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Abstract

Many works related to the signal restoration from discrete samples that are unsatisfactory requirements of
Nyquist’s criteria has been deployed and published recently. There were many algorithms to solve this
issue, such as CoSaMP and the matching pursuit. This article presents a developed algorithm which is
based on the matching pursuit algorithm to recover multi-dimensional architectures. This development is
permissible to reduce the calculation mass in several cases along with a number of dedicated conditions
when sampling signal compression. Simultaneously, the article will demonstrate this algorithm also makes
reduce the occurred error at each step in the signal recovery process by using the mathematical method.
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1. Introduction

Recently, related works to the improvement of
the discrete signal recovery has been deployed in
many published papers. One of most regarded
important problems is signal restoration from discrete
samples that are unsatisfactory requirements of
Nyquist’s criteria, also known as compressed
sampling.

To recover the discrete signal, problems and
related works have been given generally to become a
loss function minimization problem under the
conditions of discretized signal:

min /(x) , with the condition of ||x||O_D <k (1)

Here,

|x||0 b is a standard matrix, this standard

will be used to measure discretion of x relate to the
set of D,kis a parameter to determine the discretion
level of estimation /(x) where it is consider as a

targeting function and it is used to measure
correlation between measurements and parameters
need to estimate.

+ f(x): is a smooth function, but needn’t

necessary to be a convex function. The estimation
problem is the relative enough to cover related
issues. For example, in the sensing data has a
compression and discrete linear regression if we want

* Corresponding author: Tel.: (+84) 915.021.822
Email: kientv@epu.edu.vn

72

to restore a discrete data x" € R" from the discrete
linear datayeR":y=Ax +e, with A is the

measured matrix having the size of mXn and e is an
interference vector.

The function /(x) was established as a
quadratic function: Z(x)=||y—A.x||z following as the

regulation of /.

Similarly, in the recovery vector to restore a low
level matrix X°, the linear  observation
function y = Ax" +e, loss function is a quadratic

. 2 o . .
function || y—A)c"2 and current limitations are the

order of the matrix.

There are many algorithms related to the resolve
of this issue, such as CoSaMP [2], [3] and the
matching pursuit [4]. In which, the matching pursuit
algorithm has some advantages in comparison with
CoSaMP algorithm.

2. Matching pursuit algorithm

Input: k and stop condition.

Initialize: A=, x°,va r=0.

Loop:

Assign: u =V /(x")

Identify: I" = argmax,{ HPDQu"2 QIS 2k} .
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Combine: T =T UA

Estimate: b = argmin_ /(x) s.t. xe CDf
Remove: A = argmax,,{ HPDanz 1QILk}
Update: x™' = P, b

t=t+1
Until: Right halt criterion

Output: x'

However, in the matching pursuit algorithm
according to the gradient at identified and removed
steps, this algorithm needs to find a subset 7" of the
columns in the set D satisfying the orthogonal
isometry conditions of one vector onto the extension
set (DI') that achieves the largest energy. This subset
is usually difficult to compute, especially when D is a
fully completed set with an ultra-large number of
elements. The reason is the need to seek out in all
possible combinations of subsets of D to find out the
best option [5].

In fact, to overcome the limitations above
needing to pay attention to special properties of the
set D. For example, when D is orthogonal, /" can be
selected simply by isometryu onto space expanded by
all the columns of the D and select the largest items
of 2k from this isometry. In addition, when doing the
restore low-level matrix, U is a matrix and /" can be
calculated by taking the singularity value degree
(SVD) of U and selecting the left and right singularity
vectors to the best 2k related to the peculiar value of
the largest 2k [4]. In the next section, the article
proposes an improved matching pursuit algorithm in
order to reduce the calculation mass in the
compressed sampling process and reduce errors that
occur at each step in the process of signal recovery on
the basis of considering some dedicated conditions
for the set D.

3. Development algorithm of matching pursuit

The presented algorithm will be simpler than
algorithm in the section 1. However, compared to the
original algorithm, improved matching pursuit
algorithm requires several certain conditions of the
set D so that the algorithm may converge, so called
DRMP algorithm (D-RIP Matching Pursuit). Suppose
that D is finite, and D complies with rules of RIP
(Restricted isometry property) [7]. More specifically,
D satisfies RIP if in there exists a
constant«, €[0,1) for satisfying:

(A=)l < [De L=+l 1)
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for each mainly vector a at k. When D is the
orthogonal matrix with the size as , , and the
alternative algorithm would be equivalent to the
original algorithm.

Algorithm DRMP:

Input: &k and halt condition

Initialize: A=0, x°,var=0.
Loop:
Assign: u=V /(x")

Identify: I" = argmax{ HPDQu"2 1 Q1< 2k}

Combine: ['=TUA

Estimate: b = argmin_ /(x) s.t. xe CDﬁ
Remove: A = argmaxo{ B, ], :1 Q1< k)

Update: x' = P, b

t=t+1

Until: Halt right criterion

t

Output: x

DRMP algorithm is almost equivalent to the
initial matching pursuit algorithm. The difference
between two algorithms is at the identified step and
the removed step. In which, we replaced the isometry
by its inner multification. The following theorem
indicates that, for this improved algorithm, restoration
errors of the signal will decrease gradually after each
of iteration and this calculation will be simplified the
calculation for the orthogonal isometry. However,
this can be only applied when the matrix D satisfies
the conditions of RIP. When D is the orthogonal
matrix, two algorithms are equivalent.

Theorem:

Assume that X as a result of the expression (1)
and ¢ (%) = max, | (Vﬁ(fc),d)l, estimated errors at
the iteration with the order (t+1) be bound by:

J§+1 3
| }

0 -+
4k 2\/2 "

ool 2 o et

(2)
Here, g41is a microdegration rate and
¢é\/2 144 o ((4d)s ), —(1=d)s 3,)
(1-4) (r5)°
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4. Theorem provement

We denoted x to be x, if x can be presented by
the formula x = ZZ .d. . ¢ is the factor of x in the set
ieR

D Assume that a possible root X of (1)is T .

Lemma 1

Assume that b is a vector obtaining from
estimated step in the replacement algorithm at the
iteration order t-th, and denote

¢ £max;| (V £(%),d,)|. Denote T'is the achieved set

at the combined step order th. Analyze
X=X, +Xx, ; then we have:
v 5¢ \/E
b—i < [ X +————— 3)
R e T
Lemma 2

Denote R to be the support of the vector A = x' — & to
thesetDand ¢ 2 max,.| <V f(fc),di> ,

”2k_“2k "x;-l o

@4 ok

l4+d (4d)e j~(—d)zy

Ja—@z 2t
__|_ 1
2

With two lemmas above, the theorem can be

proved as follow.

We have:

4, @)

1 ~
X —x

s|¢—£m+ﬂb—f“

zszp—ﬂt (5)

Use the lemma 1, from the algorithm procedure,
the support ¢ = max[| (V 0(3).d,)

rf) of x" belongs

to the setT". Thus, x’m =0 and we also get:

AT\le = "()%_xr)m”" ”2 < ”()2_ x[)T\l' Hz
= G2, ©)

Here, R is a symbol of the support x' — %

The first

thus T\I'c T\I'. The second inequality obtains
fromT < R . Apply the lemma 2, we will be obtained
the thing that must be proved.

inequality obtains from rer,

Clause:
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Suppose that x is a vector k -sparse in the set D

with the valueT, we denote asx= D;a . For any
vector y has a size of n, we have:

Jk
[{x,y)|<max,, [(d,y)| — |X (@)
(%)  1{d;.y) NA |-,

The clause will be proved as follow.

We have:
2} | (Zo )=
=max,, [(d,y)| |, || <max,_, | <a’,.,y>|\/z (a; >
<maxleT dz’y |\/_\/— ||DT¢ T” (8)

Where, the last inequality is following the
condition RIP of the set D .

2 (adiy) s

ieT

Dok N{d.y)l

ieT

Prove the lemma 1.

For desmonstrating the lemma 1, apply
condition D - RSC (D - restricted strong convexity)
and D - RSS (D - restricted strong smoothness) [6],
[8] and the clause above, we get:

o [B=3 + (V 0R).b=5) < wb)- 1)

<D UG- 1)
= ()= R (VD = R)+(V LD, )
SRR S S\ ’f@%w
<@y T\r" +max,€m‘ T\r"
k
=n; AT\FHZ 1 4, T\l'”
2
. ¢k
S"k( ||xT\1‘"H2+2¢k+ 1_4/(} ®

The inequality (a) achieves from supposed
condition D - RSC;

following the algorithm, ¢(b) is a minimization point

the inequality (b) achieves

{(x) for x e span(D;.); the inequality (c) achieves

from assumed conditions of D - RSS; finally, the
inequality (d) is from the referred clause above.

Simultaneously, we have:
[supp, (b—%) IKIT UT < 4k

the left item of the inequality can be limited by
applying the clause above:
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D+ (V U(R),b-3)
2, N
’ V1_44k
i )
’ 20 1=y

Combine inequalities above, we obtain:
2
. ¢ Jk
||b -, —F—| <
% 4N -« 4k
2
'z,: n l \/;
= Ry ”z
4k

21; l—dk

m ||b—x

>a lp-%

6%

2

%k
z ;k(l_dﬂﬂ(’)

(10)

Zz;k[ "b—)’e

(1D
¢k
+ 2
(= ;k) ¢ _’{4k)

Deduce:

vk

2 _
LITRV] St

¢k ]+

|o- 2

¢k
v JA—d,,)
. 5¢ Jk
Z’ka

¢+
k
— |x
% 4k

” +
L

A

e (12)

o %

<
2

T\[ Hz

Prove the lemma 2

As  denoted A=X-x"andsupp,(A)=R we
have A = Z% id; = Apr + ZieR\F ¢,d;. By applying
ieR

the condition D-RSC for x', we have:

X+ A) = U(x) =y, A

= <v Z(x’),Z%idi>

ieR

>z (VIx).A)

(V0 A )+ 2o (V 1000 d)
(VI Mg ) = D 16,1] (Ve (13)

>

It is clear that features of the subset R are
smaller than 2k, while|T"|=2k. This is deduce

to| R\T'|K|[T'\ R|. Combined with the construction of
the subset I", we have:

Kve(x’ ).d, >\ < |<V£(x'),a’j>

i

for ieR\I'and jel'\R. Let’s put the vector

g € R? including the factors to satisfy:
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. Factors is out of the set '\ R then is set
equally 0.

° For each item ie R\I', we select a

item j € '\ R and put:

(Vee.d,)
| (veeen.a)|

i

gjz_lg,‘l

. Factors in the set I'\R without being
chosen by steps above then are set equally zero. Co
toida [[\R|—| R\I'| h¢ so tai budc nay.

So we obtain:

2 Z 2
ZieR\F ¢ =Lirx 8-

For each of a numerical couple

(14)

ieR\T

and je'\R that chose at the step 2, we

have: | g, |=l¢,|. Deduce:

=16,1| (veadd,)| = =14, 1|(Vee),d,)

=(V t().g,d,) (15)
Here, the second uniformity expression

complies the construction from g, . Thus we have:

—Z/.ER\F <V E(xt)’gjdj>22jer\R <V f(xt)’gjdf>

(16)
Combine with (13) we have:
0+ A= 0 = 5 AL
> (VOO Ao )+ 2 (V0G0 8,d,)
= (Ve ),A,W>+<V 1), 2 & jdj>
= (V') z) (17)

A
Here, we set z=A, . +zjel‘\R gd;. In

which: z is a discrete vector of the set D and its
value isI". The right item of the inequality can be
upper limited D -RSC.

(Vs = 1 v o- ir-o i a®
Thus we have:

* o "2”2 “r "A”z > X +2)— L(xT+A)

= (X +2)— ((x") (19)

From the definition of z and the RIP condition
of the set D :
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=} =
§(1+42k)(zéiz+zjel"\1?g/2')
RAT
) (1+42k)(24 )

ieR

i jeMR gjdj

_(1+d2k)[zé +ZIER\F

RAT

2
< 1+4,,

1-<,,

LLIAN 0)

1 2

Dedl =

ieR

2

Therefore, the left item of the expression (19)
has been limited by:

. 2 _ 2
" ok ” Z"z Tk ”A"z < [

The right item can be limited lower by D - RSC.

1+« . _
l—dz,]: Tk T ij" A”i @n

U +2)= L) 2 (VIR z=A)+e g z-AL 22)
Note that: supp, (z)=TI" and supp,(A)=R,
we obtain:

supp,(z—A)e RNT and|supp,(z—A)|< 4k .
Denote that z—A=D,_a . =

oy 2=y

ieRNT

> Y b (VLG 1+ g 2=

ieRAT

A3 MR ER.\

ieRNI

>~ Vak [ e, +7 0 |24
> —¢ \J4k

Z da ;, we have:

ieRNI

0(x' +2)— e, <VL(x* ).d;)

_ 2
Dy gerlly +2 5 [2=4),

\/—H
¢ N4k

I- 4k

> _

2= A, ++ o ==4l;

S P ek ) ex
* ? ‘;kvl_d4k m

From constructing vectors zand g,

(23)

and RIP

conditions of D, we have:

> (1—¢4k)(zjem g] + ZzeR\r )Hz A Hi
= HZjeF\R 8,4, _ZieR\F

1-«
—2(1=d, ) f 2L
( 4k) ieR\I' ¥ i 1+d4k

2 2
‘ ieR\I" ¢ idi )

14,
1+4,,

=2 (24)

Al

Here, the second equality complies with (14).
Combine with above inequality, we have:

1—«,, ¢ Jk
M‘#R« r”? = i
4

1+, 1,

(X +2)—0(x) 2 2 gy [

_k
L
(25)
Combine result above with expressions (19) and
(20), we have:

1+d4k 'z + N
1—6{4k 2k 2k

2 (26)
oo e a1 ¢k Lk
= Y4k \ —
1 ey o ? 4k m " 4k
Deduce:
1-«
2 2 NIA
1+d,, " R\F||2

2
B 1_ \/[IM“'%;—QJIIAIIEJ_k+ _z\/F
V7 4k 1=y ta tanl=dy,

1 {1+« 2 \Jk
< |— 4k + A 27
\/'z—k(l_détk’le ’sz] ” ” "4km ( :
Deduce:
I+¢ (l+d)e,, —(1—d)2
< A
R L
oYl 1 28)
1-« 214_]( \/2,;;,(

The last, the theorem has been demonstrated
with the finite condition of D which complies with
RIP property. For the new proposed DRMP
algorithm, the theorem shows that signal recovery
errors will be reduced gradually after each of iteration
and simply for the calculation.
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5. Conclusion

The article has presented a development of
matching pursuit algorithm which is based on an
original matching pursuit algorithm to restore
multidimensional structures. The difference between
the two algorithms is the identified step and the
removed step. Compared with conventional matching
pursuit algorithm, this algorithm is simpler than in a
number of cases, especially in cases of low rank
matrix restoration. Meanwhile, this algorithm can
reduce the number of calculations with some certain
conditions of the signal. Simultaneously, the new
proposed algorithm would reduction at each error in
the signal recovery process.
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