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Abstract

The State of Charge (SOC) of the lithium-ion battery plays a vital role in monitoring and optimizing the
performance of the battery management system (BMS). Traditional Kalman filter (KF) algorithm requires an
accurate understanding of the dynamic model of the system and usually contains unknown statistical noises,
which can make the SOC estimation inaccurate. To overcome the problem, this paper proposes a modified
Kalman filter, namely Kalman-LSTM, which integrates the Long Short-Term Memory (LSTM) into the KF
framework. By incorporating a neural network, the method preserves the data efficiency and interpretability of
traditional algorithms while simultaneously learning the dynamic behavior of the system. The accuracy of the
Kalman-LSTM method is tested using four datasets: DST, BJDST, FUDS, and US06. The SOC estimation
results are then compared with different KF variants, including EKF, UKF, and AKF. The experimental results
demonstrate that the proposed model has superior accuracy compared to benchmark models across various

working conditions.
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1. Introduction

State of charge (SOC) is an important parameter
for assessing the remaining energy in batteries and
evaluating the performance of energy storage systems.
However, determining SOC is a complex problem
because it depends on many factors, such as battery
nonlinear characteristics, environmental conditions,
and charge/discharge cycles, requiring a deep
understanding of the nature of batteries as well as the
application of advanced models and computational
methods to achieve high accuracy in SOC estimation.

To accurately estimate the SOC of a battery, it is
crucial to build a suitable model. The battery model not
only helps to simulate the electrochemical
characteristics of the battery but also provides a
theoretical basis for analyzing and predicting its
performance under different operating conditions. The
lithium-ion battery model can be categorized into
electrochemical model [1], machine learning or
data-driven model [2], and equivalent circuit model
[3]. The electrochemical model provides the most
detailed representation of battery behavior, enabling
the simulation of underlying physical and chemical
phenomena. Grounded in the principles of chemistry,
physics, and fluid dynamics, this model captures key
processes such as electrode reactions, ion transport
within the electrolyte, and membrane interactions,
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providing a comprehensive framework for analyzing
battery operation. The primary advantage of the
electrochemical model is the ability to provide a
detailed and accurate behavior of the internal
mechanisms of the battery. However, a key limitation
of this model is the need to solve complex partial
differential equations, which demands significant
computational resources and extended simulation
time. Consequently, establishing and identifying the
parameters of the battery model is challenging.
Additionally, different battery materials necessitate
distinct electrochemical models, further complicating
the modeling process. Unlike electrochemical models,
machine learning or data-driven models do not require
an in-depth understanding of the internal mechanisms
of the battery. Since these models do not rely on
mathematical equations or physics-based modeling,
they can rapidly learn patterns from experimental data
without necessitating in-depth knowledge of the
battery’s structure or materials. This flexibility makes
them highly adaptable and applicable across various
scenarios. Given the highly nonlinear characteristics of
lithium-ion battery parameters during operation,
neural networks have demonstrated superior
performance in capturing these complex relationships
[4]. However, this approach requires a large amount of
experimental data to construct effectively and validate
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the battery model. The equivalent circuit model is used
to characterize the voltage response of lithium-ion
batteries during charging and discharging by
representing their electrical behavior through an
equivalent circuit consisting resistors, capacitors, and
voltage sources. By appropriately configuring these
circuit elements, the model effectively captures both
the dynamic and static characteristics of the battery
throughout its operating cycles [5]. Additionally, this
model can be adapted to accommodate different
battery types and operating conditions, making it
highly versatile. Its simplicity and computational
efficiency facilitate seamless integration into battery
management systems (BMS) for real-time monitoring
of the SOC and other key battery states.

SOC estimation methods include the Coulomb
counting method [6], the open-circuit voltage
(OCV)-based method [7], the impedance spectrum
analysis method [8], artificial intelligence-based
approaches [9], and the Kalman filter (KF) method
[10]. The Coulomb counting method is widely utilized
because of its simplicity and straightforward
implementation, as it requires only current and time
measurements, making it well-suited for systems that
demand rapid computations. However, the accuracy of
the KF is highly dependent on the initial SOC value
and is susceptible to error accumulation over time. The
OCV method based on the relationship between the
OCV and the SOC of the Battery Energy Storage
System (BESS). OCV provides high accuracy when
the BESS is stabilized long enough before
measurement and is simple to implement because it
only requires voltage measurement without the need
for current sensing. However, the disadvantage of the
method is that the BESS needs a long time to reach
equilibrium, which makes OCYV ineffective in practical
applications that require continuous SOC calculation.
Artificial intelligence-based methods leverage deep
learning techniques to model complex nonlinear
relationships between SOC and various influencing
factors. These approaches employ advanced
algorithms such as artificial neural networks (ANN),
support vector regression (SVR), and fuzzy logic to
enhance estimation accuracy and adaptability [11].
These algorithms can learn from experimental data and
adapt to various operating conditions without the need
for precise mathematical models of the battery.
However, their performance is highly dependent on the
quality and volume of the training data, which directly
influences the accuracy and reliability of SOC
estimation. The KF is an optimal filtering algorithm
widely employed for estimating the dynamic states of
systems based on equivalent circuit models,
particularly in nonlinear or noisy environments [12].
This algorithm requires a highly accurate battery
estimation model, as well as a precise characterization
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of both estimation and measurement errors within the
battery system. However, the stochastic nature and
complexity of these errors make accurate modeling
challenging. Moreover, the KF algorithm is
susceptible to inaccuracies in error description, which
can adversely affect estimation performance.

In real-time applications, the Extended Kalman
Filter (EKF) often faces challenges in accurate
modeling the measurement and process noise
covariance matrices, which significantly impacts
estimation performance. To address this, our work
proposes a novel EKF framework where a Long Short-
Term Memory (LSTM) network is trained to directly
learn and infer the Kalman gain from data, bypassing
the analytical computation reliant on noise covariance
matrices. While prior studies have explored integrating
EKF with LSTM, to the best of our knowledge, the
specific formulation, training strategy, and integration
of LSTM into the EKF update process presented here
are unique. This approach enhances the adaptability of
EKF and offers potential performance improvements
in complex real-world scenarios.

Therefore, this paper proposes an extended KF
enhanced with the LSTM algorithm. The LSTM is
used to address model bias and the nonlinear behavior
of the battery. The experimental results of the
lithium-ion battery are analyzed and compared to
validate the effectiveness of this method.

2. Battery Model
2.1. Second-Order RC Equivalent Circuit Model

The 2nd order RC circuit model was selected in
this research because it provides a good trade-off
between model complexity and accuracy for capturing
the dynamic behavior of lithium-ion batteries. It
includes both short-term and long-term transient
responses through the use of two RC branches, which
improves the representation of battery voltage
relaxation compared to the 1st order model. This
model has also been widely adopted in battery
management literature, making it a practical and
comparable choice [7, 10].

Fig. 1. Second-order RC equivalent circuit model
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To estimate SOC, determining the mathematical
interpretation of the battery behaviors is necessary.
The second-order RC equivalent circuit model (ECM)
contains an internal resistor and two RC circuits
connected in series, as shown in Fig. 1. The RC circuits
can simulate the characteristics caused by
concentration polarization and electrochemical
polarization of the battery.

According to Kirchhoff’s law, the terminal
voltage and the current of the ECM can be expressed
as follows:

VOC=V1+V2 +1R0+Vt
{ AT (M

Ry
where V. is the open circuit voltage of the battery
which is a function of SOC. V; is the terminal voltage.
I is the charging/discharging current. R, is the internal
resistance. R; and C; are concentration polarization
resistance and capacitance. R, and C, are
electrochemical  polarization  resistance  and
capacitance.

The SOC of a battery is a critical parameter in
battery management systems. This document presents
a detailed analysis of the SOC estimation using the
Ampere-hour (Ah) counting method, along with its
discrete-time domain formulation and a second-order
RC ECM.

According to the Ah counting method, the SOC
can be expressed as:

O
SOC(t) = SOC(t,) — fff’% 2)

where SOC(t) is the SOC value of the battery at the
time t. SOC(t,) denotes SOC at the initial state. 7 is
the Coulombic efficiency. C,, represents the nominal
capacity of the battery. I(t) is the working current.

In the discrete time domain [13], (1) and (2) are
given as follows:

Vik = Vock = Vi = Vo —IRg

-t -t
Vl,k = Vl’oe 1+ 1R1 (1 —en > (3)

At At
szk = szoe T2 + IRZ (1 —et2 )
where At is the sampling interval, t;=R,C;, t,=R,C,
are time constants.
The SOC in discrete form is:
Y 4)

S0C, = S0C,_, — &

Cn

where At is the sample interval. t; = R;C; denotes the
time constant.

From (3) and (4), the state space equation of
the battery with a second-order RC ECM can be
obtained as follows:

{xk+1 = F.xk + B.uk (5)
H.x; + D.uy

where x;, = [SOC, Vi Vzx]7 is the state variable.
uy = I, is the external input of the system. y, = Vi
is the output voltage. F,B,H, and D are matrix
parameters which can be expressed as:

Vi+1

[1 0 0
—At
F=]0 en 0 (6)
—At
10 0 e
_mat
Cn
—At
B:Rl(l—efl) 7
—At
R, (1 —em )
_ [9Voclsock] _
H = [ dS0Cy, 1 1] (®)
D =—-R, 9)

2.2. Parameters Identification

In order to estimate SOC, it is necessary to
identify the parameters in the second-order RC ECM
of the battery, including Ry, Ry, R,, C; and C,. A pulse
of voltage and current discharge are shown in Fig. 2.

When t < t,, the battery is in steady state due to
a long rest period, the input current is 0, the battery
voltage is constant and equal to the open circuit voltage
OCV.
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Fig. 2. Voltage and current pulse discharge used for
parameter identification of the second-order RC ECM
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When t =t,, the sudden discharge current
causes the battery voltage, which is in equilibrium and
equal to OCV, to change by AV;. This happens due to
the internal resistance R,,.

When t, <t <t;, with a constant discharge
current, the voltage gradually decreases. At this
moment, both RC circuits have current flowing
through them, and the capacitor C; and C, are in the
process of charging.

When t = t,, as the battery stops discharging, its
voltage immediately increases by AV, due to the
influence of R.

When t > t;, the battery returns to its resting
state. The two capacitors, C; and C,, which remain
charged, Dbegin  discharging through their
corresponding resistors, R; and R,. This process alters
the battery voltage, gradually increasing it toward the
OCV.

Therefore, these parameters are determined
based on the relationship between the OCV and SOC.
When the battery is discharging with constant current,
according to (1) and (3), the terminal voltage can be
expressed as:

-t t

tQa)=1@0—1R0—1R1<1—e2)—1R2<1—e%) (10)

When the current varies, the instantaneous
terminal voltage from V;(¢7) to V,(¢t*) changes mainly
by the voltage drop AV on the internal resistance R,.
Therefore, R, can be calculated by:
_ AVi+AY,

R
0 21

(11)
Equation (10) can be rewritten by:
—t —t
Vt(t) =V0C—1R0—a1 (1_3;)_(12 (1_95) (12)

where the parameters of the battery model are
calculated as:

Ry =— (13)

R, = (14)
_

G =3 (15)

C=22 (16)

Equations (12) to (16) will be fitted into the least
squares method [14] to identify the destiny parameters
for the second-order RC equivalent circuit model.

3. Kalman-Long Short-Term Memory Method for
State of Charge Estimation

3.1. The Extended Kalman Filter Algorithm

The EKF [15] is a widely used algorithm in
estimating the state of dynamic systems which adopts
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first-order Taylor expansion to linearize the nonlinear
state space model as:

{xk = f(Xp—1, Ug-1) + Wi
Vi =h(x) + vy
where f(+) and h(+) are nonlinear functions. wy, and v,

are the process noise and measurement noise with
Gaussian distribution Q;, and Ry, respectively.

(17)

The nonlinear functions f(-) and h(-) are
linearized as in (6) and (8) with Fj =;Tfk and
_on
Hy = o

The EKF operates in two main phases: prediction
and update.

In the prediction step, the filter estimates the
current a priori state based on the a posteriori state
from the previous step:

Xpjk—1 = FXp_qjk—1 + Buy + wy (13)
Pije-1 = FPy_qjp—1 FT + Qx (19)
Vijk—1 = HXp—1 (20)

During the update step, the filter improves the

predicted state estimate by incorporating new
measurements:
Ayr = Yk — Yijk-1 (21)
Sk = HyPek—1Hi + Ry, (22)
Ky = PeicHy Si* (23)
Xk = Xijk—1 T KeAyg (24)
Py = Prji—1 — KicH Pejre—1 (25)

The EKF algorithm is shown in Fig. 3.
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Fig. 3. EKF algorithm

In these formulations, X1 represents the
predicted (a priori) state estimate. Pgy—_; is the
predicted (a priori) estimate covariance. Kj, denotes the
Kalman gain. Ay, is the innovation and S, is the
innovation covariance. Xy and Py, are the updated (a
posteriori) state estimate and updated (a posteriori)
estimate covariance, respectively.
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3.2. Long Short-Term Memory

LSTM is a type of recurrent neural network used
to learn the time-dependence information proposed by
Hochreiter and Schmidhuber [16]. The internal
memory unit and gate mechanism in the LSTM cell
overcome the gradient descent of the traditional RNN.
The formula of the LSTM model is shown as follows:

fe = oWy - [he—q, x] + bf) (26)
ir = o(w; - [he_1,x:] + b)) (27)
ge = tanh(w, - [he_y, x,] + by) (28)
Ct=fe*Cq tir* g, 29)
0p = 0(W, * [he—y, %] + by) (30)
he = o, * tanh(c,) (31)

where f, i;, g;, and o, are the forget gate, input gate,
update gate, and output gate of the LSTM,
respectively. x; is the input data at time step t. ¢; and
h; represent the cell state and hidden state,
respectively. o and tanh are activation function. wy,
w;, wy and w, are the weight matrices of each gate. by,
b;, by, and b, are bias vector of the corresponding gate.

Fig. 4. Illustrates the algorithm of LSTM.
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3.3. The Kalman-LSTM Algorithm

The core problem of the EKF is to build a model
that describes the underlying dynamics based on the
understanding of the system. If the parameters are
inaccurate, it can affect the SOC calculation results. In
this paper, we assume that the covariance matrices Q
and R are unknown. These two parameters are only
used during the Kalman gain calculation as shown in
Fig. 3. Thus, this paper proposes a modified EKF
where the LSTM will be utilized to learn the Kalman
gain from the data, and alternate the Kalman gain
calculation process in the EKF flow. The architecture
of Kalman-LSTM is shown in Fig. 5.

A prior estimate of the current state xj,_, and
current observation yj_, are calculated from the
previous a posteriori estimate state Xj_),— through
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(17). The innovation Ay, is computed between the
new observation y,, and a prior estimate of the current
observation Yy x—1-

Then, x,—1 and Ay, are concatenated to serve
as input to the LSTM to output the Kalman gain. The
current posterior state Xy is computed by:

X = X1 + Kie- Ay (32)
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Fig. 5. Kalman-LSTM algorithm

4. Results and Discussion
4.1. Data Description

To verify the accuracy of the SOC estimation,
this paper used the INR 18650-20R battery data
published by the CALCE battery group [17]. Five
types of experiment datasets are used, including the
incremental OCV test, Dynamic Stress Test (DST),
Beijing Dynamic Stress Test (BJDST), Federal Urban
Driving Schedule (FUDS), and US06 Highway
Driving Schedule.
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Fig. 6. Input currents in each experiment in one cycle

4.2. Benchmark Model

The benchmark models used in this study include
popular state estimation algorithms such as the EKF,
Adaptive Kalman Filter, and Unscented Kalman Filter.
These algorithms serve as a basis for comparing and
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evaluating the improvements of the proposed model.
These models use xo =[0.9 0 0] as the initial
state, the process noice covariance and the observation
measurement noise covariance are:

5x 1076 0 0
Q= 0 5x 1076 0
0 0 5x 1076
and,
R = 0.001.

4.3. Model Parameter Identification

To verify the accuracy of the proposed SOC
estimation method, this study utilizes battery data
collected from an INR 18650-20R lithium-ion cell,
which was published by the CALCE Battery Research
Group at the University of Maryland [17]. Five
experimental datasets are employed in the evaluation
process: the Incremental Open Circuit Voltage Test,
the DST, the BJDT, the FUDS, and the US06 Highway
Driving Schedule. These datasets collectively
represent a wide range of dynamic loading conditions,
allowing for a comprehensive assessment of the
model’s performance under real-world scenarios.
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Fig. 7. SOC error under DST condition

Through the relationship curve between OCV
and SOC during charging and discharging from low
current OCV test as shown in Fig. 7, a ninth-order
OCV-SOC curve is obtained under the constant
current discharge data as:

Voc(SOC) = 1221.250C° — 5855.550C8
+11841.350C7 — 13093.550C*®
+8617.550C° — 3422.250C*
+811.150C3 — 108.350C*?

+8.07250C + 3.228

(33)

The identification results of the second-order
RC ECM parameters corresponding to each SOC value
are shown in Fig. 8. The concentration polarization
resistance (R;) exhibits a non-linear variation with the
SOC, reaching peak values at intermediate SOC levels
and declining at both low and high SOC regions. In
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contrast, the electrochemical polarization resistance
(R,) demonstrates a generally increasing trend as SOC
increases. The corresponding capacitances display
inverse behaviors relative to their associated
resistances. Specifically, the concentration
polarization capacitance (C;) decreases when R;
increases, and the electrochemical polarization
capacitance (C,) decreases as R, rises. These inverse
relationships reflect the dynamic electrochemical
processes occurring within the battery during different
stages of charging and discharging.
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Fig. 8. Model parameters identification results
corresponding to each SOC value

During the charging and discharging process, the
resistance and capacitance values do not remain
constant but vary within a certain range. To simplify
the calculations and reduce model complexity, this
paper takes the average of the calculated resistance and
capacitance values as a parameter representing the
battery's characteristics. The calculation results are
shown in Table 1.

Table 1. Model parameters identification results

Ro()  Ri(Q) R(Q)  CGi(F) C2(F)

0.1042  0.0211 0.018  80.482.391 2.220.681

The key hyperparameters used in training the
LSTM network are summarized in Table. 2. These
parameters were selected based on preliminary
experiments and common practices in time series
modeling to ensure a balance between model
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complexity and training stability. The settings include
the input size, hidden layer size, number of stacked
LSTM layers, dropout rate, batch size, sequence
length, learning rate, optimization algorithm, and the
number of training epochs.

Table 2. LSTM network configuration and training
settings

Hyperparameter Value
Input size 10
Hidden size 64
Number of layers 2
Dropout rate 0.2
Batch size 32
Training Algorithm Adam optimizer
Learning rate 0.001
Tool PyTorch
Training Set 70%
Validation Set 15%
Test Set 15%

4.4. State of Charge Estimation Results

The SOC estimation errors for each dataset are
shown in Fig. 5. As can be seen, for the conventional
Kalman algorithm, the accuracy in estimating the SOC
decreases as the battery SOC approaches a low level.
Specifically, when the SOC drops below the 20%
threshold, the calculation error increases significantly.
This phenomenon can be explained by two following
primary factors:

1) The electrochemical properties of the battery
change significantly when the SOC drops below
20%. At this time, the chemical reactions inside
the battery gradually become less stable,
reducing the accuracy of the simulation model.
The model parameters, such as resistance and
capacitance Ry, R,, C;, C, and available capacity,
may change non-linearly when the SOC is low,
increasing the complexity of accurately
predicting the state of the battery.

2) Kalman algorithms often rely on cumulative
calculations of previous states, where minor
errors in the initial calculation steps can be

amplified over multiple calculation cycles. This
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issue becomes particularly severe at low SOC
levels, as measured signals from the system (such
as voltage and current) become less sensitive and
more susceptible to noise, making it more
difficult for the algorithm to correct for errors.

The above problems have been effectively solved
through the proposed Kalman-LSTM model when the
traditional Kalman Gain calculation part is replaced by
the LSTM artificial neural network. Integrating LSTM
into the Kalman algorithm not only overcomes the
inherent limitations of the conventional Kalman
method but also brings many outstanding benefits in
estimating the SOC of the battery. Specifically, the
LSTM network can process and memorize information
about long-term data series, making it particularly
effective in identifying nonlinear and complex
relationships in the data, such as the changing
characteristics of the battery when the SOC is low.
This allows the Kalman-LSTM model to learn
nonlinear battery behaviors that conventional Kalman
algorithms cannot accurately simulate. In particular,
when the SOC drops below the 20% threshold, the
LSTM can learn abnormal battery characteristics, such
as arapid increase in internal resistance or a significant
decrease in current delivery, thereby significantly
improving the model accuracy.
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As can be seen from the figures, the error indices
corresponding to the US06 dataset consistently have
the highest values, followed by FUDS, DST, and
finally BIDST. This pattern is not random but rather
reflects the characteristics of the input data series,
specifically the degree of battery current fluctuation.
The US06 dataset represents a harsh test scenario
designed to simulate real-world operating conditions
with large current variations, including rapid changes
in flow rate and load. Under these conditions,
algorithms struggle to accurately track the SOC due to
the strong nonlinearity of the battery. Sudden current
changes can significantly amplify errors in the
computational model over estimation cycles, leading
to the largest observed error values.The FUDS dataset,
while exhibiting lower current fluctuations than US06,
still represents complex operating conditions with
multiple alternating load phases. As a result, it also
produces significant errors, though to a lesser extent
than USO06. In contrast, the DST dataset experiences
moderate current fluctuations with more stable duty
cycles, leading to lower errors compared to both FUDS
and US06.

Although the BJDST dataset has a higher current
oscillation frequency than DST - meaning the current
changes more rapidly and frequently - the oscillation
amplitude is significantly smaller. In other words, the
magnitude of current change per oscillation cycle in
BJDST is not as large as in DST. As a result, the
impact of these fluctuations on battery SOC estimation
is minimized, leading to a smaller SOC prediction
error compared to DST.
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A high oscillation frequency, as seen in BJDST,
typically requires the model to respond quickly and
efficiently to continuous current variations. However,
when the oscillation amplitude is small, these
variations are not large enough to cause significant
shifts in key electrochemical parameters such as
voltage and internal resistance. Consequently, the
algorithm can maintain stability in SOC monitoring
and estimation.

In contrast, DST has a lower oscillation
frequency but a significantly larger amplitude. This
results in greater current variations between cycles,
making it more challenging to model the battery’s
nonlinear responses. Large current changes cause
substantial ~variations in observed parameters,
increasing the estimation errors in the algorithm.

5. Conclusion

This paper investigates and proposes a method
for simulating and estimating the SOC of batteries by
integrating the KF with an artificial neural network. By
combining these two approaches, the proposed method
demonstrates strong accuracy and effectiveness in
quantifying SOC under various operating conditions.
The findings demonstrate that the application of the
KF effectively captures data variations while
mitigating the impact of random dynamic and
measurement errors. Simultaneously, the artificial
neural network enhances performance by extracting
complex nonlinear features, thereby significantly
improving overall estimation accuracy. Furthermore,
the proposed model was evaluated using real-world
data collected from lithium-ion batteries. Experimental
results indicate that the system not only satisfies
accuracy requirements but also exhibits strong
adaptability across diverse operating environments.
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