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Abstract 

This paper deals with enhancing the error resilient of the Switched Split Vector Quantization (SSVQ) 
techniques by adopting the optimal Index Assignment approach, a Joint Source-Channel coding method. 
SSVQ is one of the latest structured vector quantization schemes and it has several advantages over other 
schemes. The new method proposed in this paper can improve the SSVQ encoder without the addition of 
extra bits and coding complexity. In addition, the application of the new method in speech coding is also 
investigated in this paper. The effectiveness of IA-SSVQ method is validated by comparing it with other 
methods through simulations. 
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1. Introduction* 

Signal coding has played a significant role in the 
success of digital communication, in which, the 
fundamental operation is quantization. Vector 
quantization (VQ) are known to theoretically achieve 
the lowest distortion, at a given rate and dimension, 
of any quantization scheme [1,2]. In practice, VQ is 
widely-used for low bit-rate coding of analog signals, 
especially highly correlated sources. 

An optimal vector quantizer operates using a 
single large codebook with no constraints imposed on 
its structure. However, the VQs using large codebook 
are impractical, because the memory and 
computational requirement for VQ encoding is 
prohibitively high and the training process takes too 
much time. Several structurally constrained VQ 
schemes have been developed [1], which reduce the 
complexity of implementation with moderate loss of 
quantization performance. Switched Split Vector 
Quantization (SSVQ) [3,4] is one of the latest 
structured vector quantization schemes and it is 
further explored in [5,6] to show its competitive 
performance advantage over other VQ methods.  

As most compression methods, the quality of 
reconstructed signal rapidly deteriorates when the 
channel noise is introduced. In order to protect 
against channel errors, the traditional approach is to 
increase the bit-rate for channel coding. Joint source-
channel coding (JSCC) is an alternative that provides 
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a technique to mitigate channel errors without an 
increase of the bit-rate. This paper deals with 
enhancing the error resilient of the SSVQ technique 
by using JSCC approach. 

In the past, several methods based on JSCC 
technique were proposed for improving the VQ coder 
robustness for transmission over noisy channel. In 
order to improve the SSVQ method, the Channel 
Optimized Switched Split Vector Quantization 
(COSSVQ) method was proposed [7], which is based 
on Channel Optimized Vector Quantization approach 
(COVQ) [8]. In this approach, the channel statistical 
distribution is taken into account during both the 
source quantization and the codebook design. 
However, it requires long training time and its 
performance is usually degraded when the channel 
quality is high.  

In this paper, a method based on Index 
Assignment approach [9] is developed to improve the 
error resilience of the coder using SSVQ technique. 
Different from COSSVQ method, the proposed 
method does not sacrifice any performance for the 
better channel and does not add any complexity to the 
encoder. This approach is implemented simply by 
rearranging the codebooks in the optimized order, 
therefore it can be used for improving the existing 
SSVQ systems with no need to redesign the coder. In 
addition, the application of this method in speech 
coding is also investigated in this work and the 
performance of  the proposed  method  is validated 
through experiments in Section 5. 
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2. Switched Split Vector Quantization and the 
Index Assignment problem. 

2.1. Vector Quantization. 

When a set of discrete-time amplitude values is 
quantized jointly as a single vector, the process is 
known as Vector Quantization (VQ) or block 
quantization [1]. A vector quantizer Q: ℜK → C maps 
a continuous source vector x ∈ ℜK to a codevector 
ci∈C by the nearest neighbour rule. The codebook 
C={ ci; 1≤ i ≤ N } is the set of K-dimensional 
codevectors. The output of the vector quantizer is the 
index i of the codevector ci which satisfies: 

( )= argmin , k
k

i d x c                       (1) 

where d(x,ck) is the nonnegative distance 
between two vectors. A common distortion measure 
is the squared Euclidean distance (SED), given by: 

( ) ( )2

1
,

K

i i
i

d x y
=

= −∑x y                   (2)  

Fig.1 shows the principle of VQ. Only the index 
i is transmitted over the channel to the receiver. Upon 
receiving i correctly, the VQ decoder can reconstruct 
x to ci by a simple table lookup operation.  
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Fig. 1. Principle of vector quantization 
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Fig. 2. Block diagram of a SSVQ encoder 

The codebook design process is also known as 
training the codebook. A widely used algorithm for 

VQ codebook design is the Linde-Buzo-Gray (LBG) 
algorithm [10].  

2.2. Switched Split Vector Quantization. 

SSVQ is a hybrid of Switch Vector Quantization 
and Split Vector Quantization. In this scheme, the  
vector space is divided into non-overlapping 
switching regions and a separate Split Vector 
Quantizer (SVQ) [11] is designed for each region. 
The SVQ divides vectors into subvectors of lesser 
dimension and they are then quantized using 
independent codebooks. An L-part K-dimension SVQ 
is composed of L classical VQs of smaller sizes and 
dimension of K1,K2,...,KL.  

The block diagram of a Switched Split Vector 
Quantizer is shown in Fig.2. Each vector to be 
quantized is first switched to one of the M possible 
directions based on the nearest-neighbour criterion, 
using the switch VQ codebook Cs.  

( )s argmin , si
i

i d= x c                      (3) 

Next, the vector will be quantized using the 
corresponding L-part SVQ. Therefore, the SSVQ 
coder transmits to the decoder an index i composed 
L+1 concatenated binary indices. The first index is 
indicates the switch direction and the remaining L 
indices i1,i2,...,iL are provided by the corresponding 
local SVQ

si
.  

2.3. Index Assignment for Vector Quantization.  

The effect of channel errors is to cause errors in 
the received indices which can result in significant 
distortion in decoded vectors. Let Pa(i) denote the a 
priori probability of codevector ci, The IA function π 
is a permutation of the integers {0,1,...,N-1} and π(i) 
assigns an index to codevector ci. The overall 
distortion caused by channel noise is:  

( ) ( ) ( )π π π
= =

= ∑ ∑
1 1

( ) ( ), ( ) ,
N N

a C i j
i j

D P i P j i d c c     (4) 

In case of binary symmetric channel (BSC) with 
bit error rate (BER) ε, the codeword transition 
probability PC(i,j) is given by: 

PC(i,j) = εh(i,j)(1 − ε)n − h(i,j)                  (5) 

where h(i,j) denote the Hamming distance 
(number of bit differences) between i and j. 

Different IAs affect the overall distortion D(π) 
in case of channel error, so the IA problem is to find 
the optimal IA solution π which minimize D(π). 
There are N! possibilities to order N codewords, and 
to find an optimal solution for codebooks larger than 
32 entries is practically impossible. For this reason, a 
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number of different IA approximate solutions have 
been proposed [9,12,13]. 

3. The proposed IA-SSVQ method. 

In order to improve the robustness of the SSVQ 
coders, we adopt an JSCC approach carried out by the 
IA method and develop a new method named IA-
SSVQ. The switch codebook CS need to be 
reassigned in the optimized order provided by an IA 
algorithm and the order of SVQs is also rearranged 
according to the new order of codevectors in CS. 
Next, continue using the IA algorithm to find the 
optimal IA for each codebook of local SVQs and 
rearranging them in such optimized order. 

The scheme for designing a M-switch IA-SSVQ 
with the training set S of length ns is described below: 
• Train the M-length switch codebook Cs from S. 
• Corresponding to M vectors cs1,cs2,...csM in Cs, 

partition S into M non-overlapping cells 
R1,R2...,RM of length ns1, ns2,..., nsM. 

• Train codebooks of the M local SVQs. (The 
SVQi is trained using the training set Ri). 

• Find the optimal IA solution of CS by using an 
IA algorithm with a priori probability of vector 
csi given by ( )a si sP i n n= ( )1 i M≤ ≤ .  

• Permute CS by the optimized IA solution and 
rearrange the order of SVQs according to the 
new positions of vectors in CS. 

• Apply IA method to rearrange all sub codebooks 
of the M local SVQs in the optimized order. 

In the case of upgrading the existing system, 
only the last 3 steps need to be executed.  

4. Application of IA-SSVQ in speech coding. 

Most low bit rate speech coders employ the 
linear predictive coding (LPC) model [14] in which 
the short-term spectral is approximated by the all-
pole filter whose transfer function is HLPC(z) = 1/A(z) 
and A(z) is an inverse filter, given by: 

( )
1

1
p

i
i

i

A z a z
=

= +∑ -                       (6) 

The order p is typically set to 10 for narrowband 
speech coders and to 16 for wideband speech coders. 
The quantization of LPC coefficients  { } 1

p
i ia

=
 play a 

major role in the overall bit-rate and preserving the 
quality of the reconstructed speech.  

In order to evaluate the performance of a LPC 
quantizer, the most popular approach is the spectral 
distortion (SD). For the i-th frame, the SDi in Decibel, 
defined as [11]: 

( )
( )

1

0

10

1 0

221

2

1
10 log ˆ

j n Nn

i j n N
n n

S e
SD

n n S e

π

π

−

=

=
−

 
 
 

∑       (7) 

where (S e j2πn/N) and ˆ(S e j2πn/N) are the original 
and quantized power spectrum of the LPC filter 
corresponding to the i-th frame of speech signal. The 
requirements usually considered necessary to achieve 
good quality speech are [11]: The average distortion 
is about 1dB, the number of outlier frames having SD 
in the range 2-4dB is less than 2% and no outlier 
frame having SD larger than 4dB. 

In practice, the LPC coefficients are not directly 
quantized because they have poor quantization 
properties. Line Spectral Frequency (LSF) [15] has 
become the major representation of LPC coefficients 
because of its excellent properties in terms of model 
filter stability and robust quantization. The LSFs are 
defined as the roots of the following polynomials: 

( ) ( ) ( )
( ) ( ) ( )

1

1

( 1)

( 1)

p

p

P z A z z A z

Q z A z z A z

−

−

− +

− +

= +

= −
             (8) 

All roots of P(z) and Q(z) are located on the unit 
circle of the z-plane and are interlaced with each other 
so that LSFs are in ascending order.  

To further improve the performance of the 
coder, the weighted Euclidean distance (WED) may 
be used instead of SED as distortion measure for LSF 
vectors. The WED ˆ( , )d f f  between the original and 
quantized LSF vectors is given by [11]: 

( ) ( )[ ]2

1

ˆˆ,
p

i i i
i

d w f f
=

= −∑f f               (9) 

where wi is the spectral weight corresponding to 
the i-th LSF: 

( ) 2

i i

r
w H f=                        (10) 

where |H(fi)|2 is the LPC power spectrum at 
frequency fi and r is an empirical constant determined 
experimentally. A value of r = 0.15 has been found 
satisfactory [11]. 

Due to the high correlation property of LSFs, 
VQ of them is most suitable for low bitrate but high 
quality quantization. SSVQ which has been studied 
recently is an effective structurally constrained VQ 
method for quantizing LSF coefficients and has many 
advantages over other VQ techniques[5,6]. Therefore, 
using IA-SSVQ method can improve the robustness 
of the speech coder and the effectiveness of this 
method is confirmed by experiment in Section 5. 
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5. Experiments and discussion. 

In this section, computational experiments are 
carried out in Matlab to examine the performance of 
the IA-SSVQ method and to compare it with the 
traditional SSVQ and COSSVQ method. These three 
SSVQ systems with the same selected characteristics 
quantize and transmit the source over a BSC channel. 
The sources include a random highly correlated 
process and sets of speech LSF parameters. 

In our experiments, codebooks were generated 
using LBG algorithm [8] and the SA algorithm 
[12,13] was applied to find the optimal IA for IA-
SSVQ codebooks. The bit error probability used for 
training IA-SSVQ and COSSVQ codebooks is 0.01.   

5.1. Random correlated source. 

In this section, the input signal is a first-order 
Gauss-Markov process with correlation coefficient ρ .  

x(n) = ρx(n−1) + w(n)                  (11) 

where w(n) is a zero-mean, unit variance, 
Gaussian white noise process. In our experiment the 
value for ρ  is 0.9 and the SED (Eq.2) is used as 
vector distortion measure. 

The source is first partitioned into vectors of 
dimension 8, then these input vectors are quantized 
by various 16-switch 2-part SSVQ quantizers. The 
vectors are split into 2 parts with (4,4) division and 
the bit allocation is (6,6). The performances are 
evaluated in terms of signal-to-noise ratio (SNR) 
given by: 

SNR = 10log10(σx/σn)                  (12) 

where σx and σn are the signal and noise 
variances,  respectively.  
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Fig. 3. Performance comparison of SSVQ methods 

Fig.3 shows the SNR of system for 3 SSVQ 
methods against the BER. According to Fig.2, it can 
be observe that the performance of the IA-SSVQ 
method outperforms the regular SSVQ method  in 
terms of high SNR. At high BER levels, the 
COSSVQ method provides better performance 
compared to IA-SSVQ method, but the IA-SSVQ 
method is better at low BER.  

5.2. LSF Parameters of speech coder. 

In this experiment, the TIMIT speech database 
with a sampling rate of 16kHz [16] was used for 
training and tesing of the SSVQ. In order to obtain 
the LSF vectors database, the same preprocessing and 
LPC analysis of the Adaptive Multirate Wideband 
speech coder (AMR-WB, ITU-T G.722.2) [17] was 
used. The training set consists of 644.137 vectors 
while the testing set contains 235.603 vectors distinct 
from the training vectors.  

In all SSVQ quantizers, the number of switch 
directions is 32 (m=5) and the 16-dimensional LSF 
vectors are split into 5 parts with (3,3,3,3,4) division 
and the bit allocation is (9,8,8,8,8). The WSED was 
used for measuring the distortion of LSF vectors.

 

Table 1. Performance comparisons between various 46 bits/frame LSF SSVQ encoders. 

BER 
 ε 

SSVQ IA-SSVQ COSSVQ 
Average 
SD (dB) 

Outliers % Average 
SD (dB) 

Outliers % Average 
SD (dB) 

Outliers % 
2-4 dB >4 dB 2-4 dB > 4 dB 2-4 dB > 4 dB 

0 0.921 0.499 0.000 0.921 0.499 0.000 0.968 1.499 0.006 
0.001 1.077 2.857 1.294 1.003 1.723 0.596 1.035 2.512 0.545 
0.002 1.204 4.894 2.455 1.077 2.925 1.129 1.097 3.523 1.029 
0.003 1.338 6.691 3.742 1.158 4.125 1.738 1.163 4.505 1.570 
0.004 1.461 8.470 4.969 1.234 5.358 2.286 1.227 5.530 2.093 
0.005 1.585 10.187 6.173 1.307 6.399 2.857 1.287 6.469 2.586 
0.01 2.185 17.265 12.332 1.673 11.679 5.799 1.592 11.170 5.191 
0.1 7.887 17.176 79.401 6.011 32.266 55.664 5.316 35.921 49.802 
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We use the common measure of spectral distortion 
(SD) (Eq.7) [11] to test the LSF quantization 
performance. In Table 1, the performance both in 
average SD as well as outlier percentage is depicted 
for various SSVQ schemes. It can be seen that, the 
simulation result is similar to the result in Section 5.1. 
The IA-SSVQ coder provides better performance 
than the ordinary SSVQ coder in term of low average 
SD and the number of outlier’s frames of SD > 4dB. 
In comparison with COSSVQ coder, when ε is less 
than a certain threshold, the performance of IA-SSVQ 
coder is better and vice versa. In this experiment, the 
threshold is about 0.004. The reason is the IA-SSVQ 
and SSVQ codebooks are the same sets, just in 
different order, so the IA-SSVQ coder preserves the 
original performance of the SSVQ coder designed for 
noiseless channel. 

6. Conclusion. 

In this paper, an efficient and robust structured 
VQ scheme based on an optimal IA version of the 
SSVQ technique, namely IA-SSVQ, was developed. 
The performance of SSVQ methods was investigated 
for quantizing a random highly correlated source and 
parameters of the speech coder. The results showed 
that the IA-SSVQ encoder yields significant 
improvement over the ordinary SSVQ encoder by 
providing robustness against channel errors. 
Although, the performance of COSSVQ scheme is 
better at high BER, the new scheme has advantage of 
requiring no increase complexity to the encoder and 
no sacrifice performance for the better channels. 
Therefore, the IA-SSVQ can be a good technique for 
systems transmitting correlated analog signal as well 
as in speech coder in particular.  
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