Journal of Science & Technology 120 (2017) 128-133

Adaptation Method for Streaming of VBR Video Over HTTP/2

Nguyen Thi Kim Thoa, Nguyen Minh, Nguyen Hai Dang, Pham Hong Thinh, Pham Ngoc Nam
Hanoi University of Science and Technology, No. 1, Dai Co Viet, Hai Ba Trung, Hanoi, Viet Nam.
Received: March 27, 2017; accepted: June 9, 2017

Abstract

Recently, Dynamic Adaptive Streaming over HTTP (DASH) has become popular for video delivery in
multimedia network. However, HTTP streaming is currently based on the pull-based HTTP/1.1 protocol
which requires a large number of client requests for each streaming session. Moreover, most of adaptive
streaming methods have just focused on the case of CBR (constant bitrate) video. In this paper, we
introduce a new method for quality adaptation of VBR (variable bitrate) videos in on-demand streaming
over the new HTTP/2 protocol using server push feature. To the best of our knowledge, this is the first
study on streaming VBR videos over HTTP/2. Experimental results show that the proposed method can
provide a lower number of requests, a higher average quality and more smooth video quality than existing

methods.

Keywords: Adaptive Streaming, HTTP/2, Server Push.

1. Introduction

Recently, multi-bitrate adaptive streaming such
as HTTP adaptive streaming (HAS) has become the
de facto standard for over-the-top video streaming
[1]. In HAS, video content is encoded at multiple
quality levels and temporally divided into short
segments. The client can select the quality level for
every video segment based on the network and
terminal situation. Currently, HTTPI1/1 1is the
common delivery protocol in Dynamic Adaptive
Streaming over HTTP (DASH) with the main
operation mechanism is request-respond. Specifically,
after downloading every segment, the client sends a
request to choose a suitable version for the next one.
The server then responses a segment with the
corresponding version to the client. Normally, video
segments are set to fixed-duration from 2s to 10s [2].
Clearly, the benefit of long segment duration is fewer
requests and less overhead, leading to higher overall
throughput. Nevertheless, the client could only adapt
to the network change when it receives the whole
video segment, causing slow response rate and, as a
result, buffer instability. Moreover, long segment
duration results in large delay [3]. A straightforward
solution is to use short segment durations, which
certainly imposes an explosion in number of requests
that generates significant overheads. This increases
the processing complexity of network nodes and
reduces the overall throughput [4].

Recently, a new version of HTTP protocol is
proposed, called HTTP/2, intended as a higher
performance alternative to HTTP/1.1 [5]. It

* Corresponding author: Tel.: (+84) 988.980.920
Email: thoa.nguyenthikim@hust.edu.vn

128

introduces a dominant feature called server push. The
use of this feature enables server to push multiple
consecutive segments with the same version per
client’s request. Therefore, short segment duration
could be used without requiring too many requests.

Using the server push feature of HTTP/2 in
HAS is firstly proposed by Wei et al [4]. For live
streaming, they achieve low latency by reducing the
segment duration to one second. To avoid the request
explosion problem, they implement the N-push
strategy. Specifically, the client requests a certain
quality (version) for every N segments. The server
then response by pushing N segments consecutively
as soon as each one is ready. Besides, the server push
feature with N-push strategy has been investigated for
low request-related overhead [6] and power efficient
mobile streaming [7]. However, by using fixed value
of pushed segments for the whole session, the client
might not react quickly to network fluctuations. To
deal with this problem, Duc et al. [8] define a cost
function to adaptively decide the number of pushed
segments for each request. This method achieves the
tradeoff between request-related overhead and buffer
stability. Nevertheless, the bitrate decision in this
method is followed the throughput makes the playout
bitrate oscillating aggressively, resulting in negative
impacts on subjective perception of the user.
Moreover, this method just focuses on CBR video.

In this paper, we are the first to have proposed a
quality adaptation method in on-demand streaming of
VBR video over HTTP/2. We use the cost function in
[8] to decide the number of pushed segments. The
video version for each request is chosen based on the
throughput as well as buffer behavior. The
experimental results show that the proposed method

Journal of Science & Technology 120 (2017) 128-133

not only can cope with the variations of throughput as
well as video bitrate, but also outperforms exiting
methods in terms of streaming performance.

The rest of the paper is organized as follows. In
Section 2, we present the principles of our method as
well as the description of the adaptation algorithm.
The experimental results are given in Section 3, and
finally the paper is concluded in Section 4.

2. Proposed method

For streaming VBR video over HTTP/2, our
goal is to decide the video version and the number of
pushed segments for a given request, so as to have a
small number of requests, a smooth video quality and
a good buffer stability. Some notations along with
their definitions used in the paper are provided in
Table 1.

Table 1. Symbols used in the paper

Symbol Description
i The current request index.
N, Number of segments in request i .
. The current segment index of video,
/ after downloading N, of requesti .
1 The actual throughput of segment i .
T The estimated throughput for segment i .
Re The actual bitrate of segment j in
T versionn.
R The estimated bitrate for segment j in
I versionn.
R the " segment in request i
! (1<t<N)).
Vv The number of available video versions
The index of the version which is chosen
I for request i (version of higher quality

has a higher index value) (1< 1, <V).

Suppose that, after sending request i asking for
N, segments at version [,, the client has just
received all N, requested segments, each has a
segment duration of # seconds. The current buffer
level is B, . Now, the client will decide the version
Ii+1

next request i +1.

and the number of pushed segments N, for the

i+l

To select the version for the next request, it is
necessary to estimate the throughput based on the
throughput history of received segments. Specifically,
we adopt the simple method presented in [9] where

129

the throughput of last segment is used as the
estimated throughput.

T =

i+l

T (1)

As the bitrate of VBR video is highly fluctuating,
the client only knows the bitrates of the received
segments, which may belong to different versions. So,
after receiving segment j, we will estimate (i) the
segment bitrates of other versions with the same index
J and (ii) the segment bitrates at segment j+1 of all
versions. These are respectively performed by inter-
stream bitrate estimation method and intra-stream
bitrate estimation method proposed in [10].
Specifically, in the inter-stream bitrate estimation

method, the estimated bitrate R;k at segment j of
version k can be calculated from the (actual) bitrate
Rd

Jj.n

of the received segment j with the selected

version n as follows:

OF,~0F,

R, =g xRl x2 © | @

where QP and QF, are the quantization parameter

(QP) values of the versions, and ¢4 =1.05 is an
empirical factor used as the compensation for the
approximation error of the mothod [10]. In the intra-
stream bitrate estimation method, the bitrate of next
segment is a function of some previous segment
bitrates. It should be noted that, the bitrate estimation
of the next segment is required after downloading all
segments of each request. Specifically, after

downloading N, segments of a version for request i,
the bitrate of the next segment is calculated as the
average of the bitrates of N, previous segments in
that version.

For the new bitrate decision, we divide the
method into three cases which are switch-up, stable
and switch-down cases corresponding to when the
client switches up, maintains, and aggressively

decreases the version, respectively. Accordingly, we
divide the buffer into three ranges with thresholds

B, and B, ., (B, <B,, <B). Here B

low low high max
the buffer size. The details of the proposed method
are shown in Algorithm]1.

is

X

Our method switches up the version by one
version only if the current buffer B; is greater than or
equal to By, and the estimated bitrate of next

version at the next segment is less than estimated
throughput; otherwise, the client will maintain the
current version.

Journal of Science & Technology 120 (2017) 128-133

The stable case is determined when the current
buffer B; is in the range from B = to B,

(B, < B, < By,;,)- In this case, the current version

will be maintained when its bitrate at the next
segment is less than estimated throughput; otherwise,
the version is switched down by one version.

The switch-down case is described by the
condition B; < B,

ow- 1N this case, the client needs to
carefully decide the requested version in order to
avoid buffer underflows as well as sudden quality
changes when the throughput and/or the video bitrate
change drastically. In general, the version should be
decreased to the maximum one that is lower than the
current version and its bitrate at the next segment is
less than estimated throughput. If there is no version
that satisfies this condition, the client will choose the
lowest version. Specifically, the version decision of
the client in this case is expressed as follows:

1

i+l

max {k|k < I,.k € [LV]} RS

Jj+lk

<(d-w)T;, (3)

1, otherwise

where « is a safety margin the range [0, 1].

Algorithm1. Adaptation Algorithm

B .B

low?

Input high

Output /. ,N

+1° 7 i+l

//Switch-up case
if B > By, then
if R

JHLI;+1 < (1 - m)7;+1
I, =1 +1

else

I

end if
//Stable case

elseif B, I:B

low >

I;

i+l i

B high

)

it R, < (-,

Il
I, =1
else
I, =1-1
/ISwitch-down case
else B, < BIOw
if
for(m=1I;mzlLm--)

if R, <(1-w)},
I, =m
break;

else
I, =1

end if

end for
end if
end if

130

For deciding the number of pushed segments,
we adopt the method presented in [8]. The number of

pushed segments N, is chosen to minimize the cost
function C which is a weighted sum of request cost
C,, and buffer cost C, .

C=a xer+(1—¢)Chf 4)
with C = ! 5
‘ Ny)
_ Niypxe
and v = BB (6)

i low
3. Experimental results

In this section, we will evaluate our proposed
method and compare it with the referenced methods
[4][8], focusing on the number of client’s requests,
the average video version and the behaviors of
version switching and buffer.

The testbed of our experiments is similar to that
of [8], which includes an HTTP/2 web server, an
HTTP/2 client and an IP network. The IP network
includes a router and a wired connections connecting
the server and the client. On the server side, an
HTTP/2 enabled server is installed in Ubuntu 14.04
LTS. The client is run in Java environment on a
Windows 7 note book with 2.4 GHz and core i5 CPU.
The channel bandwidth is simulated using
DummyNet [11].

As we focus on on-demand streaming, the buffer
size of the client is set to 16s (i.e., 16 segment
durations). For comparison, the two reference
methods which are the push-N strategy [4] and
aggressive method [8] (called AGG method) are
implemented. In the push-N strategy, the number of
pushed segments is fixed. In the AGG method, the
bitrate is decided as the highest bitrate that is lower
than estimated throughput.

Experiments are implemented with buffer
thresholds (B, By, =55,155) . Parameters RTT,

Journal of Science & Technology 120 (2017) 128-133

a , w are set to 40ms, 0.4, 0.1, respectively. The test

video is taken from “Sony Demo” sequence [20],
consisting of 500 segments. Each segment duration ¢
is 1 second. The video is encoded in VBR mode at 7
versions (from 1 to 7) corresponding to 7 different
QP values which are 48, 42, 38, 34, 28, 22, 10. Note
that the higher the value of QP is, the lower the
quality (bitrate) become. The version index, QP, and
the average bitrate of each version are listed in Table
2. Bitrates of video versions are shown in Fig. 1.

We evaluate the adaptation methods under a
time-varying bandwidth obtained from a mobile
network [12]. The bandwidth demonstrates a mobile
network with strong fluctuations, from 100kbps to
6000kbps (Fig. 2)

Table 2. Version information of the test video.

Average bitrate
Index QP (kbps)
1 48 29.94
2 42 70.40
3 38 120.85
4 34 207.24
5 28 477.24
6 22 1103.95
7 10 4783.70
iz r\ f MW J s
3 4
o n.ﬂ,» M i M _Lf\ ‘MW
o 50 100 ISD msg i md“
Fig. 1. Bitrates of the video versions
E 4000
H 3000
£
E 2000
£

Time (s}

Fig. 2. Bandwidth trace is used in experiments[12]

131

Bitrate {kbps)

-EEEEES

[T R S
Version

Tirne [s]

thraughput -~ bitrate —#-version

(a) Push 1 strategy

Timee {5}

—i— pitrate wertion

(b) Push 2 strategy
= 5000

& 2000

Time {s}

——throughput —+—bitrate —s—version

(c) Push 3 strategy

S kMW R L oE e
Verslon

o 50 100 150 2000 250 300 350 400 450 500
Time (s}

Time {s)

——throughput —&—bitrate —#—version

(f) Proposed method
Fig. 3. Adaptation results of all methods.

Journal of Science & Technology 120 (2017) 128-133

Bitrate (kbps)

Time (5]

= Throughput = Push 1 —a—Pych 2 Push 2
Push 4 == B G0G method —i—Proposed method

Fig. 4. Resulting buffer level of all methods.

Figure 3 and Fig. 4 show the experimental
results of all mentioned methods. Clearly, the push-1
strategy has the most stable buffer. However, its
bitrate curve closely follows the throughput curve,
leading to the strong fluctuation of video quality with
many switches.

As for the push-4 strategy, since it has the large
and fixed number of pushed segments per client’s
request, resulting in sudden drops of quality (e.g.,
from version 6 to version 2 at 100s). Moreover, it has
the most unstable buffer. Specially, at the time 99.5s,

the buffer level is less than threshold B, .

It can be seen that the push-2 strategy, the push-
3 strategy and the AGG method use the buffer more
efficiently leading to the number of switches less than
the push-1 strategy. However, they have sudden
drops of quality when the throughput sharply
decreases (e.g., from version 5 to version 2 at 249s in
the push-2 strategy, from version 5 to version 2 at
248s in the push-3 strategy and from version 5 to
version 2 at 251s in the AGG method).

Meanwhile, our proposed method provides the
smoothest video quality while the buffer stability is
acceptable. The version curve of our method has no
sudden switches. Moreover, when the throughput
decreases, the selected version of our method is

usually higher than or equal to those of the other
methods.

Some statistics of the adaptation results are

% shown in Table 3. The statistics show the number of

requests, the average bitrate, the quality switches, and
the buffer level. It should be noted that we are only
interested in the switch quality in down case since it
negatively impacts the subjective perception quality
of users.

It is obvious that the push-1 strategy has the
worst streaming performance. It has the lowest
average version (i.e., 5.62) and the most number of
switches (i.e., 73). Moreover, in this strategy,
network nodes have to handle the highest number of
requests (i.e., 500 requests).

Concerning the push-4 strategy, its number of
requests is the smallest (i.e., 125). Nevertheless, the
buffer stability of this method is the worst.

With regard to the AGG method, it has the
better tradeoff between overhead and adaptivity,
compared to the push-N strategy. Nonetheless, the
maximum version switch degree and the number of
switches (having version switch degree greater than
2) are very high (i.e., 3 and 7, respectively).

It can be seen that our proposed method has the
best performance compared to the others.
Specifically, the proposed method achieves the
highest average bitrate and the lowest switch degree
while it requires only 173 requests. Furthermore, the
number of switches is very low (i.e., 18) and there is
no switch having degree exceed 1.

The above results show that the proposed
method outperforms the existing methods in terms of
the tradeoff between adaptivity and overhead.

Table 3. Statistics of adaptation results

Push-N method

Metrics Aggressive | Proposed

Push-1 | Push-2 | Push-3 | Push-4 | method | method
Number of requests 500 250 167 125 180 173
Average version 5.62 5.68 5.68 5.70 5.74 5.80
Number of switches 73 48 35 26 35 18
Max version switch degree 3 3 3 4 3 1
No. of switches (switch degree>=2) 9 4 5 3 7 0
Min buffer 12.9 12.6 9.9 4.0 5.7 11

132

Journal of Science & Technology 120 (2017) 128-133

4. Conclusion

In this paper, we have proposed an adaptation
method for adaptive streaming VBR video over
HTTP/2 using the server push approach to reduce
significantly number of requests. Besides, we
proposed a buffer-based algorithm for deciding the
quality level to cope with network and bitrate
fluctuations. The experimental results have shown
that the proposed method outperforms other exiting
methods.

Acknowledgments

This research is funded by the Hanoi University
of Science and Technology (HUST) under project
number T2016-PC-110.

References

[1] T. C. Thang, Hung T. Le, Anh T. Pham and Y. M.
Ro, An Evaluation of Bitrate Adaption Methods for
HTTP Live Streaming, IEEE J. Selected Areas in

Comm., 32(4), (2014) 693-705.

T. C. Thang, H. T. Le, H. X. Nguyen, A. T. Pham, J.
W. Kang and Y. M. Ro, Adaptive video streaming
over HTTP with dynamic resource estimation, J.
Comm. Networks, 15(6), (2013) 635-644.

(2]

[31 S. Wei and V. Swaminathan, Low Latency Live
Video Streaming over HTTP 2.0, in Proc. ACM

NOSSDAV, (2014) 37-42.
(4]

S. Wei and V. Swaminathan, Cost effective video
streaming using server push over HTTP 2.0, in Proc.

IEEE MMSP'14, (2014) 1-5.

133

[5]

[6]

(7]

(8]

[9]

[10]

[11]

[12]

M. Belshe, R. Peon and M. Thomson, Hypertext
Transfer Protocol Version 2 (HTTP/2), RFC 7540,
May 2015.

S.Wei and V. Swaminathan, Cost effective video
streaming using server push over http 2.0, Proc. 16"
International Workshop on Multimedia Signal
Processing (MMSP2014), (2014) 1-5.

S. Wei, V. Swaminathan and M. Xiao, Power
efficient mobile video streaming using http/2 server
push, Proc. 17" International Workshop on
Multimedia Signal Processing (MMSP ’ 15), (2015)
1-6.

N. V. Duc, T. H. Le, N. N. Pham, A. T. Pham and T.
C. Thang, Adaptation method for Video Streaming
over HTTP/2, IEICE communications Express, 1,
(2015) 1-6.

L. R. Romero, “A dynamic adaptive HTTP streaming
video service for Google Android,” M.S. Thesis,
Royal Institute of Technology (KTH), Stockholm,
Oct. 2011.

T. C. Thang, H. Le, H. Nguyen, A. Pham, J. W.
Kang, and Y. M. Ro, Adaptive video streaming over
http with dynamic resource estimation,
Communications and Networks, Journal of, 15(6),
(2013) 635-644.

ServL. Rizzo, Dummynet: A simple approach to the
evaluation of network protocols, SIGCOMM
Comput. Commun. Rev., 27(1), (1997) 31-41.

C. Muller, S. Lederer, and C. Timmerer, An
evaluation of dynamic adaptive streaming over http in
vehicular environments, in Proc. of the 4th Workshop
on Mobile Video, ser. MoVid ’12. New York, NY,
USA: ACM, (2012) 37-42.

