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Abstract

Nowadays, building’s power consumption represents the most important portion of the global consumption
(about 40 — 45%). To use more efficient energy sources, it requires not only the improvement in materials as
well as new technology measures using less energy, but requires also the detection of faults that can occur
during building life. These faults cause not only serious energy losses, but also human discomfort in the
buildings. Thanks to sensor network, discomfort or failure alarms can be detected, which identify some
issues in buildings. An alarm must be analysis to identify the faults and fix them as quickly as possible in
order to maintain building performance. The aim of this paper is to study for application of diagnostic
theories in the building. A Bridge approach is used as a diagnosis tools in the buildings. An application to a
smart building is implemented to face this fault diagnosis in buildings problem.
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1. Introduction

Buildings are becoming more and more complex
energy systems consisting of several elements i.e.
heating/cooling systems, ventilation systems, lighting
and control systems etc. In addition, buildings have
multifarious activities and the occupants may have
different demands from a building. Even though
building ramification is growing, communication
between the participants and the building elements
during the building life is poor [1]. The building
energy system and the monitoring of its energy and
environmental performance has been the subject of
great interest in recent years. There is an increasing
awareness that many buildings do not perform as
intended by their designers.

Typical buildings consume 20% more energy
than necessary due to faults occurring at a different
level of the building life cycle i.e. from construction
to operations [2,3]. The building energy management
system (BEMS) collects and stores massive quantities
of energy consumption data. The goal of BEMS
(control of energy uses and costs, while maintaining
indoor environmental conditions to meet comfort and
functional need) cannot be achieved without
uncovering  valuable information from the
tremendous amounts of available data and transform
it into organized knowledge [1]. Hence significant
potential exists for better use of BEMS data through
fault detection analysis in order to improve operations
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and save energy. It should focus on all major
anomalies including unplanned situations and able to
provide corrective actions or recommendation to
operator as well as users.

Fault detection and diagnosis is well-proven and
known methods for research areas like aerospace,
automotive and process industry etc. Since, last few
years numerous attempts were made to apply these
techniques for buildings. In August 1990 (Revised in
2001), International energy agency (IEA) published
Annex-25 i.e. “Building optimization and fault
diagnosis source book™ [4,5]. This work could be
considered as relevant beginning of FDD in smart
building research domain. The purpose of this
publication was to enlist all technical faults focusing
on HVAC and controllers. In more recent works few
diagnostic tools were developed to identify the whole
building level faults, for example, Automatic building
commissioning analysis tool (ABCAT), and Whole
building diagnostician (WBD) developed by Texas
A&M University and Pacific Northwest National
Laboratory (PNNL) respectively [6,7]. Recently a
model-based real-time automated FDD tool is
developed by Lawrence Berkeley national laboratory
[8] and simulation were performed over chiller
model. Moreover, these works are either inspired by
physical model-based or data based models. In
parallel, a contemporary group of researchers also
focused on qualitative models for fault diagnosis
analysis. In buildings, rule based qualitative model
are used to diagnose faults in air handling units or
other part of HVAC [9,10,11]. Few works also found
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in literature adopted the rule-based diagnosis models
for entire building operation management [12]. A
detailed review about FDD methods applied for
buildings can be found in [13]. In summary, most of

the works related to FDD in buildings are
fundamentally concerned about the equipment
failures leading to indoor discomforts or
maintenance.

The present work is devoted to the problem of
fault detection wusing real building energy
consumption data through a Bridge approach which
can combine FDI and DX. Experimental results show
the effectiveness and usefulness of the proposed
approach in automatic detection of abnormal energy
consumption. The organization of the paper is as
follows. Section 2 provides description of studied
building and data information while in Section 3 a
brief description of method used in this study is
presented. Section 4 describes the methodology and
in Section 5 results and discussion are given.
Conclusions based on results of this study constitute
Section 6.

2. Case study: the Cecp/Cerema building

The building C.E.C.P (laboratory CEREMA)
within the department Experimentation, Research,
Development and Innovation (DERDI) of the CETE
Normandy Centre, was built from May 2011, we
setup a platform of 40 rooms (see Figure 1 and 3).
This platform was equipped a sensor network
included HOBO sensors, BEAN sensors and iRIO-
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Schneider sensors, which permit to measure
temperature, CO, concentration, electrical
consumption, calorific consumption, window opening
and human presence in order to research about
thermal building.

Fig. 1. The C.E.C.P/CEREMA building

Indoor air quality (IAQ) is important since up to 90%
of a typical people’s time is spent indoors, and poor
TAQ has been linked to respiratory illness, allergies,
asthma, and sick building syndrome. For this
platform, TAQ can be regulated by the ventilation
system that mixes fresh outdoor air with return air for
the air supplied to the indoor space. This ventilation
system may provide heat through air/water exchanger
thanks to a fuel boiler.

2.1. Ventilation system
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Fig. 2. Ventilation system in C.E.C.P
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Fig. 3. Plan of the C.E.C.P building
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The ventilation system in C.E.C.P (see Figure 2)
is dual flow ventilation system. This system allows
limiting the heat losses inherent in the ventilation. It
uses the heat from stale air before it is expelled from
the house to warm the fresh air coming from outside.

(T ppiy air )» Which is computed by following equation:
T;upply_air = (Ti'nside - T:)utdoor ).‘6 + T«')utdoor (1)
with » is the efficiency of the heat exchanger which

is estimated, from measure, by 0.8.

In the case of T < 22 °C, the radiator will

supply_air
heat this supply air to 22°C. Then, the energy
consumption of the radiator is given as follow:

P=m.cAT )
where:
e m, mass of air [kg]
e ¢, specific heat [J/kg.°C]
2.2. Heating system in the C.E.C.P building

The heating system provide heated air to the
rooms within the building through air/water
exchanger thanks to a water boiler (illustrated in
Figure 4).

Hailer 5 Radiator = Huilding
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Fig. 4. The heating system in C.E.C.P building
e T

primary *
by water law [°C]. This temperature can be
computed as follow:

the boiler temperature which is adjusted

T imary = —2-33T 3000 +60.67 3)
o T..> temperature of steam in pipe which is
calculated in function of T, . as follow:
T cons = Tinary  1f  the boiler works normally
T ooond = Tovgoor  1f the boiler is broken

®  QOiuine - the amount of energy is supplied by

thermostat to each room in the building:

.

are respectively the temperature

Ti'nside

T ., —
Qheating = 1500 [WT (4)

and T

inside

with T,

of the radiator and the air temperature in each room
[°C].

3. BRIGE approach to fault diagnosis in buildings
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Before 2000s, FDI and DX have been
considered as completely isolated groups. Intuitively,
both methodologies had their own terminologies and
paradigm for fault detection and diagnosis. The FDI
approach mainly focuses on dynamic system and
utilize two step diagnosis process i.e. Detection and
Isolation, whereas DX approach mainly deal with
static system and adopt the consistency based
diagnosis (CBD). FDI believe, abnormality in
modeled behavior implies faults in system, on the
contrary, DX assumes that faulty behavior cannot be
determined only from behavior, it should involve
component discretion. Multiple fault diagnosis is also
a challenging task for FDI, though DX can deal with
them easily. FDI and DX, require a formalized model
that avail the system information. A more detailed
comparison between FDI and DX has been presented
in [14].

Concurrently, a Bridge approach (illustrated in
Figure 5) have been proposed to bridge the data based
and physical model-based diagnosis. The mainstay of
Bridge approach that is capable of finding the
diagnosis with component level explanation. Formal
diagnosis or FDI analysis exploits only valid test
revealing a behavior abnormality of system, gives an
easy mean to fault detection. However, with the
notion of Hamming distance and signature table,
faults localization is not adequate to address the
component or sub-system level faults.
Aforementioned, FDI solely rest on ARRs and DX
follow the conflict analysis to diagnose the system. In
[14] came up with concept of support and scope and
tried to establish a link between ARR and conflict.

Avalytiond odarey bused | |
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Fig. 5. Bridge approach of diagnosis
4. Application to the C.E.C.P building
4.1. Sources of anomalies in building operation

To understand all the possible sources of
anomalies in building operation, the whole building is
considered as a complete system-level (upper-level)
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subject to analysis (see Figure 6). It is further
subdivided into primary and secondary sub-systems
level. Each sub-system is assigned a variable related
to their functionality and corresponding symptoms
are analyzed in detail with all feasible fault causes.
Eventually, the component level consists in all
elementary or “non-divisible” part of a building
system. In present, component level approach is not
much emphasized. The fundamental concern is given
to diagnose the faulty sub-system that affects the

occupants discomfort dominantly (in Table 1).

Table 1. The possible faults in the C.E.C.P building

Sub-systems Fault Affected parameters
- Indoor temperature in
o . . | the room has window
Building Window is the oom fas do
envelope opening Openime.
) - Indoor temperature in
neighbor rooms.
o - Indoor temperature of
Ventilation | 1 the rooms
15 not - Air temperature after
running air handling unit
effectively. (T )
supply_air /*
o - Indoor temperature of
Ventilation | The door temperature o
radiator of all the rooms
system i .
ventilation |- Ailr temperature after
system is | radiator of ventilation
broken. SyStem ( Tl‘waled_air )
Pipe is - Indoor temperature.
pierced or |- Airflow blown into the
stuck. room.
- Indoor temperature of
all the rooms
o - Boiler temperature
Boiler is (T )
broken. primary 7
- Thermostat
temperature in all the
rooms.
Heating Pipe of - Indoor temperature of
system heating several rooms.
systemis |- Thermostat
pierced or |temperature in several
stuck. rooms.
- Indoor temperature in
Thermostat | , . P
s broken this room.
. - Thermostat
in a room. .
temperature in this room.
Abnormal |- Indoor temperature in
Occupants | occupancy | this room.
in aroom. |- CO; concentration.
. nplann - Power meter.
Electrical u pla ed ower mete .
. | appliances |- Indoor temperature in
consumption | . .
in a room. | this room.
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Fig. 6. System-level analysis of C.E.C.P
4.2. The detection tests

To perform, detection each symptom require a
set of sensors with certain deciding criteria to confirm
the test. Figure 7 shows the test methodology used for
detecting the primary symptoms. In this figure
sensors (S) are used to measure the building reality
and memory unit represents the storage of
information fetched from sensors. Further a logic unit
decide whether test is valid or not based on respective
deciding criteria. The test confirmation unit convert
the decisions into binary values i.e., 1 or 0. A test
acknowledge the presence of symptom when a
symptom abides by the linked criteria. The
description of the causes for alarm (detected by
sensors) for different test are given below, in further
discussion each test with their deciding criteria is
explained in detail in Table 2.

Logic wail

O cead
R T gl

Fig. 7. Test set-up and representation

o Test 1: fest indoor thermal discomfort

Figure 8 shows the test methodology used for
detecting the primary symptoms. In this figure,
sensors (S) are used to measure the building reality
comfort is 18°C to 24°C. However, 19°C is
considered as optimum comfort.
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Fig. 8. Test set-up and representation
Causes for alarm:

- Heating system: thermostat is broken, boiler is
broken or pipe is broken.

- Ventilation system: Air Handling Unit (radiator of
AHU or efficiency), pipe pierced.

- Window opening.

- Ambient temperature more than a threshold (The
building don’t have cooling system).

- Sensor is faulty.
- Unplanned occupancy.
- Unplanned appliances

o Test 2: test indoor temperature is not following
the thermal plan

Causes for alarm:

- Heating system: thermostat is broken, boiler is
broken or pipe is broken

- Ventilation system: Air Handling Unit (AHU)
(radiator of AHU or efficiency), pipe pierced

- Window opening in this room or in the neighbor
room

- Unplanned occupancy

= Unplanned appliances

- Sensor is faulty

o Test 3: test abnormal consumption in each room
Causes for alarm:

- Unplanned appliances

o Test 4: fest water law for radiator in each room

Test verifies temperature of radiator by using
equation of water law (equation 3).

Causes for alarm:
- Boiler is broken

= Sensor is faulty
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- Pipe is broken
- Radiator is broken
o Test 5: test water law for boiler

Causes for alarm:
- Boiler is broken.

o Test 6: Test window opening
Causes for alarm:
- Window is open

o Test 7: test temperature of supply air before enter
radiator AHU (T,

supply_air )

Test verifies temperature of supply air by using
equation 2.3.

Causes for alarm:
- Poor efficiency
- Sensor is faulty
o Test 8: test temperature in output of radiator

AH U ( Tl;eated_air )

Test verifies if this temperature is less than 22 °C or
not. If less than 22 °C, that means radiator AHU is
broken.

o Test 9: test occupancy

Test verifies the number of persons in the room
Causes for alarm:

- Unplanned occupancy

o Test 10: test airflow

Test verifies the airflow blown in each room with the
plan of airflow.

Causes for alarm:
- Loop of ventilation system is broken.

- Some ventilation pipes are pierced.
5. Experimental results
5.1. Scenario:

At 18 hours, window is opening and abnormal
electrical consumption in  office009 was
simulated. Efficiency AHU is simulated by 0.4
less than normal state (0.8). Observed symptom is
the temperature in the room “BUR _009” is less
than 18 °C. The concepts and principle mentioned
in the previous sections have been implemented
into a command line software called DXLAB.



Journal of Science & Technology 120 (2017) 059-065

Table 2. Fault signature table
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Fig. 14. Result of test 6
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Fig. 16. Result of test 10

Faults detection for the office009

5.2. Results
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From Figure 9 to Figure 16, observed signature

for 10 tests are obtained: [1, 1, 1, 0,0, 1, 1, 0, 0, 0].

Fig. 12. Result of test 4
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Fig. 13. Result of test 5, 7 and 8

apriori: unreliability of component which

assumes that each component has a probability
working in a normal state and that probabilities
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are independent. In this application, the
unreliability is fixed as 0.1.
- contextual: the measure of coincidence
o Faults detection for the office010
With 10 tests above, the DXLAB says:

{efficiencyAHU is not ok - other_ windows
is not ok} - score: 100%, apriori: 10%,
contextual 85.71%

The component “other_ windows” is then

decomposed into sub-components window_BUR009Y,
window_BUR01l1l,window_BURO012, window CIRC_

Rl (that means window in others rooms in the
building). In this case, the diagnoses calculated by

DXLAB is: {efficiencyAHU is not ok -
window_BURO09 is not ok} - score: 100%,
apriori: 10%, contextual: 85.71%

For these diagnoses above, BRIDGE can detect
all the fault cause the symptom in the office009.
BRIDGE method always starts with a test negative.
Therefore, in the cases there are compensable faults,
this method does not work.

6. Conclusions

The research aimed at testing the potential of
using a Bridge approach diagnosis for an automated
fault detection process in building. The study will
help building energy management systems (BEMS)
by tracking and detecting abnormal energy
consumption in building overall energy system. The
methodology can be easily integrated with the BEMS
to perform fault detection in near real time and can be
applied to the buildings with similar end-uses. An
application to a smart building of this approach was
presented.  Experimental  results show  the
effectiveness of the proposed approach in automatic
detection of abnormal energy consumption.
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