptation law given
by (5) is quite similar to adaptive controllers
discussed in Chapter 6, [3] with the exception of the

e||2 r in (5). It turns out that this additional

r=e+e

term k,

term is used to compensate for the difference between
Y() and Y,(.); given in (2) and (4), respectively.
This difference between the actual regression matrix
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and the desired regression matrix formulations can be
quantified as

Y (N

<o el e el +x e o]

where

Y=Y(y -Y; (8)

And #,,%,,x, and z, are positive bounding

constants that depend on the desired trajectory and
the physical properties of the specific robot
configuration (i.e., link mass, link length, friction
coefficients, etc.).

To analyze the stability of the controller given
by (5), we must form the corresponding error system.

First, we rewrite (1) in terms of Y(.); and r
defined in (2) and (6), respectively. That is, we have

M(q)f =-H(q,@r+Y() -7 (€))
Adding and subtracting the term Y(-);’ on the
right-hand side of (9).

M(q)F = -H(q.@)r+Y,(.)y +Y-7 (10)

where Y is defined in (8). Substituting the control
given by (5) into (10) yields the error system
M(@)i = -H(q.Qr + Y, () +Y+Y, ()
-k,r-ke-k, ||e”2 r

= (11
M(q)r =-H(q,q)r -k r-ke
K, e r+ Y +Y, 0
The parameter adaptive update law is
/== =TY;Or (12)
where I' is an r x r positive defined, diagonal,

constant, adaptive gain matrix, and the parameter
error is defined by

F=7-7 (13)
3.3 A Globally Stable Adaptive Controller

To derive the control algorithm and adaptation
law, we consider the Lyapunov function candidate

V() = % r"M(q)r + %kpeTe + %;’"Tr’l;’

Differentiating (14) with respect to time yields

(14)

V(t) = %rTM(q)r +r"M(q)i +k,e"e+7 77 (15)
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since scalar quantities can be transposed. Substituting
(11) into (15)

V() =k,e"e-k r'r-k,r’e—k,|e| r'r
+r'Y+ %rT (M(q) —2H(q, q))r

AR AL 6%

(16)

where we have used the property of skew-symmetric
to eliminate the term %rr (M(q)—2H(q,(1)). Let
us define the updated law in (12), it is easy to see that
second line (16) is equal to zero, therefore, by
invoking the definition of r given in (6), (16)
simplifies to

V(t) = -kpeTe —kvrTr —kprTe -k, e||2 r'r+r’'Y

A7)

From (17), we can place an upper bound on
V in the following manner:

V)< K, Jel =, el =, el e[+ eV

| a)

A new upper bound V can be obtained by
substituting (7) into (18) to yield

el e+, el ]

s el el el 2. el el

Vi <k, || k., || -k,

19)
by rearranging the second line of (19), it can be
written as

O N o e

2 2

s[5 Ie1] = P [ 15 el
ey e el el (7 Jlelf +(=5 74 i

(20)

After collecting common terms in (20), it can be
rewritten as

Vi<, =%, Jlof ~(k, =, =5 )i
o el el [ 5~ = el [ Y5 ~lel]

~(ky =5 =+ )" el

1)

by noting that if the control gain k, is adjusted in
accordance with

k

a

(22)

>%, tx,
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We can see that the terms on the second line of
(21) will all be negative; therefore, we can obtain the

new upper bound on V(r) .

V=6, =4 I (ko= Yl 5 el

(23)
By rewriting (23) in the matrix form
V() <—x"Qx (24)
where
Q= ke J% J% andx = ||e|| ,
_"% k, _,,3_"% Ir

We can establish sufficient conditions on kp and

k, such that the matrix Q in (24) is positive definite,
we can see that if

k,>" % +* % (25)
and
k, >’%+x3+’% (26)

The matrix Q definite in (24) will be positive
definite, V() will be negative semidefinite.

We now detail the type of stability for the
tracking First, since V() is
semidefinite, we can state that V is upper bounded.
Using the fact that V is upper bounded, we can state
that e,e,r and 7 are bounded. Since e,e,r and 5 are

erTor. negative

bounded, we can use (11) to show that r,q and hence

V(t) in (17) are bounded. Second, note that since
M(q) is lower bounded as delineated by the positive-
definite property of the inertia matrix, we can state
that V(¢) given in (14) is lower bounded, we can use
Barbalat’ lemma (see Chapter 2,[3]) to state that

limV() =0

Therefore, from the argument above and (24),

we know that.
e
r

from (27), we can also determine the stability result
for the velocity tracking error. Specifically, from (6),
note that r is defined to be stable first-order
differential equation in terms of the variable e;
therefore, by standard linear control arguments, we
can write

lim

1>

@7

lime=0

>

(28)
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This result informs us that if the controller gains
are selected according to (22), (25), and (26), the
tracking errors e and € are asymptotically stable.
From the analysis above, all we can say about the
parameter error is that it remains bounded. The
adaptive controller just derived is summarized in
Table 1 and depicted in Fig. 2.

Table 1 Desired Compensation Adaptation law

¢ =Y, +kr+k,e+k, ||e||2 r
Torque where
Controller | Y¢(¥ =M(@d, + H((.L: »4,)4,
+G(qy) +F,q,
r=e+e
Update rule ;== =TY (Or
Tracking error e and € are an
Stability asymptotical  state. = Parameter
estimate 7/ is bounded
Controller ~ gain  k_ ,k, and
Comments -
k , must be sufficiently large.

Table 2 The Parameter of Desired Compensation
Adaptation law

The The Parameter value of
Symbol . . .
parameter the joint axis
q Desired joint | 91 =942 =943 = 1)
d osition - —a =«
P Uy =Ygy =Ygy =501
k, Scalar k, =250
k, Constant k, =250
k, Control gain k, =250
4 9,=259,=259,=025
7’;’! Estimated r/\n] — 7’;’!2 — 7;13 =0
volume
Z: Y(,fI‘YdTrda _~ T : A‘Fq
] [wre | [ ]
+i —
+ Q 5 —
Fig. 2. Structure of the joint space desired

compensation adaptation controller
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After glancing through Table 1, we can see that
as opposed to the adaptive inertia-related controller,
the Desired Compensation Adaptation law has the
obvious advantage of reduced on — line calculation.

Specifically, the regression matrix Y: depends only

on the desired trajectory; therefore, the regression
matrix can be off-line. We now present an example to
illustrate how Table 1 can use to design an adaptive
controller for the Robotic manipulator.

4. Desired Compensation Adaptation law for the
Three —Link Arm

4.1 The problem

We wish to design and simulate the Desired
Compensation Adaptation law given in Table 1 for a
three-link arm in Fig. 1. The dynamics for this Robot
arm are given in [6]. Assuming that the friction is
negligible and the link lengths are exactly known to
be of length 1m each, the Desired Compensation
Adaptation law can be written as:

T, = Yy iy + Yprin, + Yy +kry tke tk, "e”2 ry

A A A 2
T, = Yo i + Yoty + Yy, + Ko, +k e, +k, e 1,

T, =Y, + Yy, + Y, + K or, +k,e, +k,
(29)
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Fig. 3. Desired Compensation Adaptation controller
with steady-state position error eliminated
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Fig. 5. Desired Compensation Adaptation controller
with steady-state position error eliminated
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where

r,=e +é,r, =e, +¢é,,r, =e, +¢é and
2

le| =€ +€;+e

In the expression for the control torque, the
regression matrix Yy () is given by

Y, Y, Y,
Y, (qd 144544 ) =Y, Y, Y, (30)
Y, Y, Yy,
where Y,,,Y,.Y;.Y,,,Y,.Y,..Y,,.Y,,, Y., defined

in [5]. Formulating the adaptive update rule as given
in Table 1, the associated parameter estimate vector
is

2
7:ﬁ12

A

my

With the adaptive update rules

n, =g, [anl +Y,r, + Y31r3];m2 =9, [lerl +Y,r, + Y32r3]

ny =g, [Yl3rl +Y,r, + Y33r3]
(3D

E .

e =a,-q Vi e mag-a

F 1

Fig. 4. Desired Compensation Adaptation controller
with the errors between joints angles
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Fig. 6. Desired Compensation Adaptation controller
with the errors between joints angles
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4.2 Simulation

Afer building up the algorithms and control
programs, we will proceed to run the simulation
program to test computer program. the Desired
Compensation Adaptation law was Simulink with
Table 2.

After simulation we have results position and
position tracking error is depicted Fig. 3, Fig. 4,
Fig. 5, Fig. 6.

4.2.1 Desired joint position is 1(t)

Comment: the robot Almega 16 motion has
meet controlled requirements: Steady — state error of
joint angle conveges to zero very fast with transient
time is small.

4.1.2 Desired joint position is sin(t)

Comment: The desired trajectory and the real
trajectory of the Almega 16 robot have a small error
and the transition period of the system is very fast,
the mean position error of the total three joints was
very low (~ 0.002%).

As illustrated in the Fig. , the position tracking
is both asymptotically stable. Parameter

estimate 7 is bounded. Controller gain k, ,k, and

crror

k, must be sufficiently large.

5. Conclusion

As research in robot control has progressed over
the last couple of year, many robot controls began to
focus on implementation issues. That is,
implementation concerns, such as the reduction of on-
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line computation is causing the researcher to rethink
the previous theoretical development of robot
controllers so that these concerns are addressed. This
paper addresses the problem of re-proofing the
desired compensation adaptive control for Robot
Almega 16 Robot. The desired compensation
adaptive law to resolve the regression matrix
Y, depends only on the desired trajectory; therefore,

the regression matrix can be off-line. Thus the
volume of mathematics in the control algorithm to
reduce more than controls algorithm to research. The
simulation  results in  software = Matlab
Simmechanics shows that the Robot motion has meet
controlled requirements: Steady — state error of joint
angle converges to zero very fast and transient time is
small.
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