

Journal of Science & Technology 122 (2017) 056-062

56

A Real-Time Capsule-Based Design Model to Realize AUV Controllers

Ngo Van Hien

Hanoi University of Science and Technology, No. 1, Dai Co Viet, Hai Ba Trung, Hanoi, Viet Nam
Received: October 10, 2017; Accepted: November 03, 2017

Abstract

This paper brings out a real-time capsule model of Autonomous Underwater Vehicles (AUVs) controllers,
which is based on the real-time Unified Modeling Language (UML) with a Domain-Specific Language (DSL)
of Modeling and Analysis of Real-Time and Embedded Systems (MARTE) in order to intensively carry out the
whole of development lifecyle for the AUV’s control system. The main study is stepwise carried out as follows:
the AUV dynamics together with control structure are firstly adapted for developing entirely an AUV controller.
The use-case model combined with an implementable functional block diagram and the Extended Kalman
Filter (EKF) algorithm are then specialized to closely gather the requirements analysis of control. The
specializations of real-time UML/MARTE’s features combined with the capsule evolution of timing concurrency
are next realized to precisely design structures and behaviors for the controller. The detailed design model is
then converted into the implementation model by using open-source platforms in order to quickly simulate and
realize this controller. Finally, a trajectory-tracking controller, which permits a miniature unmanned submarine
possessing a torpedo shape to autonomously reaches and follows a horizontal planar reference trajectory,
was completely deployed and tested.

Keywords: AUV control, Capsule-based design, EKF, real-time UML/MARTE

1. Introduction1

Autonomous Underwater Vehicles (AUVs) are
increasingly used by civil and military operators for
performing the complex underwater missions. This is
due to the basic features of safety and efficiency when
compared to manned vehicles. AUV does not require
human operators and subject to the conditions and the
dangers inherent in the underwater environment. With
such outstanding features, the type of AUV has been
used successfully and effectively in the maritime
industry for both the civil and military purposes [1, 2].

Within the autonomy architecture of AUVs are
three main systems. These are: the guidance system,
which is responsible for generating the trajectory for
the vehicle to follow; the navigation system, which
produces an estimation of the current state of the
vehicle; and the control system, which calculates and
applies the appropriate forces to manoeuvre the
vehicle [3]. All three of these systems have their own
individual tasks to complete, yet must also work
cooperatively in order to reliably allow an AUV to
complete its objectives. Hence, the AUV controller
must take into account models with discrete events and
continuous behaviors that can be considered as a
Hybrid Dynamic Systems (HDS) [4].

In addition, the customization and reusability are
factors to be associated with the production of a new

* Corresponding author: Tel.: (+84) 904.255.855
Email: hien.ngovan@hust.edu.vn

application in order to reduce its costs, resources and
time development. According to the Object
Management Group (OMG) [5], UML appeared to us
to be essential for its visual object-oriented design
support, which has been largely spread and appreciated
in the software industry. However, UML is not well
adapted to visualize, interconnection types between
control objects or sub-systems for modeling industrial
control systems. Furthermore, the System Modeling
Language (SysML) [6], which is a UML profile for
systems engineering, has been standardized by OMG.
SysML supports the specification, analysis, design,
verification and validation of a broad range of complex
systems. But both of UML and SysML lack the
constructs for modeling time and duration constraints
of the developed system. Hence, the real-time
UML/MARTE version [7-9] is chosen to model in
detail the analysis and design artifacts for real-time and
embedded control systems, e.g. the AUV controller.
This version also includes the ‘capsules, ports,
protocols, connectors’ concepts that can be adapted by
specializing a set of control capsules in precise
behaviors and structures of the AUV controller.

The paper aims to implement a control model
integrated the AUV dynamics for control into the real-
time object paradigms, which can permit us to
intensively realize and deploy the AUV controller, and
also allow the designed and implemented control

Journal of Science & Technology 122 (2017) 056-062

57

elements to be closely customizable and re-usable in
the realization of new applications for various AUV
types. In the current model, the AUV dynamics and
control structure are also adapted in detail for the AUV
controller that are then combined with the models as
follows: The Object-Oriented (OO) Analysis (OOA),
OO Design (OOD) and OO Implementation (OOImpl)
models; this control system permits an AUV to track a
reference trajectory. Here, the OOA includes the use-
case model specialized closely with an implementable
function block diagram to precisely capture the
requirement analysis for an AUV controller; the OOD
model is built on the identified OOA model by
specifying the real-time UML/MARTE to entirely
design the real-time control capsules with their timing
concurrency of evolutions in detail. The detailed OOD
elements is then converted into OOImpl models by
using open-source platforms such as Arduino [10] in
order to quickly simulate, realize and deploy the AUV
controller. Finally, a planar trajectory-tracking
controller of a miniature unmanned submarine was
developed and taken on trial trip.

2. AUV dynamics and control structure

2.1. Overview of AUV dynamics for control

According to SNAME [11], the six motion
components of an underwater vehicle are defined as
surge, sway, heave, roll, pitch, and yaw which are
shown in Table 1.

Table 1. SNAME notations for underwater vehicles
Degree of
freedom

Motions Force and
moment

Linear
and
angular
velocity

Position
and Euler
angles

1

2

3

4

5

6

Surge

Sway

Heave

Roll

Pitch

Yaw

X

Y

Z

K

M

N

u

v

w

p

q

r

x

y

z

ϕ

θ

ψ

From the large field of guidance, navigation and
control of underwater vehicles, the 6 DoF dynamic
model of AUVs in body frame [3] can be written in
equation (1).

� �̇�𝜼 = 𝑱𝑱(𝜼𝜼)𝝂𝝂
𝑴𝑴�̇�𝝂 + 𝑪𝑪(𝝂𝝂)𝝂𝝂 + 𝑫𝑫(𝝂𝝂)𝝂𝝂 + 𝒈𝒈(𝜼𝜼) = 𝝉𝝉(𝒗𝒗,𝐮𝐮) (1)

Where: η=[η1T,η2T]T includes the position
η1=[x, y,z]T (NED: North, East and Down) and the
orientation η2=[ϕ,θ,ψ]T (Euler RPY: Roll, Pitch and

Yaw angles); ν = [v1T,v2T]T is composed the linear
v1=[u,v ,w]T and the angular v2=[p,q, r]T
velocities; M=MRB+MA is a mass matrix, which
denotes the 6×6 system inertia matrix containing MRB
- the generalized constant inertia matrix, and MA - the
added mass inertia matrix; C(ν)=CRB(ν)+CA(ν) is the
6×6 Coriolis and centripetal forces matrix including added
mass; Linear and nonlinear hydrodynamic damping
are contained within the 6×6 matrix D(ν)=D+Dn(ν), D
contains the linear damping terms, and Dn(ν) contains
the nonlinear damping terms; g(η) is the 6×1 vector
of gravitational and buoyancy effects; τ(v,u) is the
vector of resultant force and moment acting on the
underwater vehicle, and u is the control inputs, e.g.
the rotational speed of the motors related to the
generated thrusts, the driving angles sent to the
needed servo-motor for sail planes and rudder.

A discrete state-space representation is required
for modeling the AUV controller in order to use a
recursive digital motion estimation filter, e.g. the
Extended Kalman Filter (EKF); the developed system
can be then described by a set of equations (2).

�𝐱𝐱𝐤𝐤 = 𝐟𝐟𝐤𝐤−𝟏𝟏(𝐱𝐱𝐤𝐤−𝟏𝟏,𝐮𝐮𝐤𝐤−𝟏𝟏) + 𝐰𝐰𝐤𝐤−𝟏𝟏
𝐲𝐲𝐤𝐤 = 𝐡𝐡𝐤𝐤(𝐱𝐱𝐤𝐤) + 𝐯𝐯𝐤𝐤 (2)

Here, 𝐱𝐱 = �𝜼𝜼𝝂𝝂� is a 12-dimensional state vector for
describing the motion of AUV, while xk is the vector
of state variables at the kth instant of x; uk and yk are
respectively the inputs and outputs of the system; wk

and vk are the additive process and measurement noise;
the first equation in (2) is called the system’s evolution
equation, while the second one is called the
measurement equation.

2.2. Control structure for an AUV

As previously stated, main sub-systems, which
can be participated in the physical control architecture
of AUVs are the guidance system, navigation system,
and control system. Fig. 1 shows out a functional block
diagram, which captures how these sub-systems
interact.

Fig. 1. Block diagram of guidance, navigation and
control for an AUV.

Here, the Guidance System block is responsible for
producing the desired trajectory for the vehicle to
follow; The Navigation System block addresses the

Journal of Science & Technology 122 (2017) 056-062

58

task of determining the current state of the AUV; The
Controllers block is responsible for providing the
corrective signals and events to enable the AUV to
follow a desired path. This is achieved by receiving the
desired state of AUV from the Guidance System block,
and the current state of AUV from the Navigation
System block. It then calculates and applies correcting
forces and moments, through use of the various
actuators on the AUV, to minimize the difference
between desired and current states. This allows the
AUV to track a desired trajectory even in the presence
of unknown disturbances.

From the above described AUV dynamics
together with its general control structure and
characteristics of HDS [4], controllers of AUV are
then HDS. These controllers have the
continuous/discrete parts and their interactions such as
the motions in surge, sway, heave, roll, pitch, and yaw,
and external interacting events from the guidance and
navigation system and environmental disturbances. In
the current model, the paper is interested in developing
the trajectory-tracking controller of AUVs, so this
hybrid dynamic model can be used to find out the
control algorithms combined with a specific guidance
law such as the implemented Line-of-Sight (LOS)
guidance described in [12].

3. Capsule-based development for AUV controllers

As the previous state, the real-time
UML/MARTE version was chosen to model in detail
the analysis and design artifacts for real-time and
embedded control systems, e.g. the AUV controller.
Starting from the above adapted AUV dynamics,
control structures, real-time UML/MARTE features
together with the author’s object-unified approach for
AUV controllers [13], we develop in detail a model-
driven implementation for the AUV controller, which
includes three models as follows: OOA, OOD and
OOImpl model so separate the specification of the
operation of the system from the details of the way that
system uses the capabilities of its platform.

i) In OOA model, the use case model is
specialized by the implementable functional block
diagram to closely capture the requirements analysis
for an AUV controller.

ii) OOD model is built up by specifying the real-
time control capsules, ports, protocols and their timing
concurrency of evolutions together with the EKF
algorithm in order to model the precise behaviors and
structures of AUV controller.

iii) OOD model is then converted into OOImpl
model by object-oriented specific platforms such as
MatLab/Simulink, Arduino etc. in order to completely
simulate, realize and deploy the AUV controller.

3.1. OOA model for an AUV controller

Following the AUV dynamic model and control
architecture described in Section 2 together with LOS
guidance described in [12], we present here the main
use case model (Fig. 2) of AUV controllers. Here,
MDS represents the Measurement and Display System
combined with the guidance and navigation system;
MES represents the Marine Environment System
including disturbances such as the wind, waves, ocean
currents etc. In this model, it is necessary to provide
industrial conditions, e.g. the maximum swing angles
of rudder and sail planes, velocity, immersible depth
and additional safe trip modes of the AUV in order to
entirely make in the operational safety of system.

Fig. 2. Main use case model for the AUV controller.

In addition, an implemented functional block
diagram must be defined in order to model continuous
behaviors of this system with events issued from
outside; because the real-time UML/MARTE lacks the
constructs for modeling internal continuous behaviors
for each state on the state machine diagram. Starting
from the considered dynamic model of AUV as well
as the defined use case model, we propose here an
implemented functional block diagram of the AUV
controller as shown in Fig. 3. Here, Desired trajectory
and depth actions respectively give the desired
position (xd, yd) and depth (zd) to the position and deep
controller; ΣTd is the desired overall thrust; the
position controller receives the AUV’s position (x, y)
and desired thrust, it outputs desired roll (φd) and pitch
(θd) while desired yaw (Ψd) comes directly from the
Guidance System block; the attitude controller gives
then the desired control signals to the actuator
commands (e.g. Ωdi can be the desired motor speeds
sent to the main motor controllers for the propellers or
tunnel thrusters, and Ωdi can be also the desired driving
steps sent to the needed servo-motor controllers for sail
planes, rudder and displacement units, 𝑖𝑖 = 1, n for an
AUV operating with n actuators, so u will be the

Journal of Science & Technology 122 (2017) 056-062

59

control input of size n×1); the Proportional-Integral-
Derivative (PID) regulators can be applied to the
Motor Control block including the main motor
controllers and servo-motor controllers in order to
reduce the inertial and delay time caused by the
physical AUV actuators in the whole system
evolution; τφ,θ,Ψ and ΣT are respectively the overall
moment and force acting on the AUV.

Fig. 3. Implemented functional block diagram for the
AUV controller.

In the current model, the Integral Backstepping
(IB) techniques implemented in [14] are hierarchically
used for control the depth, position and attitude of the
AUV. The state-space models (2) described in Sub-
section 2.1 are used for the estimation and prediction
of the position, depth, attitude, and velocity
corresponding to the sensors installed on the AUV that
are implemented in the Navigation System block that
are based on the standard navigation filter is based on
EKF [15].

Fig. 4. Real-time communication pattern for the main
control capsules for the AUV controller.

3.2. OOD for an AUV controller

In the OOD model, we have specialized the 5
main control capsules, which take part in the HA
realization of the AUV: the continuous part’s capsule,
discrete part’s capsule, internal interface’s capsule,
external interface’s capsule and Instantaneous Global
Continuous Behavior (IGCB’s capsule). Fig. 4 indicates

the real-time communication pattern of main control
capsules by using the real-time UML/MARTE’s
collaboration diagrams.

Fig. 5 describes in detail the timing concurrency
of evolutions for the above real-time communication
pattern of main control capsules. Here, Ee1, Ee2, Ee3…
are the external events coming from the external
interface’s capsule; Ei1, Ei2, Ei3… are internal events
issued by the evolution of the internal interface’s
capsule; q1, q2, q3… indicate the concrete situations
(states) of the AUV controller; ec1, ec2, ec3… represent
the evolutions of continuous elements in the
continuous part’s capsule; and ∆T is a sampling period
of the IGCB’s capsule. The realization hypotheses of
timing concurrency for capsule evolutions are applied as
follows:

- If the end of the discrete part’s evolution is
located before or just at the sampling date of the IGCB’s
capsule, then the current IGCB model will change to the
new IGCB model corresponding to this evolution;

- If the end of the discrete part’s evolution is
located after of appearing sampling date (∆T), then the
current IGCB model is not commutated;

- If an event appears during the evolution of the
local state machine of AUV application, then this event
is immediately memorized and solved later on;

- All of the external and internal events have the
same process by the discrete part’s capsule;

- During the sampling period of the IGCB’s
capsule, the continue part’s capsule, internal interface’s
capsule and discrete part’s capsule make their own
evolutions to possibly commutate to a new IGCB
model, the IGCB continuous model remains in its
current mode for this period;

- So during the period of the IGCB’s capsule, the
current IGCB model can detect two or more appeared
situations, then the IGCB’s capsule synchronizes all
these situations just at the end of this period with the null
timing duration; the current IGCB model subsequently
changes to a new IGCB model, which corresponds to
the last appeared situation during this period.

The validation and verification of this OOD
model and its traceability with the above defined
OOA model have been corrected by using IBM
Rational Rose RealTime or IBM Rational Rhapsody
software [16]. IBM Rational's leading role in
defining the real-time UML is widely acknowledged,
as is the pre-eminence of the IBM Rational Rose
RealTime product in implementing UML to support
the architecting of large-scale real-time and
embedded software systems. It combines a rich
modeling environment with a code-oriented tool set

Journal of Science & Technology 122 (2017) 056-062

60

to create a comprehensive practitioner desktop for
creating solutions in a variety of architectural styles,
and targeted at specific runtime infrastructures.

Fig. 5. Timing concurrency of evolutions for main
control capsules of the AUV controller.

3.3. OOImpl for an AUV controller

To carry out the AUV controller, the OOD model
is firstly implemented to the simulation model that is
transformed from the above built OOD model by using
tools such as IBM Rational Rhapsody [16] and
MatLab/Simulink or OpenModelica [17]. The OOD
model with the optimized control elements of
simulation model is then adapted to obtain the new
updated OOD model for realization models of AUV
that will be called OOD*. Finally, this OOD* model is
converted into new OOImpl models by using different
specific platforms, which are based on the object-
oriented Implementation Development Environment
(IDE), e.g. the Arduino’s platforms [10] in order to
completely realize the AUV controller with
compatible microcontrollers. To implement the
realization model for an AUV controller, we have to
update the design model with the control elements
modified in the acceptable simulation model, e.g. the
control law and its parameters, continuous elements,
etc. Then, we convert this updated design model into
different IDEs, which support object-oriented
programming languages such as C++, Java, Ada, etc.
in order to completely realize it in industrial platforms,
e.g. the microcontrollers. This model conversion can
be carried out by using object-oriented modeling

software tools, which support the round-trip
engineering such as IBM Rational Rhapsody [16]. That
makes us to entirely obtain a generated skeleton
control implementation model, which consists of the
main capsules, sub-capsules, ports, protocols and
connectors in their defined interactions.

4. Application

Following the above proposed model, we
developed a planar trajectory-tracking controller of a
Miniature Unmanned Submarine (MUS) possessing a
torpedo shape, which autonomously reaches and
follows a geometric reference path starting from a
given initial configuration. In our case study, the
propeller, sail planes, rudder and displacement unit are
used to provide the translational forces and rotational
moments that drive MUS. The main characteristics of
MUS are resumed in Table 2.

We have used then Arduino platform [10] to
quickly deploy the realization model for the controller.
Because Arduino is an open-source electronics
prototyping platform based on flexible, easy-to-use
hardware and software; it intended for designers and
programmers interested in creating interactive objects
or environments. Arduino can sense the environment
by receiving input from a variety of sensors such as the
pressure and magnetometer sensors, Inertial
Measurement Unit (IMU), GPS, e.g. MPU6000 with
working frequency 10Hz [18], Ublox Neo 6M with
working frequency 100Hz [19], etc. and can affect its
surroundings by controlled actuators. Arduino
ATMEGA32-U2 and STM32 Cortex-M4
microcontrollers [10] have been used on the board, and
can be programmed by using the Arduino
programming language based on the object-oriented
embedded programming C++.

We have performed trial trips to test the
realization model of this application. Fig. 6 shows out
the installation of the whole of MUS components to
prepare test cases for the planar trajectory-tracking
controller of MUS. The test scenarios are based on the
use-case model, various desired shape-based reference
paths of MUS. Fig. 7 illustrate the horizontal planar
trajectory-tracking controller that permits the MUS
autonomously reaches and follows the rectangle-
shaped reference paths.

Fig. 6. Setup and test for the trajectory-tracking
controller of the MUS.

Journal of Science & Technology 122 (2017) 056-062

61

Fig. 7. MUS reaches and follows the rectangle-shaped
reference path.

Based on the comparison between the
experimental data of trial tests and the obtained
simulation results, the planar trajectory-tracking
controller of this MUS was satisfied with performance
requirements, e.g. the admissible control duration,
transition and static errors. In this application, the
standard control method of IB and the EKF algorithm
were used for the position and attitude control and the
PID regulators were applied to the block of motor
controllers that permit us to implement the functional
block diagram (Fig. 3) for building up the ICCB’s
capsule of OOD model.

5. Conclusion

This paper presented a specific model-driven
implementation to intensively develop controllers
for AUVs. This model is mainly based on the
specializations of real-time UML/MARTE to
intensively analyze, design, implement and realize
the control parts of the system. The paper includes
the following main points: The AUV dynamics and
control architecture are adapted for control that are
then combined with the specialization of real-time
object features including the OOA, OOD and
OOImpl components. In the OOA model, the use
case model is specialized with the implementable
functional block diagram for an AUV controller. The
OOD model is built for obtaining the detailed design
model by specifying the real-time control capsules,
ports, protocols enclosed with their timing
concurrency evolutions of capsules in order to model
and construct in detail the behaviors and structures
of AUV controllers. The OOD model with the

optimized control elements is then adapted to obtain
the new updated OOD model for the realization
model. This updated OOD model is converted into
new OOImpl models by using different object-
oriented specific platforms in order to completely
realize the AUV controller with compatible
microcontrollers. Based on this model, a planar
trajectory-tracking controller of a low-cost miniature
unmanned submarine was deployed and tested out
Arduino ATMEGA U2 and STM32-Cortex-M4
microcontrollers.

In the next time, we will investigate in strategy
by equipping depth control and navigation sensors
and using industrial microcontrollers in order to
completely make up controllers for balancing search
and target response in cooperative team of various
AUVs.

References

[1]. Alam K, Ray T, Anavatti S. A brief taxonomy of
autonomous underwater vehicle design literature.
Ocean Engineering, Elsevier, ISSN 0029-8018,.
2014;88:627-30.

[2]. Wynn R, Huvenne V, Bas T, Murton B, Connelly D,
Bett B, et al. Autonomous Underwater Vehicles
(AUVs): Their past, present and future contributions to
the advancement of marine geoscience. Marine
Geology - International Journal of Marine Geology,
Geochemistry and Geophysics, Elsevier, ISSN 0025-
3227,. 2014;352:451-68.

[3]. Fossen T. Handbook of Marine Craft Hydrodynamics
and Motion Control. United Kingdom: John Wiley &
Sons; 2011.

[4]. Carloni L, Passerone R, Pinto A, Sangiovanni V.
Languages and Tools for Hybrid Systems Design.
Boston: Now Publishers Inc; 2006.

[5]. OMG. Documents Associated With Unified Modeling
Language™ (UML® Version 2.5): OMG formal/15-
03-01. http://www.omg.org/spec/UML/2.5/: OMG;
2015.

[6]. OMG. SysML Specifications Version 1.4: OMG
formal/2015-06-03.
http://www.omg.org/spec/SysML/1.4/: OMG; 2015.

[7]. OMG. UML Profile for MARTE: Modeling and
Analysis of Real-Time Embedded Systems. OMG
Formal Version. http://www.omg.org/spec/MARTE/:
OMG; 2011.

[8]. Douglass B. Real-Time UML Workshop for
Embedded Systems. 2nd edtion. Oxford, UK: Elsevier;
2014.

[9]. Selic B, Gerard S. Modeling and Analysis of Real-
Time and Embedded Systems with UML and MARTE.
USA: Elsevier; 2014.

[10]. Arduino. Open-source electronics prototyping
platform for hardware and software. Arduino; 2016.

Journal of Science & Technology 122 (2017) 056-062

62

[11]. SNAME. Nomenclature for Treating the Motion of a
Submerged Body through a Fluid, Technical and
Research Bulletin No. 1-5. New York 18, N. Y., USA:
SNAME (the Society of Naval Architects and Marine
Engineers); 1950.

[12]. Lekkas A, Fossen T. Integral LOS Path Following for
Curved Paths Based on a Monotone Cubic Hermite
Spline Parametrization. IEEE Transactions on Control
Systems Technology, ISSN 1063-6536,. 2014;22:2287
- 301.

[13]. Soriano T, Hien N, Tuan K, Anh T. An object-unified
approach to develop controllers for autonomous
underwater vehicles. Mechatronics: The Science of
Intelligent Machines, Elsevier, ISSN 0957-4158,.
2016;35:54-70.

[14]. Li W, Wu W, Wang J, Wu M. A novel backtracking
navigation scheme for Autonomous Underwater

Vehicles. Measurement, Elsevier, ISSN 0263-2241,.
2014;47:496–504.

[15]. Allotta B, Caitib A, Costanzi R, Fanelli F, Fenucci D,
Meli E, et al. A new AUV navigation system
exploiting unscented Kalman filter. Ocean
Engineering, Elsevier, ISSN 0029-8018,.
2016;113:121–32.

[16]. IBM. IBM Rational Online Documentation and
Training Kit. IBM; 2016.

[17]. OpenModelica. OpenModelica. OpenModelica
software, version 1.11.0. OpenModelica; 2016.

[18]. InvenSense. Sensor System on Chip. 2014.

[19]. u-blox. Gobal leader in wireless communications and
positioning semiconductors and modules for the
industrial, automotive and consumer markets. u-blox;
2014.

	1. Introduction0F
	2. AUV dynamics and control structure

