Journal of Science & Technology 120 (2017) 121-127

Heuristics for Dynamic Mapping of Quality Adjustable Applications on
NoC-based Reconfigurable Platforms

Nguyen Van Cuong'?, Le Dinh Tuyen', Dao Vu Tuan’, Tran Thanh Hai', Pham Ngoc Nam'*
!Hanoi University of Science and Technology — No. 1, Dai Co Viet Str., Hai Ba Trung, Ha Noi, Viet Nam
2Industrial University of Ho Chi Minh City, No. 12 Nguyen Van Bao, Go Vap District, Ho Chi Minh, Viet Nam

Received: June 06, 2016; accepted: June 9, 2017

Abstract

Network on Chip and FPGA-based reconfigurable Systems on Chip are a new trend to provide high
performance, flexibility, reducing cost and time to market for the embedded systems.The problem of
mapping quality adjustable applications onto heterogeneous NoC-based reconfigurable platforms at run-time
with resource constraints while ensuring the maximum overall quality of service of the applications is a big
challenge. In this paper, an efficient mapping technique is proposed to solve this problem which consists of
a near convex region selection strategy and a dynamic heuristic mapping algorithm. Simulation results show
that the proposed technique is very flexible and more than 43% average overall QoS can be achieved
compared to some existing solutions. Besides, this technique allows new applications to be easily added to

the system in the future.

Keywords: Network on Chip, dynamic mapping, reconfigurable region, quality level, heterogeneous

1. Introduction

For cost-effective reason, embedded systems are
often designed to accommodate multiple applications
with different Quality of Service (QoS) and
processing requirements. With the recent
advancements in FPGA technology [1], System on
Chip (SoC) FPGAs have become promising platforms
for high performance embedded systems because they
provide a good balance between performance, rapid
time to market, cost, and flexibility. Following this
trend, a number of FPGA based embedded systems
have been developed to support multimedia and
signal processing applications [2-6]. These
applications often require high-performance
communication infrastructure and data processing
capability.

In order to provide a high performance
communication infrastructure that connects different
processing elements (PE) of a complex SoC, Network
on Chip (NoC) has been proposed as an alternative to
the traditional bus and point-to-point connection [7-
8]. In addition, a heterogeneous reconfigurable
platform with the flexibility of embedded processors
and the computation efficiency of some NoC based
reconfigurable regions (RRs) has exhibited a number
of advantages over homogeneous platforms [9-10]. In
such a platform, the embedded processors are
typically used to implement management and low
complexity tasks while the NoC based reconfigurable

* Corresponding author: Tel.: (+84) 983608425
Email: nam.phamngoc@hust.edu.vn

121

FPGA fabrics are used to accelerate computational
intensive tasks. The reconfigurability aspect allows
FPGA platforms to adapt themselves to the various
processing requirement of applications. On the other
hand, many applications are designed in such a way
that their quality level can be adjusted to match the
processing capability of hardware platforms.
Therefore, research of mapping problem for quality
adjustable applications onto heterogeneous NoC-
based reconfigurable platforms at run-time is a new
trend to provide high performance and flexibility for
the embedded systems.

In our previous study [11], we formulated the
problem of mapping quality adjustable applications
onto heterogeneous NoC-based reconfigurable
platforms at run-time under resource constraints
while ensuring the maximum overall QoS of the
applications and proposed an algorithm to find the
optimal solution for the problem. However, this
algorithm can only be applied for a few applications
with small number of quality levels.

In this paper, we propose an efficient solution to
solve the problem of mapping presented in [11] for
many applications with different size. The proposed
solution consists of a new near convex region
selection strategy and a dynamic heuristic mapping
algorithm. First, a near convex region that can
accommodate a number of application tasks is found,
then the application tasks are mapped into the
selected near convex region. Besides, this technique
allows new applications to be added easily to the
system in the future.

Journal of Science & Technology 120 (2017) 121-127

A number of solutions have been proposed
recently for the problem of selecting region and
dynamic mapping at run time of applications on NoC-
based platforms. L. Ost et al. [12] introduce a unified
model framework for task mapping on heterogeneous
NoC-based platforms at run-time. This study
considers several different platforms and the
characteristics of the applications, then maps the
applications on different soft-core processors on
FPGA to optimize some parameters such as energy
consumption, delay and communication costs. In
addition, this study also makes a trade-off between
area cost of the platform and application execution
time to achieve the overall performance for the
system. In [13], the authors propose a
communication-aware run-time heuristic for mapping
multi-applications onto NoC-based MPSoC platform.
This solution examines the available resources and
maps the communicating tasks on the nearest PE in
the order of left, down, top and right. By examining
communications with the previously mapped tasks on
the target processing element, tasks are mapped.

Chen. L. Chou and R. Marculescu [14-15]
propose a region selection algorithm and a heuristic
for run-time application mapping onto NoC
platforms. This algorithm first chooses a near convex
region and then maps the applications to the selected
region to optimize communication energy
consumption. In the most recent work [16],
Haghbayan et al. propose a runtime mapping
technique named MapPro which uses a proactive
choice strategy for adding new applications into the
system and hill climbing algorithm to select the first
node after conducting mapping applications in
selected regions to optimize energy consumption,
latency, and congestion. It should be noted that in all
the aforementioned studies, the quality of mapped
applications is fixed and cannot be adjusted during
application execution.

The remainder of the paper is organized as
follows. Section 2 presents system models. Section 3
describes run-time mapping problem and heuristic
algorithms. Simulation results and discussion are
provided in Section 4. Finally, conclusions and future
work are given in Section 5.

2. Preliminaries
2.1. Application model

In this paper, we consider quality adjustable
applications that have a fixed task graph and the
quality of the applications can be adjusted by
changing the amount of data to be processed by the
task graph.

2.1.1. Application task graph

122

Definition 1: An Application Task Graph is
represented as an acyclic directed
graph ATG = A(V,E), where V is the set of tasks

and E is the set of all edges, each of which connects
between two tasks as shown in Figure 1. Each node
v, €V is a task with attributes (z,,7, .7, 13).

ype * “comp * “reqcomp

is the task

c

Where, £, is identification parameter; 7,

type (fyw : Tgw :
hardware tasks are generated from an HDL language
and software tasks are created from high level
programming languages such as C/C++; ¢ is the

comp

hardware or software) with

computation time of the task on the hardware or
software resource. A task that is executed on the
hardware resource will require smaller time than on
the software resource [17]; ¢ is the minimum

regcomp

required time to complete the task or deadline time.

Each edge e, represents the relationship
between task v, and v,. It has attributes
(Zeomm » Tregeonm)- Where 7, is communication time
from task v, 0 Vi Z.mm 1S the lowest

communication time requirement from task v, to v, .

2.1.2. Quality model
that has N,

i

Consider an application App,
quality levels Q,,0,,,0Q;.-...Oy, -

requires a certain set of resources including
computation, communication, area, and power
resources. The higher the quality level is, the more

Each quality level

resource is required. For example, suppose
0,>0,>0;>...>0Q, the time needed to run the
application at each quality level will be
Ly >t, >ty >...>t, . Each quality level QO

provides the user a perceptual quality, which can be
represented by a benefit value B;. We adopt the

model that represents the relationship between the
benefit value and quality level of the application as
presented in [17]. The higher the quality level is, the
bigger the benefit becomes,

ie,B, >B,>B;>...>B, (0<B<I).

2.2. Hardware platform

The considered hardware platform is a
heterogeneous NoC-based reconfigurable platform,
which is implemented on an FPGA platform as
shown in Figure 1. The platform consists of a set of

different processing elements (PEs) that are
connected by a communication NoC. The NoC
architecture uses 2D-Mesh topology, packet

switching, wormhole combined with virtual channel

Journal of Science & Technology 120 (2017) 121-127

flow control, and XY routing algorithm. Each PE can
support either hardware or software tasks. Software
tasks are executed in instruction set processors (e.g.,
Microblaze or ARM), while hardware tasks are
executed in reconfigurable regions or intellectual
property cores (IPs). In this work, the ISP is
responsible for different system management tasks
including task mapping, task scheduling, resource
control, and reconfiguration control and can support
one or more tasks.

Definition 2: A NoC-based reconfigurable
platform is denoted by a directed graph
NoC =N (P, R, L) where P is the set of processing
elements, R is the set of routers, and L is the set of

physical connections connecting between any two
routers.

P

OO @

i Qe A

Quahty levals
i
CAE
1% 2] L
| Applieation task grapk

v v

{ Mapping \

Fig. 1. System model

A PE p eP is represented by attributes
(Pias Paa> Pugpes Puse)» Where p,, s the PE identifier,
Paa 18 the PE address used to receive packets, p .
is the PE type (p,, : hardware or pg, : software)
and p_, is the status of PE (used or free).

3. Run-time mapping problem
3.1. Problem formulation

We extend the mapping problem in [11] as
follows.

Given the ATGs of M incoming applications and the
platform status

123

Find M near convex regions on the platform and the
mapping function map() for application App, into

regionR,, Vv, €V, map(v,)—> p,in R,.p, eP

with the objectives:

1| &
B=—{Zﬁ2%%} @)
i=l i max
and
M N;
T= {szu’u} ()
== min

Such that Y4, =1, 4,=1 if Q, is selected, 0
j=1
otherwise.

Z[HW SZPHW

t

<t
comp; reqcomp;

3)
t

commy;

<t,

reqcommy;

3.2. Near convex region selection strategy

Selecting contiguous near convex regions on the
platform for mapping applications tasks is an
effective solution, which has been proven in studies
[14] and [15]. However, there are some limitations
that need to be improved and overcome in these
studies. The Neighboraware Frontier (NF) region
selection strategy (RSS) in [14] tries to find available
PEs in the platform to form a convex region for
incoming applications with total minimum Manhattan
distance. This strategy assumes that the platform has
one or several regions, which have already existed. A
new region is created by refering to the existing
regions. Therefore, the effectiveness of the new
region will depend on the regions created earlier. In
addition, the NF strategy may select a non-near
convex region. For example, when an application
with 9 tasks enters the system, the NF strategy may
select a 2x5 region instead of selecting a 3x3 one.
Considering a different approach, the study in [15]
creates a near convex region for the incoming
applications by selecting a firstly available PE, then
increasing Hop distance to find out the next PEs of
the region surrounding the first PE. This approach
can find an optimal near convex region. However, it
can also generate non-contiguous regions or increase
the fragmentation for PEs on the platform when there
are many incoming applications, causing
disadvantages for the later incoming applications.
This may reduce the overall performance of the
system.

Journal of Science & Technology 120 (2017) 121-127

In this study, we propose a new near convex
region selection strategy that aims to provide flexible
resource allocation, fast implementation, and reduced
average Manhattan distance in the selected region.
The strategy is divided into two steps. In Step 1, a
number of hard/soft PEs corresponding to the quality
levels of the applications are allocated. In Step 2, an
optimal near convex region based on the method of
geometrical scanning angle and using minimum
Manbhattan distance constraint is found.

Allocation of hard/soft PEs

When a running application wants to change its
quality level or when a new applicaton enters the
system, the Pes should be re-allocated to meet the
QoS requirements of the applications. The question
is, how many hard/soft PEs should be allocated and
according to what criteria? The answer depends not
only on the status of available resources, but also on
the complexity and priority level of the applications
as well as the QoS requirements of the user. If the
applications have the same priority, our approach will
allocate hard/soft PEs evenly among the applications.
If the applications have different priorities or request
different quality levels, the number of hard PEs will
be prioritized to allocate more for applications with
higher priority or request to run at higher quality
level.

e Near convex region selection

Once a number of PEs have been allocated for
an incoming application, we need to find a region on
the platform to map these Pes. For this purpose, we
propose a new region selection technique based on
geometrical scanning angle combined with the
minimum Manhattan distance to select a near convex
region for the incoming application. This technique is
described as follows: first, a center PE or near center
PE on the platform called the scanning center is
found. Then, to find all available PEs on the platform,
scanning angles ranging from 0 to 360° are used. The
scanning direction can be clockwise or
counterclockwise. At a certain scanning angle, we
may find available PEs. By applying other scanning
angles, we can find the number of available PEs
needed for the incoming application. To make sure to
create a near convex region, we use the minimum
Manhattan distance to select the available PEs close
to each other. Because the scanning angles are
continuous, the fragmentation as well as the distances
of contiguous regions are reduced to a minimum
level. After each scanning, the scanning angle status
will be updated to be used for the next scan when a
new application joins the system. The pseudo-code of
our near convex region selection strategy is presented
in Algorithm 1.

124

Algorithm 1: Near convex region selection

Input: A(V,E), N_task, //N_task

PEp €P

N(P,L) v, €V

Output: R(N,L) // selected region

1: BEGIN
2: R=0;
3: integer sotf PE = K*N_task; // the number of soft PEs

4: integer hard_PE = N_task — sotf_PE; // the number of
hard PEs

5: if N_task > resource_available then goto step 28;

6: else

7 if remain_PE _angle < N_task then

8: update_value(S);

9: sort(S, compare),

10: end if

11: if sotf PE # soft_PE_available then

12: sotf PE = soft PE_available;

13: hard_PE =N_task - sotf_PE;

14: else

15: if hard_PE # hard_PE_available then

16: sotf PE = N_task - hard _PE_available;
17: hard_PE =hard_PE_available;

18: end if

19: end if

20: for mark_PE_angle to max_PE_angle do

21: insert(PE in S to R);

22: if enough sotf _PE and hard_PE then break;
23: end if

24: end for

25: update(mark_PE_angle, hard_PE_available,
soft_PE_available);

26: update(remain_PE _angle);
27: end if

28: END

3.3. Run-time heuristic mapping algorithm

The purpose of the mapping is to put the tasks of
the application into the near convex region that has
been selected in the previous step so that the quality
level of the application is mazimized while the
communication latency of he application is kept at a
minimum level.

We propose a run-time heuristic mapping
algorithm that focuses on optimizing the tasks with
large total computation and communication time. The

Journal of Science & Technology 120 (2017) 121-127

algorithm is descirbed as follows. First, the algorithm
searches for a hard PE with total Manhattan distance
to other PEs is smallest in the selected regions, and at
the same time the number of available neighbor PEs
to it is largest, called the first PE (center). Then it
sorts the tasks in ATG in descending order of total
communication time (using Quicksort) and sorts
neighbor tasks in the descending order of the total
communication time. After that, the first task is
mapped into the first PE. Next, the neighbor tasks of
the first task are mapped into the neighbor PEs of the
first PE in descending order of communication time.
Then the task with the largest total communication
time among the mapped tasks excluding the first task
is updated. Next, the algorithm continues to map the
remaining neighbor tasks of the already updated tasks
to the available PEs so that the total Manhattan
distance to the mapped linking tasks is minimal. The
process is performed repeatedly until all remaining
tasks are mapped. The pseudo-code of the mapping
algorithm is shown in Algorithm 2.

Algorithm 2: Heuristic task mapping

Input: A(V,E), R(P,L)

Output: rmpg (mapping A(V,E) U R(P,L))

1: BEGIN
pe_center = max_pe_idle_center(tile_info);
sort(task_vector, decrease_t_comm);

2

3

4: task_cur = task_vector.begin;

5: map_task_pe(task_cur,pe_center);
6

. task_vector_child =
task_neighbor(task_cur.tile_info,app_graph);

7. sort(task_vector_child, decrease_t_comm);

8: for all unmapped taski € task_vector_child do

9: id_pe_map = findPE_1_hop(task_curtile_info);
10: if id_pe_map = -1 then

11: map_task_pe(taski, id_pe_map);

12: end if

13: end for

14: for all unmapped faski € task_vector_child do

15: id_pe_map = pe_nearest (taski,tile_info,app_graph);
16: map_task_pe(taski,id_pe_map,tile_info);
17: end for

18: task_next = find_next_task(task_vectortile_info);
19: while tile_infor_ unallocated.size != 0 do

20: task_vector_child=
task_neighbor(task_next tile_info,app_graph);

21: sort(task_vector_child, decrease_t_comm);

22: for all unmapped task; € task vector_child do

23: id_pe_map = pe_nearest (task;
Jtile_info,app_graph);

24: map_task_pe(task,id_pe_map,tile_info);

25: end for

26: task_next = find_next_task(task_vector,tile_info);
27: end while

28: END

4. Simulation results and discussion
4.1. Simulation setup

The simulations are performed on the same
platform as described in [11]. The ISP can
accomodate up to six tasks while each reconfigurable
region can run only one task. Ten synthetic
applications are used in our simulations. These
applications have different sizes ranging from 5 to 12
tasks and they are generated by TGFF tool in [19].
For simplicity reason, we assume that each
application i has four different quality levels (i.e., Qii,
Qi, Qi3 and Qis). The computation time of tasks,
communication time between pair of tasks are
generated as described in [11].

Two scenarios have been implemented in the
simulations: (i) The applications are deployed on the
platform at the same time. (ii) The applications are
deployed sequentially on the platform in order of
appearance. Each scenario are run 20 times on 5x5
platform with the total number of tasks of running
applications varying from 25 to 30.

4.2. Results and discussion

Three heuristic algorithms are chosen to
compare with our heuristic: First Fit (FF), Nearest
Neighbor (NN) in [18] and Chen in [15]. These
algorithms map the tasks of application on the near
convex region generated from NF and our region
selection strategy. The parameters we use to
comprare the four algorithms include Overall Benefit
(OB), quality level, Average Manhattan Distance
(ADM), Average Communication Manhattan
Distance (ACMD), and run-time of the algorithms.

4.2.1. Quality level of applications evaluation

As presented in Section 2, benefit values are
used to represent the satisfaction level of user when
receiving a certain quality level. When user receives
the highest quality of an application, the value of
benefit is 1. A lower quality has the benefit smaller
than 1. Therefore, we use it to evaluate the achieved
quality for applications. Figure 2 shows the value of
achieved OB when deploying applications on the
platform according to different algorithms. In all
cases, our heuristic algorithm gives better OB than

Journal of Science & Technology 120 (2017) 121-127

FF, NN and Chen [15] and an average improvement
of 43% of the OB can be observed.

In a specific case, we have deployed three
applications (Appl - 7 tasks, App2 - 10 tasks and
App3 - 11 tasks) simultaneously on the platform. The
OB value and the achieved quality level in this case
are shown as Table 1. It is easy to see that our
mapping algorithm gives the best results in
comparison with other algorithms.

0.300

relates directly to the number of data packets and
number of Hops each data packet passes through.

The AMD and ACMD values are shown in
Table 2. The values of these parameters of our
heuristic algorithm are smaller than those of others.
This also means that our algorithm has lower latency
and energy consumption compared with other
algorithms.

Table 2. AMD and ACMD values of algorithms

sFF ®NN =Chen|l5] ®=Ous .. Algorithms AMD ACMD
0.250 0245 NFRSS | OurRSS NF RSS Our RSS
FF 2.023 1.857 2.070 1.874
Z 0200 - NN 1.833 1.704 1.828 1.713
g Chen[15] 1.943 1.788 1.860 1.691
2 (150 | Ours 1816 | 1594 | 1592 | 1430
g 4.2.3. NF vs. Our region selection strategy evaluation
& 0.100 . . .
Selecting a near convex region then mapping
0.050 application into it not only brings performance
benefit, defrags for PEs on the platform, but also
0.000 - helps to rapidly deploy applications on the system. In

NF K558
Region selection strategy

Our RSS

Fig. 2. Overall benefit of mapped applications

Table 1. Quality and benefit values of the
applications
Quality level Overall benefit
Atlhgrirsl_ Appi NF | Our NF | Our
RSS | RSS RSS | RSS
App1 Qs Qs
FF App> Qs Qx 0.080 | 0.121
Apps Q33 Q33
App1 Qus Q4
NN App2 Q22 Q22 0.142 | 0.162
Apps3 Qa2 Qsi
Appi Qi3 Q2
C[ilse]n App2 Q23 Q2 0.130 | 0.192
Apps Q3 Q3
App1 Qi3 Qui
Ours App2 Q2 Q2 0.182 | 0.290
Apps Q31 Qa1

4.2.2. Performance evaluation

Next, we evaluate the network performance of
the algorithms through two parameters AMD and
ACMD. The AMD is the ratio between total Hop of
mapped applications over the total edges in task
graph of applications. An application mapping
algorithm has lower AMD then latency and energy
consumption will be smaller because the data packets
passes through a smaller number of Hop. The ACMD
represents the communication time of data packets
through each hop. The ACMD also represents the
latency and energy consumption of the network, as it

126

this subsection, the run-time of the algorithms and
ratio of OB, AMD, ACMD parameters between our
region selection strategy and of NF are evaluated.
The run-times of the algorithms are shown as in
Table 3 when deploying applications on platforms
with the size of 5x5, 6x6, and 7x7. Our strategy has a
lower run-time than NF because it’s simpler.

Table 3. Run time of region selection algorithms

Average run time
Paom | el | "™ cain
NFRSS | Our RSS
5%5 25-30 0.1165 0.0704 -39.55
6x6 3641 0.2129 0.1018 -52.20
7x7 4954 0.3913 0.1302 -66.72
30
- ——AMD = ACMT)
20
. .‘\."' \
Fw
T u
2
0
: <K NN Chen[13] TG
» — . ,f,-—h-—_"'"—-ﬁ..____ e
-

Mapping algorithms
Fig. 3. Improvements of our RS strategy

Next, Figure 3 shows gain obtained by our
region selection strategy over the NF in terms of OB,
AMD, and ACMD. The OB value in our region
selection strategy has an average improvement of

Journal of Science & Technology 120 (2017) 121-127

12.2 %. The AMD and ACMD values are decreased
by 8.6 % and 8.3 %, respectively. The results show
that our region selection strategy is more efficient
than NF.

5. Conclusion and future work

In this paper, we have proposed an efficient

technique for mapping at run time hardware/software
tasks of quality adjustable applications on the
reconfigurable platform under limited resources
including a near convex region selection strategy and

a dynamic

heuristic mapping algorithm. The

simulation results show that our approach is more
flexible, uses resources more efficiently and achieves
higher quality of service compared with existing
approaches. In the future, we will consider platform
with different types of reconfigurable regions to
improve performance, flexibility and energy saving
for the system.

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

http://www.xilinx.com/products/silicon-
devices/soc.html

Kim, Dong-Jin, Yeon-Jeong Ju, and Young-Seak
Park, "An Implementation of SoC FPGA-based Real-
time Object Recognition and Tracking System,"
IEMEK Journal of Embedded Systems and
Applications, vol. 10, no. 6, pp. 363-372, 2015.

Luo, Junwen, Graeme Coapes, Terrence Mak,
Tadashi Yamazaki, Chung Tin, and Patrick Degenaar,
"Real-Time Simulation of Passage-of-Time Encoding
in Cerebellum Using a Scalable FPGA-Based
System," IEEE transactions on biomedical circuits
and systems, vol. 10, no. 3, pp. 742-753, 2016.
Flasskamp, Martin, Gregor Sievers, Johannes AXx,
Christian Klarhorst, Thorsten Jungeblut, Wayne
Kelly, Michael Thies, and Mario Porrmann,
"Performance estimation of streaming applications for
hierarchical MPSoCs," In Proceedings of the 2016
Workshop on Rapid Simulation and Performance
Evaluation: Methods and Tools, ACM 2016.

Leibo, L. I. U, W. A. N. G. Dong, C. H. E. N.
Yingjie, Z. H. U. Min, Y. I. N. Shouyi, and W. E. L.
Shaojun, "An Implementation of Multiple-Standard
Video Decoder on a Mixed-Grained Reconfigurable
Computing Platform." IEICE transactions on
Information and Systems 99, no. 5, pp. 1285-1295,
2016.

Hsiao, Pei-Yung, Shih-Yu Lin, and Shih-Shinh
Huang, "An FPGA based human detection system
with embedded platform,” Microelectronic
Engineering 138, 2015, pp. 42-46.

Pang, Ke, Virginie Fresse, Suying Yao, and Otavio
Alcantara De Lima, "Task mapping and mesh
topology exploration for an FPGA-based network on
chip," Microprocessors and Microsystems 39, no. 3,
pp. 189-199, 2015.

127

(8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

L. Benini and G. De Micheli, “Networks on chips: A
new SoC paradigm,” Computer (Long. Beach. Calif),
vol. 35, no. 1, pp. 70-78, 2002.

R. Kumar, D. M. D. M. Tullsen, P. Ranganathan, N.
P. N. P. Jouppi, and K. I. Farkas, “Single-ISA

Heterogeneous ~ Multi-Core Architectures for
Multithreaded Workload Performance,” in
Proceedings of the 31st annual international

symposium on Computer architecture, 2004, pp. 64—
75.

M. S. Abdelfattah, A. Bitar, and V. Betz, “Take the
Highway : Design for Embedded NoCs on FPGAs,”
in Proceedings of the 2015 ACM/SIGDA
International Symposium on Field-Programmable
Gate Arrays, 2015, pp. 98-107.

N. Van Cuong, N. T. Bang, L. D. Tuyen, and P. N.
Nam, “Dynamic Mapping of Quality Adjustable
Applications on NoC-based Reconfigurable
Platforms,” in The International Conference on
Advanced Technologies for Communications (ATC),
2016, pp. 321-326.

L. Ost, G. M. Almeida, M. Mandelli, E. Wachter, S.
Varyani, G. Sassatelli, L. S. Indrusiak, M. Robert, and
F. Moraes, “Exploring heterogeneous NoC-based
MPSoCs: From FPGA to high-level modeling,” in 6th
International ~ Workshop ~ on Reconfigurable
Communication-Centric Systems-on-Chip, ReCoSoC
2011 - Proceedings, 2011, pp. 1-8.

A. K. Singh, T. Srikanthan, A. Kumar, and W. Jigang,
“Communication-aware heuristics for run-time task
mapping on NoC-based MPSoC platforms,” J. Syst.
Archit., vol. 56, no. 7, pp. 242-255, 2010.

Chen. L. Chou, U. Y. Ogras and R. Marculescu,
“Energy-and Performance-Aware Incremental
Mapping for Networks on Chip With Multiple
Voltage Levels,” IEEE Transactions on
ComputerAided Design of Integrated Circuits and
Systems, vol. 27, no. 10, pp. 1866-1879, 2008.

Chen. L. Chou and R. Marculescu, "User-aware
dynamic task allocation in networks-on-chip." 2008
Design, Automation and Test in Europe. IEEE, 2008.
M. Haghbayan, A. Kanduri, A. Rahmani, P.
Liljeberg, A. Jantsch, and H. Tenhunen, “MapPro :
Proactive Runtime Mapping for Dynamic Workloads
by Quantifying Ripple Effect of Applications on
Networks-on-Chip,” in Proceedings of the O9th
International Symposium on Networks-on-Chip, p.
26. ACM, 2015.

N. P. Ngoc, G. Lafruit, S. Vernalde, and R.
Lauwereins, “Real-Time 3D Applications on Mobile
Platforms With Run-Time Reconfigurable region
Accelerator,” In Proceedings of the International
Conference on Computer Visions and Graphics,
ICCVG, 2002, pp. 582-588.

E. Carvalho, N. Calazans, and F. Moraes, “Heuristics
for Dynamic Task Mapping in NoC-based
Heterogeneous MPSoCs,” in 18th IEEE/IFIP
International ~ Workshop on Rapid System
Prototyping, 2007. RSP 2007, 2007, pp. 34-40.

R. P. Dick, D. L. Rhodes and W. Wolf, “TGFF: task
graphs for free,” Proc. Intl.

Journal of Science & Technology 120 (2017) 121-127

128

