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Abstract
Climate change exacerbates the frequency and intensity of flood events, presenting substantial threats to human lives and
infrastructure. Consequently, accurate and timely water level forecasting systems are critical for effective early warning
dissemination and rapid disaster response. While numerous studies in Vietnam have focused on river water level prediction,
a notable gap exists in the specific area of continuous, multi-hour time series forecasting. The study addresses this gap by
proposing a novel modeling approach for forecasting future water levels at the Le Thuy station on the Kien Giang river
in Quang Tri province. The proposed models leverage historical hydrological observations from multiple upstream stations
to predict water level sequences at the Le Thuy station over continuous horizons of 6, 12, and 24 hours. The methodology
employs advanced deep learning techniques, specifically Autoencoder, Long Short-Term Memory (LSTM) networks, and
Attention mechanism, with each forecast horizon being modeled independently. Experimental results demonstrate the models’
robust capability to accurately capture both rising and falling water level trends. The forecasted sequences exhibit strong
alignment with observed values, even during periods of rapid fluctuation. Point-wise prediction errors are consistently
low, indicating high forecasting precision. Crucially, the models maintain their effectiveness during extreme flood events,
successfully predicting both the magnitude and timing of flood peaks.

Keywords: Attention, LSTM Autoencoder, time series, water level sequence forecasting.

1. Introduction

Due to climate change, floods are becoming more
frequent and more dangerous, posing a serious threat
to human life and property. Recent studies in Vietnam
have shown that both the intensity and frequency of
typhoon-induced rainfall have significantly increased
in the Central Coastal Region, with average increases
of about 27 %, and the probability of daily rainfall
exceeding 100 mm/day projected to rise by up to 20%
under the RCP8.5 scenario [1]. Developing an accurate
water level forecasting system is essential for providing
early flood warnings. It helps people respond to floods
quickly and effectively. Forecasting water levels is
crucial during rainy and flood days when water levels
are high.

Numerous studies have demonstrated the
effectiveness of machine learning methods in
hydrological forecasting. For example, Shamseldin [2]
employed Artificial Neural Networks (ANN) to forecast
flows of the Blue Nile River in Sudan. Chen et al. utilized
the Cuckoo Search algorithm to optimize a Feedforward
Neural Network for predicting the 10-day total inflows
of the Hoa Binh Reservoir in Vietnam [3]. In 2017,
Sung et al. developed ANN models to forecast hourly
water levels in the Anyangcheon Stream, a tributary of

the Han River in South Korea [4]. Futhermore, Guo
et al. compared the performance of several machine
learning algorithms - Support Vector Regression,
Random Forest Regression, Multi-Layer Perceptron
Regression, and Light Gradient Boosting Machine
Regression (LGBMR) - for forecasting the 1–6-hour
river stages in the tidal section of the Lan-Yang River
in Taiwan [5]. Nevo et al. integrated Long Short-Term
Memory (LSTM) networks and linear models to develop
a real-time operational flood forecasting system for
river systems in India and Bangladesh [6]. Vizi et al.
employed LSTM models to forecast water levels in
the Tisza River in Central Europe, with lead times
of up to 7 days [7]. Their results demonstrated that
LSTM models provided the best results in all time
horizons and gave more precise predictions than the
Discrete Linear Cascade Model and baseline models
(Linear, Multilayer Perceptron Model). Kao et al. [8]
proposed SAE-RNN (Stacked AutoEncoder - Recurrent
Neural Network) model which uses SAE to compress
(encode) the high-dimensional flood inundation depths
over a wide region into a low-dimensional latent space
representation (flood features), uses RNN to forecast
multistep-ahead flood features based on regional rainfall
patterns, and finally uses SAE to reconstruct (decode)
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the multistep-ahead forecasts of flood features into
regional flood inundation depths. More recently, the
study of Azad et al. [9] provided a comprehensive
overview of advancements and challenges in water level
forecasting and prediction from 2011 to 2024, based
on approximately 200 published studies. According to
this study, machine learning methods applied to water
level prediction include: Artificial Neural Networks,
Support Vector Machine (SVM), Adaptive Neuro-Fuzzy
Inference System, AutoRegressive Integrated Moving
Average (ARIMA), Seasonal ARIMA (SARIMA),
Support Vector Regression, deep learning (RNN,
LSTM), hybrid models and advanced deep learning
techniques.

In Vietnam, the application of machine learning
models in hydrological forecasting has also gained
momentum. Do et al. [10] applied a hybrid approach
combining Singular Value Decomposition with Support
Vector Machines to estimate daily maximum and
minimum water levels. Dinh et al. [11] compared
the performance of Linear Regression, Random Forest
Regression, and LGBMR models for daily water level
prediction in the Kien Giang river using historical
data from 1977 to 2020. The results confirmed the
effectiveness of data-driven regression techniques in
capturing flood-related dynamics. In 2024, Ta et
al. [12] investigated and assessed the performance of
several machine learning methods, including Linear
Regression, Support Vector Regression, Random Forest
Regression, Multi-Layer Perceptron Regression and
Gradient-Enhanced Machine Learning Regression, for
water level forecasting on the Kien Giang river. Luong et
al. [13] applied advanced machine learning techniques,
specifically the XGBoost algorithm, to identify large
floods in the Da River Basin, demonstrating the potential
of artificial intelligence for improving flood prediction
and disaster management in Vietnam. Furthermore, Ngo
et al. [14] developed a deep learning model based on a
Multilayer Perceptron (MLP) neural network to forecast
flood characteristics at the Yen Bai hydrological station
on the Thao River, using flood recession flow data and
5-day accumulated rainfall from the Sa Pa, Van Chan,
and Yen Bai stations. In these studies, models have
shown considerable success in short-term forecasting,
typically focusing on one-step-ahead predictions.

Although numerous studies have investigated water
level forecasting for rivers in Vietnam, to the best of
our knowledge, there has been no research focusing
on the prediction of continuous water level time series
over several consecutive future hours. Therefore, in this
paper, we propose a modeling approach to forecast water
level time series over multiple consecutive future hours
at the Le Thuy station on the Kien Giang river in Quang
Tri province, Vietnam.

The remainder of the paper is organized as follows.
Section 2 presents the dataset. Section 3 outlines the
problem under study. Section 4 details the development
of the water level forecasting model. Section 5 discusses
the experimental results. Section 6 concludes the paper.

2. Dataset Description

The Kien Giang river, approximately 58 km in
length, is one of the two main tributaries of the Nhat Le
river system. It flows through Le Thuy district in Quang
Tri province. This basin is recognized as one of the most
flood-prone regions in Vietnam.

We use native hourly observations from
September–December of 2015–2024 at Kien Giang,
Le Thuy, and Dong Hoi stations, and hourly tidal level
at the Nhat Le estuary (all timestamps in UTC+7).
Prior to windowing, we applied a uniform QC pipeline:
duplicate timestamps were removed; implausible values
(e.g., negative rainfall) were flagged. Short gaps (≤ 2
consecutive hours) in water level and tide series were
linearly interpolated in time; gaps in rainfall were
not imputed and any sample window intersecting a
rainfall gap was discarded. Longer gaps (> 2 hours)
led to exclusion of the affected windows. All variables
were then aligned on a common hourly index: rainfall
represents the accumulated total over the previous hour,
while water level and tide are instantaneous hourly
readings.

The dataset used in this study includes hourly rainfall
and water level data during the rainy season (from
September to December) from 2015 to 2024 at the
Kien Giang, Le Thuy, Dong Hoi meteorological and
hydrological stations and the tidal water level at the
Nhat Le estuary in Dong Hoi city. Table. 1 displays
a detailed description of the features of the dataset.
Table. 2 provides a subset of the collected dataset.

Table 1. Features of the dataset.

Feature Description Note
WL LeThuy (m) Water level at the Le Thuy station Target
WL KienGiang (m) Water level at the Kien Giang station
WL DongHoi (m) Water level at the Dong Hoi station
RF LeThuy (mm) Rainfall at the Le Thuy station
RF KienGiang (mm) Rainfall at the Kien Giang station
RF DongHoi (mm) Rainfall at the Dong Hoi station
Tide NhatLe (m) Tidal water level at the Nhat Le estuary

The water level of rivers is a critical parameter in
flood monitoring and is directly associated with official
flood warning levels. These warning levels consist of
three ascending stages. Specifically, flood alert level 1
indicates a potential flood risk, while flood alert level 3
denotes a highly dangerous flood situation. Each alert
level corresponds to specific threshold values of water
levels, which are measured at designated hydrological
stations along rivers and streams. Therefore, accurate
and timely forecasting of river water levels plays an
essential role in predicting flood alert stages, enabling
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Table 2. Subset of the collected dataset

Time WL KienGiang (m) RF KienGiang (mm) WL LeThuy (m) RF LeThuy (mm) WL DongHoi (m) RF DongHoi (mm) Tide NhatLe (m)
2020-10-15 06:00 7.01 1.00 1.81 1.20 0.29 0.00 -0.45
2020-10-15 07:00 7.00 0.40 1.79 1.20 0.37 0.20 -0.29
2020-10-15 08:00 6.99 0.20 1.77 0.20 0.56 2.40 -0.10
2020-10-15 09:00 6.98 0.00 1.76 0.00 0.66 0.40 0,09
2020-10-15 10:00 6.96 0.00 1.74 0.00 0.84 0.00 0.25

Table 3. Flood warning levels at the Le Thuy station and
corresponding sample distribution in the training dataset.

Flood Warning Level Water Level Threshold Training Samples
0 < 1.2m 6,907
1 ≥ 1.2m and < 2.2m 4,297
2 ≥ 2.2m and < 2.7m 746
3 ≥ 2.7m 557

communities to implement preventive measures and
mitigate potential damage. The flood warning levels of
the Le Thuy station, their corresponding water level
thresholds, and the distribution of training samples
across these levels, are summarized in Table. 3.

This study focuses on developing models of
forecasting water level prediction at the Le Thuy station,
with the water level at this station designated as the
prediction target. To train and evaluate models, the
dataset is divided into two subsets:

• Training set: data collected from 2015 to 2021.

• Test set: data collected from 2022 to 2024.

3. Problem Statement

This study develops water level forecasting models
that utilize a continuous sequence of observations over
the past t hours, including water level and rainfall data
from the hydrological and meteorological stations at
Kien Giang, Le Thuy, Dong Hoi, and the tidal water level
at the Nhat Le estuary, to forecast a continuous sequence
of water levels over the next k hours at the Le Thuy
station. Specifically, the project builds and evaluates
forecasting models with forecast horizons of 6, 12, and
24 consecutive hours. Each forecast horizon corresponds
to a separate forecasting model.

The water level forecasting models are trained on
the training set, which consists of data collected from
2015 to 2021. The test set, which includes data collected
from 2022 to 2024, is used to evaluate the forecasting
performance of the models.

4. Development of the Water Level Forecasting
Model

4.1. Overview of the Model Development Process

Essentially, this is a time series problem
characterized by temporal dependencies, where the
water level at a given time is directly influenced by
the water levels at previous time steps. Therefore,
forecasting methods must be capable of capturing
and utilizing long-term dependencies within the data.
Among deep learning models, the LSTM recurrent

neural network [15] is chosen for its effectiveness
in handling time-dependent sequences, as well as its
ability to overcome the vanishing and exploding gradient
problems commonly encountered in traditional neural
networks.

In addition, we apply an Autoencoder
architecture [16] combined with LSTM for the
sequence-to-sequence forecasting task. This approach
allows the model to encode the entire historical water
level sequence and decode it to predict the future water
level sequence. It is a suitable method for forecasting
water levels over multiple consecutive hours.

Moreover, the movement of water in the river basin
is also influenced by topography, secondary flows, and
tidal fluctuations, which cause the impact of input factors
to vary over time. To enable the model to automatically
identify and adjust its focus on the most relevant
factors at each time step, an Attention mechanism [17]
is integrated into the Autoencoder architecture. The
incorporation of Attention enhances the model’s ability
to learn complex relationships between influencing
factors and water level changes, thereby improving
forecasting accuracy, especially over long prediction
horizons and during periods of hydrological anomalies.

The model development forecasting water levels at
Le Thuy station consists of three steps (Fig. 1):

Fig. 1. Workflow for developing a water level forecasting
model

• Step 1. Data Preprocessing

Transform the data from the original file into a set of
samples and corresponding labels based on t (the past
time window) and k (the future forecasting horizon).

• Step 2. Designing and Training the Model

– Define the Autoencoder architecture (including
LSTM, Attention, and fully connected layers)
and set training parameters.

– Train the model (optimize the model’s weight
parameters).

• Step 3. Model Evaluation
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Use the model developed in Step 2 to forecast the
targets in the test set. The predicted targets are
compared with the actual ones using evaluation
metrics commonly employed in time-series
forecasting tasks. Among them, Nash–Sutcliffe
Efficiency (NSE) evaluates the predictive skill of
the model compared to the mean of the observed
data, Coefficient of Determination (R2) measures
how well the predicted values fit the observed
data, Mean Absolute Error (MAE) quantifies the
average magnitude of the errors between predicted
and observed values (without considering their
direction), Root Mean Square Error (RMSE)
measures the square root of the average squared
differences between predicted and observed values,
and Dynamic Time Warping (DTW) assesses the
temporal similarity between two time series by
measuring the minimal distance required to align
them. High NSE and R2 values (close to 1), along
with low MAE, RMSE and DTW values, indicate
that the predicted targets closely match the actual
ones, which means that the model achieves good
forecasting performance.

4.2. Detailed Steps for Model Development

4.2.1. Data preprocessing

The data file is segmented into samples and
corresponding targets. Each sample is a time series
consisting of data form the stations over t consecutive
hours, and its target is a time series of water levels at the
Le Thuy station over the next k hours. A simulation of
the data preprocessing step is illustrated in Fig. 2

Fig. 2. A simulation of the data preprocessing

4.2.2. Designing and training the model

The model is built upon an Autoencoder architecture,
incorporating LSTM and Attention mechanisms to
enhance its ability to capture long-term dependencies
and relationships between time steps in a time series.
Specifically, a Multi-Head Attention layer is inserted
between the Encoder and Decoder. This mechanism
allows the model to attend to information from
different representation subspaces at multiple positions
simultaneously, enabling it to learn diverse temporal
dependencies and interaction patterns from hidden states
of the encoder. As a result, the model can better capture
complex relationships in the input sample and improve
the accuracy of future predictions.

Within the decoder block, a self-attention mechanism
is also employed to model the dependencies among
previously generated outputs. By enabling each

decoding step to attend to all prior outputs, the model is
able to leverage contextual information throughout the
output sequence. This enhances its ability to generate
accurate forecasts, particularly in the case of long and
complex time series.

The model is trained using the Mean Squared
Error (MSE) loss function and the Adam optimizer.
Additionally, the Early Stopping technique is applied
during training to prevent overfitting, ensuring model
stability and generalization capability.

The model design and training parameters as shown
in Fig. 3 and Table. 4.

Fig. 3. Architecture of the water level forecasting model

Table 4. Detailed configuration of the water level
forecasting model

Encoder
LSTM (352, activation = tanh, return sequence =Flase, return state=True)
RepeatVector()
MultiHeadAttention (num heads = 4, key dim = 32)
Add()
LayerNormalization()
Decoder
LSTM (352, return sequence = True, activation = tanh)
Attention(use scale=True)
Add()
LayerNormalization()
TimeDistributed(Dense(1))
Parameters
Batch size = 32
Loss = MSE
Optimizer = Adam
Epochs = 50
Earlystopping = 15

4.2.3. Model evaluation

The models are evaluated using five metrics in time
series regression tasks, including R2, NSE, RMSE, MAE
and DTW. Table 5 summarizes the evaluation results of
the models across different forecasting time horizons.

According to the Hydrometeorological Forecasting
Center, the allowable forecast error thresholds at Le
Thuy station are 0.14 m for 6-hour forecasts, 0.18 m
for 12-hour forecasts, and 0.22 m for 24-hour forecasts.
The experimental results show that all models perform
well, with R2 and NSE values above 0.9, and average
errors lower than the allowed thresholds. The R2

and NSE values indicate that the LSTM Autoencoder
model integrated with Attention achieves higher and
more stable forecasting performance compared to the
standard LSTM Autoencoder, especially as the forecast
horizon increases. Furthermore, the models achieved
NSE values above 0.9, indicating that the predicted
water level series almost perfectly match the observed
data and that the models effectively captures both
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Table 5. Performance evaluation of the models.

Forecasting time Model NSE R2 MAE
(m)

RMSE
(m)

DTW
(m)

6 hours LSTM Autoencoder 0.982 0.982 0.032 0.084 0.179
LSTM Autoencoder + Attention 0.986 0.986 0.027 0.073 0.149

12 hours LSTM Autoencoder 0.961 0.956 0.061 0.131 0.655
LSTM Autoencoder + Attention 0.970 0.970 0.041 0.108 0.431

24 hours LSTM Autoencoder 0.910 0.908 0.091 0.188 1.982
LSTM Autoencoder + Attention 0.929 0.928 0.075 0.166 1.567

the amplitude and temporal variations of hydrological
responses. Additionally, DTW values, ranging from
0.149 to 1.567 demonstrate only a very small temporal
misalignment between the predicted and observed
hydrographs, confirming that the models successfully
reproduces the timing and shape of flood peaks.

Specifically, for the 6-hour forecast horizon, the
model with Attention achieves R2 = 0.986 and
NSE = 0.986, outperforming the version without
Attention. In addition, the error metrics (MAE, RMSE
and DTW) are all lower (MAE decreased from 0.032 m
to 0.027 m; RMSE from 0.084 m to 0.073 m; and
DTW from 0.1787 m to 0.1491 m), indicating that the
Attention-enhanced model provides forecasts that better
align with actual water level time series.

At the 12-hour forecast horizon, the Attention-
integrated model continues to hold an advantage, with
higher R2 and NSE values, and improved MAE, RMSE,
and DTW metrics. This demonstrates the effectiveness
of the Attention mechanism in extracting relevant
information from long input sequences.

Notably, for the extended 24-hour forecast horizon,
the Attention-integrated model shows a clear advantage:
the goodness-of-fit metrics (NSE and R2) increased
by approximately 0.2, while the forecast error metrics
(RMSE and MAE) decreased by about 0.02m. This
confirms the Attention mechanism’s ability to maintain
high forecasting accuracy even over long prediction
intervals.

The paired t-tests ware conducted to statistically
evaluate whether the improvements achieved by
the Attention mechanism are significant rather than
coincidental. The results show that the p-values are
extremely small (p = 4.750 × 10−163 for the 6-hour
forecast horizon, p = 3.526 × 10−1437 for the 12-hour
forecast horizon, and p = 8.11×10−1105 for the 24-hour
forecast horizon), indicating that the improvements
brought by the Attention mechanism are statistically
significant.

Overall, the analysis results demonstrate that the
LSTM Autoencoder combined with Attention is both
feasible and effective for multi-step water level
forecasting tasks.

5. Empirical Evaluation

5.1. Experimental Analysis on the Test Set

This section analyzes the forecasting results of the
models corresponding to forecast horizons of 6, 12,
and 24 consecutive hours. In the following figures, the
black line represents the actual observed water level at
the Le Thuy station, the blue line shows the forecast
generated by the LSTM AutoEncoder model, and the
red line depicts the forecast produced by the LSTM
AutoEncoder model with an Attention mechanism. The
red and blue lines are plotted only within the forecast
horizon, while the black line spans both the historical
period and the forecast horizon. This visualization
allows readers to observe how past water level variations
influence the forecasted values. The orange, red, and
purple dashed lines correspond to the flood warning
levels 1, 2, and 3, respectively, at the Le Thuy station.

For each forecast horizon, three representative
plots were generated to compare the forecasted water
level series with the actual observations at different
forecasting time points (Fig. 4, Fig. 5, Fig. 6). These
visual comparisons show that the LSTM AutoEncoder
model with Attention produces predictions that align
more closely with the actual observations compared to
the LSTM AutoEncoder model. The forecast results
generated by the Attention-based models exhibit the
following characteristics:

• The forecasted sequences closely resemble the
actual ones in terms of shape, accurately capturing
the upward and downward trends of water level
fluctuations.

• The point-wise errors between predicted and
observed values are generally small, indicating high
forecasting precision across most time steps.

• The predicted and observed water levels reach the
thresholds of warning levels 1 and 2 at nearly
the same time. However, for warning level 3, the
predicted series tends to reach the threshold slightly
later than the actual observations.

• For the 6-hour and 12-hour forecast horizons, the
predicted and actual water levels consistently fall
within the same flood warning levels at each forecast
time point (Fig. 4, Fig. 5). However, under the
24-hour forecast horizon, the predicted and observed
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Fig. 4. Comparison between forecasted and observed
water levels with a 6-hour forecast horizon.

water level series may reach the thresholds for flood
warning levels 2 and 3 at different times (Fig. 6).
These results indicate that the forecasts at the 6-hour
and 12-hour horizons are more accurate compared to
those at the 24-hour horizon.

• The model shows consistent performance across
different time points and forecast horizons,
suggesting its stability and reliability for short-
to medium-term water level forecasting tasks.

The analysis results not only provide further
evidence of Attention’s effectiveness in reducing
cumulative errors and enhancing model accuracy and
stability but also demonstrate the model’s practical
applicability in real-time water level warning systems,
where forecast charts can be directly used to monitor
water level dynamics and detect threshold exceedances.

Fig. 5. Comparison between forecasted and observed
water levels with a 12-hour forecast horizon.

5.2. Experimental Analysis of the Extreme Flood Event
in 2024

According to hydrological monitoring data, the most
significant flood peak in 2024 in Quang Tri province
occurred in October. The flood crest exceeded flood
warning level 3 by approximately 1.60 meters and
was 1.29 meters higher than the historical flood record
set in 1979. This event is considered the most severe
flood since the catastrophic flood of 2020. During
this event, the peak water level at the Le Thuy
hydrological station reached 4.16 meters at 00:00 on
October 29, 2024. Due to its exceptional magnitude,
this flood serves as a critical test case for evaluating the
performance of hydrological forecasting models under
extreme conditions.

From the comparison between forecasted and
observed values in Fig. 7, several key observations can
be drawn as follows:
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Fig. 6. Comparison between forecasted and observed
water levels with a 24-hour forecast horizon.

• The LSTM Autoencoder model enhanced with
an Attention mechanism demonstrated superior
forecasting performance compared to the baseline
LSTM Autoencoder model. Notably, the prediction
error at the flood peak was approximately 0.2 meters,
remaining well below the allowable error threshold
of 0.4 meters, thereby confirming the model’s high
precision during critical stages.

• Even in the context of an extreme flood event,
characterized by water levels rarely observed
in historical records, the LSTM Autoencoder
models with Attention showed strong generalization
capability. With 6-hour and 12-hour forecast
horizons, the models ware able to accurately
reproduce the dynamic changes in water levels,
including the timing and magnitude of the peak. The

Fig. 7. Comparison of forecasted and observed water
levels during the extreme flood event at Le Thuy Station
in 2024.

24-hour forecast horizon model exhibits minor phase
shifts at the beginning or end of stages corresponding
to warning levels 2 and 3.

• While all models yielded relatively low forecasting
errors of an extreme flood event, the results suggest
that in scenarios involving rapid and large-scale
water level fluctuations, it is advisable to adopt
forecasting models with short forecast horizons (6
hours, 12 hours) to ensure more timely and accurate
flood warnings.

From the experimental results discussed above,
several conclusions can be summarized as follow:

• The LSTM Autoencoder models enhanced with an
Attention mechanism have demonstrated strong
suitability for forecasting future water level
sequences based on past observed data.
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• Despite achieving low overall prediction errors, the
24-hour forecast horizon model exhibits minor phase
shifts when forecasting water levels associated with
warning level 3.

• In the context of extreme flood events, the use
of shorter forecast horizons (6-hour or 12-hour) is
recommended, as these configurations offer higher
predictive accuracy and more effectively capture the
dynamic fluctuations in water levels under rapidly
changing conditions.

6. Conclusions

In this study, we developed and presented a novel
methodology for forecasting water levels at the Le Thuy
hydrological station, situated on the Kien Giang river
in Quang Tri province. The models leverage historical
time series data from multiple hydrological stations
to accurately predict water level sequences at the Le
Thuy station over continuous horizons. Our model
design incorporates advanced deep learning techniques,
specifically Autoencoder, Long Short-Term Memory
networks, and the Attention mechanism. Experimental
validation across three distinct forecast horizons (6, 12,
and 24 hours) consistently demonstrated the models’
capacity to generate high-quality predictions. Notably,
the integration of the Attention mechanism significantly
enhanced forecasting performance, enabling the models
to more precisely align with observed water levels,
even during highly dynamic periods such as extreme
flood events. These robust models empower hydrologists
with the capability to anticipate water level fluctuations
several hours in advance, thereby facilitating more
timely and effective flood response planning and
mitigation strategies.

Although the models generally produced forecasts
that closely aligned with observed measurements, the
24-hour forecast horizon exhibited minor phase shifts
when forecasting water levels associated with warning
level 3. A promising direction for future research is
to explore alternative machine learning approaches to
further improve the performance of flood forecasting
models.
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