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Abstract

Modern buildings are being designed with increasingly sophisticated energy management and control
systems that have the capabilities for monitoring and controlling the conditions in buildings. Reducing and
scheduling energy usage is the key for any home energy management system. To better match demand and
supply, many utilities offer residential demand response program to change the pattern of power
consumption of a residential customer by curtailing or shifting their energy use during the peak time period.
In the present study, real time optimal schedule controller for home energy management system is proposed
using a heuristic algorithm to manage the energy consumption. The proposed method gives optimal
schedule for home devices in order to limit the demand of total load and schedule the operation of home
appliances at specific times during the day. A set of the most common home appliances, namely, air
conditioner, water heater, refrigerator, and washing machine has been considered to be controlled.

Keywords: Energy Smart-Home, Residential demand response, Energy efficiency, Schedule controller.
Tém tat

Trong céc toa nha dan dung, tiéu thu ning liong ngay cang tdng cta céc thiét bi gia dung da tré thanh mot
van dé dang quan tdm. Do dé, viéc giam thiéu va Iap ké hoach st dung ndng lwong hiéu qua la chia khéa
cho bét ky hé théng quan ly nang lwong tai nha. Bé dap (mg viéc cung cép va tiéu thu néng luong tét hon,
nhiéu gidi phap da dwoc dwa ra nhdm thay déi théi quan tiéu thu dién ndng cta nguoi st dung trong céc toa
nha dan dung bang céch tiét kiém hodc cat gidm st dung ndng luong trong thoi gian cao diém. Trong
nghién ctru nay, phwong phép ti uu thoi gian thuce cho hé thdng quan ly ndng luong trong téa nha duoc dé
xuét str dung maot thuat toan suy nghiém dé quan ly tiéu thu nang lwong. Phuong phép dé xuét cho phép
diéu khién tdi wu cho céc thiét bj gia dinh nhdm han ché dinh phu tai va lap ké hoach hoat ddng cda thiét bj
gia dung tai nhitng thoi diém cu thé trong ngay. Céc thiét bj gia gia dung, cu thé la may diéu hoa khéng khi,
may nudéc néng, ti lanh va may giat da duoc mé hinh héa va tinh toan hoat déng téi wwu.

T khéa: Quan ly nang lwong trong tda nha, Hiéu qua st dung nang lwong, didu khién lich trinh.

energy consumption in the domestic sector by

n recent years, many decision-support tools and reducing the demand during peak periods [2]. Hybrid

optimization techniques have been applied to help
domestic customers in reducing the energy
consumption by creating an optimal home appliance
scheduling of energy usage based on different pricing
schemes and comfort settings. To achieve this goal,
there is need to implement smart control in the
domestic building. In [1], distributed control
algorithms have been applied to schedule home
appliances with Demand Response based on the
communication network architecture. The genetic
algorithm with artificial neural network (ANN) has
been applied to schedule home devices and optimize
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lightning search algorithm based ANN has been used
to predict schedule controller in a HEMS [3]. In [4],
autonomous demand-side management system based
on game theory approach has been developed to
optimize the appliances energy consumption and
manage residential loads that help homeowners to
select the priority of appliances considering either
electricity cost reduction or customer comfort. In [5],
electrical appliances have been scheduled to reduce
electricity cost based on dynamic pricing using robust
optimization and stochastic techniques. A real time
optimal schedule controller for home appliances is
proposed using a new binary backtracking search
algorithm in [6].
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A major issue that is faced in scheduling and
shifting user loads is the minimization of the
electricity consumption during peak hours without
affecting the comfort of occupants. However, most
previous researchers focused on reducing electricity
bills and saving energy without considering user
comfort. Thus, to schedule and control home
appliances there is need to take into account all
possible challenges, such as comfort level, demand
limit and tariff. This paper presents heuristic
algorithm based real time optimum schedule
controller for home energy management system to
achieve energy savings and limit the household peak
demand in the home on the basis of the scheduled
operation of several appliances according to a specific
time, resident comfort constraints.

2. Problem description

In this paper, energy is restricted to electricity
consumption and production. Each service is depicted
by an amount of consumed/produced electrical
power; it is supported by one or several appliances

(71.
2.1. The concept of service

Housing with appliances aims at providing
comfort to inhabitants thanks to services which can
be decomposed into three kinds: the end-user services
that produce directly comfort to inhabitants, the
intermediate services that manage energy storage and
the support services that produce electrical power to
intermediate and end-user services. Support services
deal with electric power supplying thanks to
conversion from a primary energy to electricity. Fuel
cells based generators, photovoltaic power suppliers,
grid power suppliers such as EVN.

Intermediate services are generally achieved by
electrochemical batteries. Among the end-user
services, well-known services such as clothe washing,
water heating, specific room heating, cooking in oven
and lighting can be found.

A service with index i is denoted SRV(i).
Appliances are just involved in services: they are not
central from an inhabitant point of view.
Consequently, they are not explicitly modelled.

2.2. Characterization of services

Let us assume a given time range for anticipating
the energy needs (typically 24 hours). A service is
qualified as permanent if its energetic consumption
/production/storage covers the whole time range of
energy assignment plan, otherwise, the service is
named temporary service. The following table gives
some examples of services according to this
classification.

The services can also be classified according to
the way their behavior can be modified. Whatever the
service is, an end-user, an intermediate or a support
service can be modifiable or not. A service is
qualified as modifiable by a home automation system
if the home automation system is capable to modify
its behavior (the starting time for example). There are
different ways of modifying services. Sometimes,
modifiable services can be considered as
continuously modifiable such as the temperature set
points in room heating services or the shift of a
washing. Some other services may be modified
discretely such as the interruption of a washing
service. The different ways of modifying services can
be combined: for instance, a washing service can be
considered both as interruptible and as continuously
shiftable. A service modeled as discretely modifiable
contains discrete decision variables in its model
whereas a continuously modifiable service contains
continuous decision variables. Of course, a service
may contain both discrete and continuous decision
variables.

In addition, all the unpredictable services can be
gathered into a global no-modifiable predictable
service. A service can be managed by a home
automation system if it is observable and modifiable.

2.3. Modeling services

Modeling services can be decomposed into two
aspects: the modeling of the behaviors, which
depends on the types of involved models, and the
modeling of the quality of the execution of services,
which depends on the types of service. Whatever the
type of model it is, it has to be defined all over a time
horizon KA for anticipative problem solving
composed of K sampling periods lasting A each.

a. Modeling behavior of services

In order to model the behavior of the different
kinds of services in housing, three different types of
models have been used: discrete events are modeled
by finite state machines, continuous behaviors are
modeled by differential equations and mixed discrete
and continuous evolutions are modeled by hybrid
models that combine the two previous ones.

Using finite state machines (FSM). A finite state
machine dedicated to a service SRV is composed of a
finite number of states {£ ;me{l,...M}} and a set

of transitions between those states
{7 . €{0,1};(p,g)eSC {1,...,M}*} . Each state L,

p.q
of a service SRV is linked to a phase characterized by
a maximal power production or consumption.

A transition triggers a state change. It is
described by a condition that has to be satisfied to be
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enabled. The condition can be a change of a state
variable measured by a sensor, a decision of the
anticipative mechanism or an elapsed time for phase
transition. If it exists a transition between the state
L, and L then 7, . =1, otherwise 7, ,. =0.An

m m,m'
action can be associated to each state: it may be a
modification of a set-point or an on/off switching. As
an example, let’s consider a washing service. The
service provided by a washing machine may be
modeled by a FSM with 4 states: the first state is the
stand-by state £ with a maximal power of P1=5W (it

is negative because it deals with consumed power).
The transition towards the next state is triggered by
the anticipative mechanism. The second state is the
water heating state L, with P>=2400W. The

transition to the next state is triggered after 7, time
units. The next state corresponds to the washing
characterized by P3=500W. And finally, after a given
duration 73 depending on the type of washing (i.e. the
type of requested service), the spin-drying state is
reached with P;=1000W. After a given duration 74,
the stand-by state is finally recovered. Considering
that the initial state is £, this behavior can be

formalized by:

(State = [’1) A (t = tsturt)
(state = L)N(tE =1, )
(state=L)N(t=t

start+7, +T; )

— state = L,
— state = L,
— state = L,

(state = LONE =1y ir irir,) — State =L
Using differential equations. In buildings, thermal
phenomena are continuous phenomena. In particular,
the thermal behavior of a HVAC system can be
modeled by state space models. The structure of the
model is obtained from space and time discretization
of a continuous model expressed in state-space form
[8]. The second order model based on an electric
analogy has been preferred for our control purpose
because it models the dynamic of indoor temperature.
For a room heating service SRV (i), it yields:

TGkt [T,k . TG0
\Te,w<i,k I \T( k>]+B‘ [Bo)+F, l 6., )
Vkefl,...,K}

This model allows a rather precise description of the
dynamic variations of indoor temperature with:

® T, Tow, Tew the indoor, outdoor and housing
envelope temperatures, respectively

e P the power consumed by the thermal generator.

e ¢, the energy flow generated by the solar radiance

|

discharging
dxft)

= puit]

Fig.1. Hybrid model of a battery

Using hybrid models. Some services cannot be
modeled by a finite state machine nor by differential
equations. Both approaches have to be combined: the
resulting model is then based on a finite state
machine where each state Lm actually becomes a set
of states which evolution is depicted by a differential
equation. An electric-chemical storage service
supported by a battery may be modeled by a hybrid
model (partially depicted in Fig.1). x(¢) stands for the
quantity of energy inside the battery and u(f) the
controlled electrical power exchanged with the grid
network.

Using static models. Power sources are usually
modelled by static constraints. Local intermittent
power resources, such as photovoltaic power system
or local electric windmill, and power suppliers are
considered here. Using weather forecasts, it is
possible to predict the power production w(i,k) during
each sampling period [kA;(k+1)A] of a support
service SRV(i). The available energy for each
sampling period k is then given by:

E(i, k) = w(i, A, Yk € {1,.., K}

According to the subscription between
inhabitants and a power supplier, the maximum
available power is given. It may depends on time. For
a service of power supply SRV(i), it can be modelled
by the following constraint :

EGi,k) < p,,. (i, K)A, Yk €(1,.... K}

where pua(ik) stands for the maximum available
power.

b. Modeling quality of the execution of services:

Depending on the type of service, the quality of
the service achievement may be assessed in different
ways. End-user services provide comfort to
inhabitants, intermediate services provide autonomy
and support services provide power that can be
assessed by its cost and its impact on the
environment. In order to evaluate these qualities
different types of criteria have been introduced.

According to the comfort standard 7730 [9],
three qualitative categories of thermal comfort can be
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distinguished: A, B and C. In each category, [9]
proposes typical value ranges for temperature, air
speed and humidity of a thermal zone that depends on
the type of environment: office, room,. .These
categories are based on an aggregated criterion named
Predictive Mean Vote (PMV) modelling the deviation
from a neutral ambience. The absolute value of this
PMYV is an interesting index to evaluate the quality of
a HVAC service. In order to simplify the evaluation
of the PMV, typical values for humidity and air speed
are used. Therefore, only the ambient temperature
corresponding to the neutral value of PMV (PMV=0)
is dynamically concerned. Under this assumption, an
ideal temperature T, is obtained. Depending on the
environment, an acceptable temperature range
coming from the standard leads to an interval
[Tin, Tinax]. For instance, in an individual office in
category A, with typical air speed and humidity
conditions, the neutral temperature is 7,,=22°C and
the acceptable range is [21°C, 23°C]. Therefore,
considering the HVAC service SRV(i), the discomfort
criterion D(i,k), which is more usable than comfort
criterion here, is modelled by the following:

T —T (i,k
U “ 0GB 5 7 iy <1,
D —|
’ (Tz"n(l.?k)_n ’) 1 1
_m 7 o7 lf T;’n (l’k) > 7:’1”
TMlL\' - 7;’Pt

The global comfort criterion is defined as following:
K
D(i)="  D(i.k)
k=1

Generally speaking, modifiable temporary end-
user services do not aim at controlling a physical
variable. Temporary services such as washing are
expected by inhabitants to finish at a given time.
Therefore, the quality of achievement of a temporary
service depends on the amount of time it is shifted.
Therefore, in the same way as for permanent services,
a user dissatisfaction criterion for a service SRV(i) is
defined by:

SO = [ (D
N PN O PO
D(i) = . :
Jop D)= [ (D)
Jopt D = frui (D)

it fG)> £, ()

it fD< )

where fop stands for the requested end time and fiin
and fuae stand respectively for the minimum and
maximum acceptable end time.

3. Real-time dynamic optimization based heuristic
algorithm
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Fig. 2. Calculation of the capacity for a zone heating
service

At each time period, the heuristic algorithm
adapts the set-points values given by the schedule
plan to the current context and re-initiates a forward
calculation if the current context is too far from the
predicted context. With this approach, the heuristic
algorithm reacts in alert mode when the assessed
levels of users’ dissatisfaction are lower than the
levels predicted by the scheduling plan. It is based on
a list algorithm which relies on the concept of
capacity defined as the capacity of a service to tend
towards its operating set-points without consuming
energy.

Let us take the example of a permanent service
of heating type of an area represented by Fig. 2. If the
current temperature is equal to temperature 1, it is
useless to reserve energy for the heating service
because the current temperature will tend towards the
temperature  set-points  because the outside

temperature is lower than the current temperature.
Conversely, if the current temperature is equal to
temperature 2, it is necessary to examine the
possibility of an allocation of energy to the heating
service so that the current temperature can reach the
temperature set-points.
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Fig. 3. Calculation of capacity for temporary service

Let us now take the example of a temporary
service of washing service. Fig.3 shows how the
capacity of a temporary service is calculated.
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Satisfaction depends on the current time and on the
end date chosen as the set-points (in the scheduling
plan). In this example, interrupting the washing
service for an period of time makes it possible to get
closer to the ending time set-points. This service
therefore has the capacity to tend towards its set-
points without consuming energy. If the service had
shifted behind the set-points, the capacity would have
been zero.

Knowing that a service which is modifiable by
the reactive mechanism is qualified as preemptive,
the main procedure of the heuristic algorithm can
then be described. It is triggered at each period A,:

e for each service, the current state is evaluated
using the available measurements

e taking into account the state of the services, the
need of electrical energy for the next period is
evaluated and compared with the production capacity
of the energy supplier services

o if there is enough power for all services, energy is
allocated to each service and the procedure stops
there.

e for each service, the satisfaction of the inhabitants
is evaluated from the current state

e for each service, the capacity to reach its
operating set-points without consuming energy is
evaluated starting from the current state

e the preemptive services that are candidates for an
interruption are selected: only the services that
current satisfaction is lower than the level determined
by the anticipative mechanism are selected

e the maximum energy resource available for the
next period is evaluated by taking into account the
consumption of non-modifiable user services.

e pre-emptive services are classified in a list:

- services with the capacity to tend towards their
operating instructions without using energy are
ranked first

- services that do not have the capacity to tend
towards their operating instructions  without
consuming energy are then ranked in the list in
decreasing order of level of users’ dissatisfaction

e by following this list, the energy resource is
allocated to non-preemptive services and then to pre-
emptive services in the order list until there is no
longer an available energy resource.

e Activation and deactivation orders are then sent to
the modifiable services for the next period.

4. Case study
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Fig. 4. Electric panel of platform

Fig. 4 shows the electric panel of the platform
study. The equipment consists of a standard electrical
housing panel, sensors for measurements, actuators
and electronic boards for shaping measures. Fig.5
shows the prototype connected to its electro technical
and software environment. On the one hand, it is
connected to the monitoring software which is
embedded on one PC and on the other hand it is
connected to the sources and loads. This prototype
allows control of the flow of power by the supervisor.
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Fig. 5. Integration of G-HomeTech to the platform
4.1 Testbed

An energy smart home system (see Fig.6),
namely G-HomeTech, has been developed based on
the optimization process presented in this paper. It is
composed of a supervisor which centralizes the
characteristics of the house: the available appliances,
the services required by the user, the weather
forecasts, and the energetic constraints such as the
subscription and the local production if it exists. The
energy management problem to solve is generated
dynamically because each living place is unique and
evolving.
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Fig. 6. Principle of the G-HomeTech testbed
4.2 Principle of testing

The tests are based on scenarios of one day of
24 hours. It is necessary to ensure that the different
variants are comparable: constant energy balance,
identical service rendered... The analysis parameters
depend on the scenarios and are defined pour each
scenario. In this test, the objective is to satisfy the
maximum power constraints of a network
subscription. The analysis parameter is the peak
power of the subscription while the scenario
evaluation criterion is the comfort cost for not having
a disjunction. Fig.7 shows the daily operating
schedule of these appliances (in orange the operating
time range)

Table 1. Load descriptions and power ratings
characteristics

Appliance Power Required Allowable

PP rating (W) Usage Frequency margin
Refrigerator 100 all day (2;4)°C
Freezer 100 all day (-20;-15)°C
Dishwasher 2000 once a day at 8h for | shiftable

1,5 hours
Heating and 2000 all day interruptible
hot water 1 showers at 7am and
2 showers at 7pm
Oven 2000 once a day between no
(7pm; 7:30pm)

Unsupervised | 500-2000 no
appliances

it | —— 1

i

HEs
i

Fig. 7. Daily operating schedule of appliances

5. Experimental results

5.1 Reference scenario
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Fig. 8. Power consumption (W) on one day without
G-HomeTech

The reference scenario corresponds to the
operation of the equipment without G-HomeTech.
Fig.8 shows the energy consumption throughout the
day. Two peaks of consumption appeared between
10am and 1lam and the evening between 8pm and
10pm which reaches 5.7kW. Fig.9 shows the power
histogram during this scenario. The bar in red
corresponds to the average power. One can note the
simultaneous operation of the washing machine, the
oven and the heater during peak consumption of noon
and evening.

Fig. 9. Histogram of power consumption scenario
without load shedding

5.2 Power limitation to 5 kW
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Turning-off of heating

Fig. 10. Operation of the equipment in the scenario of
5kW load-shedding

As expected, the power demanded beyond S5kW
has been greatly reduced 0.1 kWh in this scenario
against 5.7 kWh in the reference scenario (illustrated
in Table 2). Fig.10 shows the temporal operation of
the equipment and the action of G-HomeTech. It
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relieved the heater during the high power demand
phases to keep the oven, washing and unsupervised
loads running simultaneously. The comfort of the
user has been slightly decreased by reducing a little
the quantity of heating energy.

5.3 Power limitation to 3 kW

lllIII1
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turning-off of the heating and shifting of washing machine
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Fig. 11. Time graph of power consumption during the
scenario of 3kW load shedding scenario

This limitation of power is much more severe
than in the previous test. Fig. 11 shows the power
consumed throughout the day. The morning and
evening power peaks are greatly reduced. In order to
respect the constraint, G-HomeTech has reduced the
consumption of the heater and shifted the operation of
the washing machine. The comfort of the user has
thus been further reduced by a further reduction of
the inside temperature and by a delay in the washing
of the dishes. It should be noted that the dishwasher's
shifting could have fallen to a period of high
consumption in which case it would have been shifted
again. The characteristics of obtained solution are
given in the Table 2.

5.4 Power limitation to 1 kW:

extreme load-shedding, delestable services are no longer insured

0
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Fig. 12. Operation of the equipment in the scenario of
1kW load shedding

This test is extreme and serves to show the
limits of power constraint. The power limitation of
1kW have been parameterized much lower than the
average power of 2.2 kW. This power limitation
should severely degrade the service. As expected, the
load shedding is extreme with a very large drop in the
overall energy consumed and the average power
demanded. Fig.12 confirms that only the
unsupervised charges, non-shiftable services (oven)
and low power consumption services (refrigerator,
and freezer) have been retained.

Table 2. The characteristics of obtained solutions

Reference Power limitation
scenario | S5kW | 3kW | 1kW
Average power [W] 2360| 2313 2172 1216
Total energy consumption
[KkWh] 56,6 55,5 52,1 29,2
S 1KW proportion [%] 97 96,6 95 67
energy [kW] 56,5 554| 519] 257
S3W proportion [ %] 12,7 13,5 3,9 "
energy [kW] 13,4] 13,6 2.9
SSKW proportion [%] 1,4 0,1 0 0
energy [kW] 5,7 0,1

6. Conclusions

A real time optimal schedule controller for
home energy management system has been proposed
using a heuristic algorithm to minimize the electricity
consumption during peak hours taking into account
the comfort of occupants. These various tests show
the capabilities and limitations of the approach:

* Respecting of limited power constraints without
limited degradation the users’ comfort: the limitation
power of SkW for a peak power of 5.7 kW (i.e. a
reduction of 15%). In this case, it may be sufficient to
reduce the consumption of heaters.

¢ On the other hand, for a more severe constraint:
power limitation of 3kW for a peak power of 5.7kW
(i.e. a reduction of approximately 50%), it must delay
more  sensitive  services:  washing  machine,
dishwasher. It is then necessary that the cycle of
operation can be carried out completely without any
further interruption, otherwise the consumed energy
will increase greatly.

* It is necessary to compare these maximum powers
constraints with the average consumption of the
appliances in each the scenario. A limit of SkW for an
average power of 2.2 kW is not difficult. Otherwise, a
limit of 3 kW for an average power of 2.2 kW is very
severe.
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