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Abstract 

This paper brings out a real-time capsule model of Autonomous Underwater Vehicles (AUVs) controllers, 
which is based on the real-time Unified Modeling Language (UML) with a Domain-Specific Language (DSL) 
of Modeling and Analysis of Real-Time and Embedded Systems (MARTE) in order to intensively carry out the 
whole of development lifecyle for the AUV’s control system. The main study is stepwise carried out as follows: 
the AUV dynamics together with control structure are firstly adapted for developing entirely an AUV controller. 
The use-case model combined with an implementable functional block diagram and the Extended Kalman 
Filter (EKF) algorithm are then specialized to closely gather the requirements analysis of control. The 
specializations of real-time UML/MARTE’s features combined with the capsule evolution of timing concurrency 
are next realized to precisely design structures and behaviors for the controller. The detailed design model is 
then converted into the implementation model by using open-source platforms in order to quickly simulate and 
realize this controller. Finally, a trajectory-tracking controller, which permits a miniature unmanned submarine 
possessing a torpedo shape to autonomously reaches and follows a horizontal planar reference trajectory, 
was completely deployed and tested. 
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1. Introduction1 

Autonomous Underwater Vehicles (AUVs) are 
increasingly used by civil and military operators for 
performing the complex underwater missions. This is 
due to the basic features of safety and efficiency when 
compared to manned vehicles. AUV does not require 
human operators and subject to the conditions and the 
dangers inherent in the underwater environment. With 
such outstanding features, the type of AUV has been 
used successfully and effectively in the maritime 
industry for both the civil and military purposes [1, 2]. 

Within the autonomy architecture of AUVs are 
three main systems. These are: the guidance system, 
which is responsible for generating the trajectory for 
the vehicle to follow; the navigation system, which 
produces an estimation of the current state of the 
vehicle; and the control system, which calculates and 
applies the appropriate forces to manoeuvre the 
vehicle [3]. All three of these systems have their own 
individual tasks to complete, yet must also work 
cooperatively in order to reliably allow an AUV to 
complete its objectives. Hence, the AUV controller 
must take into account models with discrete events and 
continuous behaviors that can be considered as a 
Hybrid Dynamic Systems (HDS) [4]. 

In addition, the customization and reusability are 
factors to be associated with the production of a new 
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application in order to reduce its costs, resources and 
time development. According to the Object 
Management Group (OMG) [5], UML appeared to us 
to be essential for its visual object-oriented design 
support, which has been largely spread and appreciated 
in the software industry. However, UML is not well 
adapted to visualize, interconnection types between 
control objects or sub-systems for modeling industrial 
control systems. Furthermore, the System Modeling 
Language (SysML) [6], which is a UML profile for 
systems engineering, has been standardized by OMG. 
SysML supports the specification, analysis, design, 
verification and validation of a broad range of complex 
systems. But both of UML and SysML lack the 
constructs for modeling time and duration constraints 
of the developed system. Hence, the real-time 
UML/MARTE version [7-9] is chosen to model in 
detail the analysis and design artifacts for real-time and 
embedded control systems, e.g. the AUV controller. 
This version also includes the ‘capsules, ports, 
protocols, connectors’ concepts that can be adapted by 
specializing a set of control capsules in precise 
behaviors and structures of the AUV controller.  

The paper aims to implement a control model 
integrated the AUV dynamics for control into the real-
time object paradigms, which can permit us to 
intensively realize and deploy the AUV controller, and 
also allow the designed and implemented control 
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elements to be closely customizable and re-usable in 
the realization of new applications for various AUV 
types. In the current model, the AUV dynamics and 
control structure are also adapted in detail for the AUV 
controller that are then combined with the models as 
follows: The Object-Oriented (OO) Analysis (OOA), 
OO Design (OOD) and OO Implementation (OOImpl) 
models; this control system permits an AUV to track a 
reference trajectory. Here, the OOA includes the use-
case model specialized closely with an implementable 
function block diagram to precisely capture the 
requirement analysis for an AUV controller; the OOD 
model is built on the identified OOA model by 
specifying the real-time UML/MARTE to entirely 
design the real-time control capsules with their timing 
concurrency of evolutions in detail. The detailed OOD 
elements is then converted into OOImpl models by 
using open-source platforms such as Arduino [10] in 
order to quickly simulate, realize and deploy the AUV 
controller. Finally, a planar trajectory-tracking 
controller of a miniature unmanned submarine was 
developed and taken on trial trip.  

2. AUV dynamics and control structure 

2.1. Overview of AUV dynamics for control 

According to SNAME [11], the six motion 
components of an underwater vehicle are defined as 
surge, sway, heave, roll, pitch, and yaw which are 
shown in Table 1. 

Table 1. SNAME notations for underwater vehicles 
Degree of 
freedom 

Motions Force and 
moment 

Linear 
and 
angular 
velocity 

Position 
and Euler 
angles 

1 

2 

3 

4 

5 

6 

Surge 

Sway 

Heave 

Roll 

Pitch 

Yaw 

X 

Y 

Z 

K 

M 

N 

u 

v 

w 

p 

q 

r 

x 

y 

z 

ϕ 

θ 

ψ 

 

From the large field of guidance, navigation and 
control of underwater vehicles, the 6 DoF dynamic 
model of AUVs in body frame [3] can be written in 
equation (1). 

� �̇�𝜼 = 𝑱𝑱(𝜼𝜼)𝝂𝝂                                                                 
𝑴𝑴�̇�𝝂 + 𝑪𝑪(𝝂𝝂)𝝂𝝂 + 𝑫𝑫(𝝂𝝂)𝝂𝝂 + 𝒈𝒈(𝜼𝜼) = 𝝉𝝉(𝒗𝒗,𝐮𝐮)             (1) 

Where: η=[η1T,η2T]T includes the position 
η1=[x, y,z]T (NED: North, East and Down) and the 
orientation η2=[ϕ,θ,ψ]T (Euler RPY: Roll, Pitch and 

Yaw angles); ν = [v1T,v2T]T is composed the linear 
v1=[u,v ,w]T and the angular v2=[p,q, r]T 
velocities; M=MRB+MA is a mass matrix, which 
denotes the 6×6 system inertia matrix containing MRB 
- the generalized constant inertia matrix, and MA - the 
added mass inertia matrix; C(ν)=CRB(ν)+CA(ν) is the 
6×6 Coriolis and centripetal forces matrix including added 
mass; Linear and nonlinear hydrodynamic damping 
are contained within the 6×6 matrix D(ν)=D+Dn(ν), D 
contains the linear damping terms, and Dn(ν) contains 
the nonlinear damping terms; g(η) is the 6×1 vector 
of gravitational and buoyancy effects; τ(v,u) is the 
vector of resultant force and moment acting on the 
underwater vehicle, and u is the control inputs, e.g. 
the rotational speed of the motors related to the 
generated thrusts, the driving angles sent to the 
needed servo-motor for sail planes and rudder. 

A discrete state-space representation is required 
for modeling the AUV controller in order to use a 
recursive digital motion estimation filter, e.g. the 
Extended Kalman Filter (EKF); the developed system 
can be then described by a set of equations (2). 

�𝐱𝐱𝐤𝐤 = 𝐟𝐟𝐤𝐤−𝟏𝟏(𝐱𝐱𝐤𝐤−𝟏𝟏,𝐮𝐮𝐤𝐤−𝟏𝟏) +  𝐰𝐰𝐤𝐤−𝟏𝟏
𝐲𝐲𝐤𝐤 = 𝐡𝐡𝐤𝐤(𝐱𝐱𝐤𝐤) +  𝐯𝐯𝐤𝐤                                 (2) 

Here, 𝐱𝐱 = �𝜼𝜼𝝂𝝂� is a 12-dimensional state vector for 
describing the motion of AUV, while xk is the vector 
of state variables at the kth instant of x; uk and yk are 
respectively the inputs and outputs of the system; wk 

and vk are the additive process and measurement noise; 
the first equation in (2) is called the system’s evolution 
equation, while the second one is called the 
measurement equation. 

2.2. Control structure for an AUV  

As previously stated, main sub-systems, which 
can be participated in the physical control architecture 
of AUVs are the guidance system, navigation system, 
and control system. Fig. 1 shows out a functional block 
diagram, which captures how these sub-systems 
interact.  

 
Fig. 1. Block diagram of guidance, navigation and 
control for an AUV. 

Here, the Guidance System block is responsible for 
producing the desired trajectory for the vehicle to 
follow; The Navigation System block addresses the 
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task of determining the current state of the AUV; The 
Controllers block is responsible for providing the 
corrective signals and events to enable the AUV to 
follow a desired path. This is achieved by receiving the 
desired state of AUV from the Guidance System block, 
and the current state of AUV from the Navigation 
System block. It then calculates and applies correcting 
forces and moments, through use of the various 
actuators on the AUV, to minimize the difference 
between desired and current states. This allows the 
AUV to track a desired trajectory even in the presence 
of unknown disturbances.  

From the above described AUV dynamics 
together with its general control structure and 
characteristics of HDS [4], controllers of AUV are 
then HDS. These controllers have the 
continuous/discrete parts and their interactions such as 
the motions in surge, sway, heave, roll, pitch, and yaw, 
and external interacting events from the guidance and 
navigation system and environmental disturbances. In 
the current model, the paper is interested in developing 
the trajectory-tracking controller of AUVs, so this 
hybrid dynamic model can be used to find out the 
control algorithms combined with a specific guidance 
law such as the implemented Line-of-Sight (LOS) 
guidance described in [12].  

3. Capsule-based development for AUV controllers 

As the previous state, the real-time 
UML/MARTE version was chosen to model in detail 
the analysis and design artifacts for real-time and 
embedded control systems, e.g. the AUV controller. 
Starting from the above adapted AUV dynamics, 
control structures, real-time UML/MARTE features 
together with the author’s object-unified approach for 
AUV controllers [13], we develop in detail a model-
driven implementation for the AUV controller, which 
includes three models as follows: OOA, OOD and 
OOImpl model so separate the specification of the 
operation of the system from the details of the way that 
system uses the capabilities of its platform. 

i) In OOA model, the use case model is 
specialized by the implementable functional block 
diagram to closely capture the requirements analysis 
for an AUV controller.  

ii) OOD model is built up by specifying the real-
time control capsules, ports, protocols and their timing 
concurrency of evolutions together with the EKF 
algorithm in order to model the precise behaviors and 
structures of AUV controller. 

iii) OOD model is then converted into OOImpl 
model by object-oriented specific platforms such as 
MatLab/Simulink, Arduino etc. in order to completely 
simulate, realize and deploy the AUV controller. 

3.1. OOA model for an AUV controller 

Following the AUV dynamic model and control 
architecture described in Section 2 together with LOS 
guidance described in [12], we present here the main 
use case model (Fig. 2) of AUV controllers. Here, 
MDS represents the Measurement and Display System 
combined with the guidance and navigation system; 
MES represents the Marine Environment System 
including disturbances such as the wind, waves, ocean 
currents etc. In this model, it is necessary to provide 
industrial conditions, e.g. the maximum swing angles 
of rudder and sail planes, velocity, immersible depth 
and additional safe trip modes of the AUV in order to 
entirely make in the operational safety of system. 

 
Fig. 2. Main use case model for the AUV controller. 

In addition, an implemented functional block 
diagram must be defined in order to model continuous 
behaviors of this system with events issued from 
outside; because the real-time UML/MARTE lacks the 
constructs for modeling internal continuous behaviors 
for each state on the state machine diagram. Starting 
from the considered dynamic model of AUV as well 
as the defined use case model, we propose here an 
implemented functional block diagram of the AUV 
controller as shown in Fig. 3. Here, Desired trajectory 
and depth actions respectively give the desired 
position (xd, yd) and depth (zd) to the position and deep 
controller; ΣTd is the desired overall thrust; the 
position controller receives the AUV’s position (x, y) 
and desired thrust, it outputs desired roll (φd) and pitch 
(θd) while desired yaw (Ψd) comes directly from the 
Guidance System block; the attitude controller gives 
then the desired control signals to the actuator 
commands (e.g. Ωdi can be the desired motor speeds 
sent to the main motor controllers for the propellers or 
tunnel thrusters, and Ωdi can be also the desired driving 
steps sent to the needed servo-motor controllers for sail 
planes, rudder and displacement units, 𝑖𝑖 = 1, n for an 
AUV operating with n actuators, so u will be the 
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control input of size n×1); the Proportional-Integral-
Derivative (PID) regulators can be applied to the 
Motor Control block including the main motor 
controllers and servo-motor controllers in order to 
reduce the inertial and delay time caused by the 
physical AUV actuators in the whole system 
evolution; τφ,θ,Ψ and ΣT are respectively the overall 
moment and force acting on the AUV. 

 
Fig. 3. Implemented functional block diagram for the 
AUV controller. 

In the current model, the Integral Backstepping 
(IB) techniques implemented in [14] are hierarchically 
used for control the depth, position and attitude of the 
AUV. The state-space models (2) described in Sub-
section 2.1 are used for the estimation and prediction 
of the position, depth, attitude, and velocity 
corresponding to the sensors installed on the AUV that 
are implemented in the Navigation System block that 
are based on the standard navigation filter is based on 
EKF [15]. 

 
Fig. 4. Real-time communication pattern for the main 
control capsules for the AUV controller. 

3.2. OOD for an AUV controller 

In the OOD model, we have specialized the 5 
main control capsules, which take part in the HA 
realization of the AUV: the continuous part’s capsule, 
discrete part’s capsule, internal interface’s capsule, 
external interface’s capsule and Instantaneous Global 
Continuous Behavior (IGCB’s capsule). Fig. 4 indicates 

the real-time communication pattern of main control 
capsules by using the real-time UML/MARTE’s 
collaboration diagrams.  

Fig. 5 describes in detail the timing concurrency 
of evolutions for the above real-time communication 
pattern of main control capsules. Here, Ee1, Ee2, Ee3… 
are the external events coming from the external 
interface’s capsule; Ei1, Ei2, Ei3… are internal events 
issued by the evolution of the internal interface’s 
capsule; q1, q2, q3… indicate the concrete situations 
(states) of the AUV controller; ec1, ec2, ec3… represent 
the evolutions of continuous elements in the 
continuous part’s capsule; and ∆T is a sampling period 
of the IGCB’s capsule. The realization hypotheses of 
timing concurrency for capsule evolutions are applied as 
follows: 

- If the end of the discrete part’s evolution is 
located before or just at the sampling date of the IGCB’s 
capsule, then the current IGCB model will change to the 
new IGCB model corresponding to this evolution; 

- If the end of the discrete part’s evolution is 
located after of appearing sampling date (∆T), then the 
current IGCB model is not commutated; 

- If an event appears during the evolution of the 
local state machine of AUV application, then this event 
is immediately memorized and solved later on;  

- All of the external and internal events have the 
same process by the discrete part’s capsule; 

- During the sampling period of the IGCB’s 
capsule, the continue part’s capsule, internal interface’s 
capsule and discrete part’s capsule make their own 
evolutions to possibly commutate to a new IGCB 
model, the IGCB continuous model remains in its 
current mode for this period; 

- So during the period of the IGCB’s capsule, the 
current IGCB model can detect two or more appeared 
situations, then the IGCB’s capsule synchronizes all 
these situations just at the end of this period with the null 
timing duration; the current IGCB model subsequently 
changes to a new IGCB model, which corresponds to 
the last appeared situation during this period. 

The validation and verification of this OOD 
model and its traceability with the above defined 
OOA model have been corrected by using IBM 
Rational Rose RealTime or IBM Rational Rhapsody 
software [16]. IBM Rational's leading role in 
defining the real-time UML is widely acknowledged, 
as is the pre-eminence of the IBM Rational Rose 
RealTime product in implementing UML to support 
the architecting of large-scale real-time and 
embedded software systems. It combines a rich 
modeling environment with a code-oriented tool set 
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to create a comprehensive practitioner desktop for 
creating solutions in a variety of architectural styles, 
and targeted at specific runtime infrastructures. 

 
Fig. 5. Timing concurrency of evolutions for main 
control capsules of the AUV controller. 

3.3. OOImpl for an AUV controller 

To carry out the AUV controller, the OOD model 
is firstly implemented to the simulation model that is 
transformed from the above built OOD model by using 
tools such as IBM Rational Rhapsody [16] and 
MatLab/Simulink or OpenModelica [17]. The OOD 
model with the optimized control elements of 
simulation model is then adapted to obtain the new 
updated OOD model for realization models of AUV 
that will be called OOD*. Finally, this OOD* model is 
converted into new OOImpl models by using different 
specific platforms, which are based on the object-
oriented Implementation Development Environment 
(IDE), e.g. the Arduino’s platforms [10] in order to 
completely realize the AUV controller with 
compatible microcontrollers. To implement the 
realization model for an AUV controller, we have to 
update the design model with the control elements 
modified in the acceptable simulation model, e.g. the 
control law and its parameters, continuous elements, 
etc. Then, we convert this updated design model into 
different IDEs, which support object-oriented 
programming languages such as C++, Java, Ada, etc. 
in order to completely realize it in industrial platforms, 
e.g. the microcontrollers. This model conversion can 
be carried out by using object-oriented modeling 

software tools, which support the round-trip 
engineering such as IBM Rational Rhapsody [16]. That 
makes us to entirely obtain a generated skeleton 
control implementation model, which consists of the 
main capsules, sub-capsules, ports, protocols and 
connectors in their defined interactions. 

4. Application 

Following the above proposed model, we 
developed a planar trajectory-tracking controller of a 
Miniature Unmanned Submarine (MUS) possessing a 
torpedo shape, which autonomously reaches and 
follows a geometric reference path starting from a 
given initial configuration. In our case study, the 
propeller, sail planes, rudder and displacement unit are 
used to provide the translational forces and rotational 
moments that drive MUS. The main characteristics of 
MUS are resumed in Table 2. 

We have used then Arduino platform [10] to 
quickly deploy the realization model for the controller. 
Because Arduino is an open-source electronics 
prototyping platform based on flexible, easy-to-use 
hardware and software; it intended for designers and 
programmers interested in creating interactive objects 
or environments. Arduino can sense the environment 
by receiving input from a variety of sensors such as the 
pressure and magnetometer sensors, Inertial 
Measurement Unit (IMU), GPS, e.g. MPU6000 with 
working frequency 10Hz [18], Ublox Neo 6M with 
working frequency 100Hz [19], etc. and can affect its 
surroundings by controlled actuators. Arduino 
ATMEGA32-U2 and STM32 Cortex-M4 
microcontrollers [10] have been used on the board, and 
can be programmed by using the Arduino 
programming language based on the object-oriented 
embedded programming C++. 

We have performed trial trips to test the 
realization model of this application. Fig. 6 shows out 
the installation of the whole of MUS components to 
prepare test cases for the planar trajectory-tracking 
controller of MUS. The test scenarios are based on the 
use-case model, various desired shape-based reference 
paths of MUS. Fig. 7 illustrate the horizontal planar 
trajectory-tracking controller that permits the MUS 
autonomously reaches and follows the rectangle-
shaped reference paths. 

  

 
Fig. 6. Setup and test for the trajectory-tracking 
controller of the MUS. 
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Fig. 7. MUS reaches and follows the rectangle-shaped 
reference path. 

Based on the comparison between the 
experimental data of trial tests and the obtained 
simulation results, the planar trajectory-tracking 
controller of this MUS was satisfied with performance 
requirements, e.g. the admissible control duration, 
transition and static errors. In this application, the 
standard control method of IB and the EKF algorithm 
were used for the position and attitude control and the 
PID regulators were applied to the block of motor 
controllers that permit us to implement the functional 
block diagram (Fig. 3) for building up the ICCB’s 
capsule of OOD model. 

5. Conclusion  

This paper presented a specific model-driven 
implementation to intensively develop controllers 
for AUVs. This model is mainly based on the 
specializations of real-time UML/MARTE to 
intensively analyze, design, implement and realize 
the control parts of the system. The paper includes 
the following main points: The AUV dynamics and 
control architecture are adapted for control that are 
then combined with the specialization of real-time 
object features including the OOA, OOD and 
OOImpl components. In the OOA model, the use 
case model is specialized with the implementable 
functional block diagram for an AUV controller. The 
OOD model is built for obtaining the detailed design 
model by specifying the real-time control capsules, 
ports, protocols enclosed with their timing 
concurrency evolutions of capsules in order to model 
and construct in detail the behaviors and structures 
of AUV controllers. The OOD model with the 

optimized control elements is then adapted to obtain 
the new updated OOD model for the realization 
model. This updated OOD model is converted into 
new OOImpl models by using different object-
oriented specific platforms in order to completely 
realize the AUV controller with compatible 
microcontrollers. Based on this model, a planar 
trajectory-tracking controller of a low-cost miniature 
unmanned submarine was deployed and tested out 
Arduino ATMEGA U2 and STM32-Cortex-M4 
microcontrollers.  

In the next time, we will investigate in strategy 
by equipping depth control and navigation sensors 
and using industrial microcontrollers in order to 
completely make up controllers for balancing search 
and target response in cooperative team of various 
AUVs. 
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