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Abstract

The article focuses on developing a predictive and optimization model for surface roughness in Ultra-precision
turning (UPT) using a diamond cutter on the spherical surface of AI6061 material. An experimental model with
30 experiments was established, considering three input parameters: spindle speed, feed rate, and depth of
cut. The results from this model were collected to create an input dataset for an Artificial neural network (ANN)
to build a surface roughness prediction model. The ANN structure 3-5-10-1 provided the best prediction
results, with Coefficient of Determination (R?) was 0.98, Mean Absolute Percent Error (MAPE) was 13.36%,
Mean Square Error (MSE) was 0.68, and Root Mean Square Error (RMSE) was 0.82. Additionally, the Atrtificial
Bee Colony (ABC) algorithm was employed to determine the optimal cutting parameters that minimize surface
roughness. The results indicated that the minimum roughness value achieved was 0.76 nm with the cutting
parameters: spindle speed of 823 rev/min, feed rate of 13 mm/min, and depth of cut of 1 um. Moreover, the
effects of different cutting parameter combinations on surface roughness were analyzed and evaluated. The
integration of the ANN model with the ABC algorithm enables a reliable prediction model for surface roughness
and demonstrates high efficiency in optimizing the objective function. This research contributes valuable
insights into surface roughness prediction and optimization in ultra-precision turning of Al6061 material.
Furthermore, the proposed modeling and optimization approach can be extended to other materials and the

processing of aspherical and diffractive surfaces.
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1. Introduction

Ultra-precision machining (UPM) is becoming
increasingly important due to its capability to fabricate
ultra-small components with form accuracy below
0.2 um and surface roughness under 10 nm. It is widely
applied and indispensable in various high-tech
industries such as optics, electronics, and
semiconductors [1]. Among UPM techniques, Single
Point Diamond Turning (SPDT) is commonly used for
machining high-precision and complex-profile
surfaces to meet the ever-growing demands in
precision component manufacturing. SPDT enables
the achievement of the desired surface finish on flat,
spherical, and aspherical surfaces of lens mold
components and mirror surfaces in optical systems [2].
Huang [3] explored the tool-material interaction
mechanism in SPDT of single-crystal SiC, providing
insights into the challenges and advantages of UPM in
generating curved microstructures.

Spherical mirror surfaces play a crucial role in
optical systems such as telescopes [4], optical

ISSN 2734-9373
https://doi.org/10.51316/jst.184.ssad.2025.35.3.5
Received: Feb 28, 2024; revised: Mar 30, 2025;
accepted: Apr 16, 2025

34

metrology [5], and the fabrication of polymer mold
negatives and positives for contact lenses and
intraocular lenses [6]. These surfaces are typically
manufactured using UPM techniques with materials
such as ceramics, copper, and aluminum, particularly
Aluminum 6061, which is widely used due to its
machinability and ability to achieve high surface
quality. Mukaida [7] presented the integration of
SPDT with a slow tool servo (STS) system to generate
single-crystal silicon spherical surfaces with low
roughness and uniform structure, making them
suitable for optical applications. The study also
highlighted the influence of cutting parameters on
spherical surface quality and proposed solutions to
minimize tool wear during machining.

Surface roughness significantly affects the
quality of optical systems as it causes scattering,
reducing contrast, and the sharpness of optical images
[8]. Numerous studies have highlighted the importance
of controlling surface roughness in UPM. For instance,
Zhang [9] comprehensively reviewed the factors
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influencing surface roughness in UPM, including
machine tool characteristics, cutting conditions, tool
geometry, environmental conditions, material
properties, chip formation, tool wear, and vibrations.
Hatefi [10] provided an overview of SPDT,
particularly emphasizing its capability to generate
ultra-precision optical surfaces with extremely low
roughness while analyzing the key factors affecting
surface quality. Li [11] focused on analyzing the
impact of low feed rate SPDT on the surface roughness
and optical reflectivity of Al6061 aluminum alloy.

Optimizing surface roughness is essential for
improving functional properties. For mold surfaces, it
enhances the surface quality of molded products, while
for mirror surfaces, it reduces light scattering and
increases reflectivity. Gao [12] investigated the effects
of cutting parameters on surface roughness in UPM,
highlighting  that process optimization can
significantly improve surface quality. Similarly,
Bensingh [13] optimized the injection molding process
for double-spherical lenses, proving the feasibility of
optimization techniques in improving surface finish.

According to Mozammel [14], among various
artificial intelligence-based computational techniques,
ANN have been widely used in machining due to their
high predictive accuracy. Liman [15] employed the
Response Surface Methodology (RSM) and ANN to
predict surface roughness in UPM of polymer
materials for contact lenses, demonstrating the
importance of advanced modeling techniques in
surface roughness prediction and control.

In smart manufacturing, various optimization
algorithms are employed, including evolutionary
algorithms (EA), swarm intelligence (SA) algorithms,
convolutional neural networks (CNN), Q-learning,
fuzzy logic, support vector machines (SVM), long
short-term memory (LSTM), random forests (RF),
backpropagation networks (BP), and K-nearest
neighbor (KNN). Among these, the ABC algorithm,
classified under SA, is an optimization algorithm
inspired by the intelligent foraging behavior of
honeybee colonies. Roy in [16] explored the
integration of the genetic algorithm (GA) with ABC to
solve the Green Four-Dimensional Traveling
Salesman Problem (4DTSP). This approach optimized
profitability in green manufacturing systems while
effectively handling both discrete and continuous
variables in logistics and resource management.

This paper focuses on developing a predictive
model and optimizing surface roughness based on
cutting parameters in the UPT of Al6061 spherical
surfaces. Optimizing surface quality is crucial,
particularly in high-precision applications such as
optical systems, mold fabrication, and ultra-precision
mechanical joints, where surface roughness plays a
key role in ensuring operational performance.
Experimental data from 30 experiments were used to
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analyze the interaction between cutting parameters and
to develop an ANN model for predicting surface
quality. Additionally, the ABC algorithm effectively
handled complex solution spaces and was employed to
identify optimal machining conditions, ensuring the
required surface roughness while improving
machining efficiency.

2. Research Content
2.1. ANN Model and ABC Algorithm

ANN has been widely utilized in research [13-15]
due to its high prediction accuracy, while ABC is an
intelligent optimization algorithm capable of
efficiently searching for solutions in multidimensional
spaces. The combination of these two methods enables
highly accurate predictions of optimal outcomes in
experimental models in general and SPDT machining
conditions in particular. This integration helps reduce
experimental machining time and enhances the quality
of machined parts.

2.1.1. ANN model

An ANN is a nonlinear mapping system inspired
by the functions of the human brain. It consists of three
layers (Fig. 1): the input layer, the hidden layer, and
the output layer, each composed of one or more
neurons, forming the general structure of an ANN.
Numerical values are fed into the network through the
neurons of the input layer. In the surface roughness
optimization problem, these input values correspond to
spindle speed, feed rate, and depth of cut. Each neuron
in the input layer receives a single input value, which
is then propagated to the hidden layers.

Hiden layer

3 Surface
Roughness

Fig. 1. Neural network structure

These layers are interconnected through synaptic
weights, ensuring that every neuron in the hidden layer
is connected to every neuron in the output layer, which
in this case represents the predicted surface roughness
value. The output layer provides numerical feedback
values. Four key performance indicators: R?, MAPE
[17], MSE, and RMSE [18] are used to evaluate the
accuracy of predictions by comparing the measured

values (y,) from N experiments with the predicted
values ( », ), thereby assessing the training quality and
the model is fit.
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2.1.2. ABC Algorithm

Table 1. ABC algorithm parameters

The ABC algorithm is one of the swarm N

Number of scout bees

intelligence algorithms inspired by the foraging

Number of improved scout bees

behaviour of honeybees. It was first introduced by
Karaboga in [19]. This model simplifies the selection

S AN

Number of optimal scout bees

of food sources, which leads to the emergence of
swarm intelligence in honeybee colonies. It consists of

=

Number of worker bees following the
optimal scout bees

three main components: food sources, employed bees
exploiting the sources, and unemployed bees, also

=

s

Number of worker bees following the
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known as scout bees. The model defines two primary
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behaviours: selecting employed bees for nectar sources
and abandoning a food source. This model is

Neighbourhoods shrinking factor

illustrated in Fig. 2, while Table 1 summarizes the

Iteration limit before abandoning a site
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Fig. 2. ABC algorithm flowchart
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Fig. 3. Diagram of the ANN prediction model combined with the ABC optimization algorithm
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2.1.3. Building a predictive ANN model combined
with the ABC optimization algorithm

The steps for integrating the ANN prediction
model with the ABC optimization algorithm are
illustrated in Fig. 3:

Step 1: Collect experimental data with input
X,,X,,x, andoutput variables.

Step 2: Examine ANN structures: Test different
ANN configurations (number of hidden layers,
number of neurons per layer, activation functions,
etc.). Define the ANN structure by selecting a
specific network configuration based on the
evaluation results.

Step 3. Select the best ANN model for
predicting  values based on the criteria:
R?,MAPE, MSE and RMSE.

Step 4: Use the ABC algorithm to find the
optimal min value corresponding to x,, x, , x; .

Table 2. Parameters of the diamond turning tool

Step 5: Analyze each pair of variables to evaluate
the impact of parameters on Y.

2.2. Establishing the Experimental Setup

The experiments were conducted on the
Nanoform® X diamond turning machine from
Precitech, which uses two linear axes (X, Z) combined
with a rotary axis (C) and supported by STS. The cutting
tool used was a NN6OR0635mWGC-MS0454 diamond
tool, with  specific = parameters listed in
Table 2, and the workpiece setup diagram is shown in
Fig. 4.

The experimental workpiece is made of
aluminium 6061, with dimensions $30 mm X 20 mm
and a spherical radius of R19.5, which has been
machined on a CNC lathe. The chemical composition of
the workpiece is listed in Table 3. The experiment
investigates the influence of cutting parameters with
their value ranges shown in Table 4, including: spindle
speed n (rev/min), feed rate (F - mm/min), and depth of
cut (¢ - um) on the surface roughness (R, - nm).

Number Radius Included Angle  Rake Angle Primary Cutting Height
Clearance
477.052 0.684 mm 60° -25° 12° 7.475 mm
Table 3. Chemical composition of A16061
Chemical composition (%)
Aluminum

Mg Si Fe Cu Cr Zn Ti Mn Al

6061 0.8-1.2 04-08 0.7 0.15-04 0.04-0.35 0.25 0.15 0.15 Balance

(a) Workpiece

(b) Diamond turning tool :

[Vacuum cuci §

acuum ch

()Experirhental S);stem

Fig. 4. Diagram of the workpiece setup
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Table 4. Restricted experimental parameter range

Technology N F t
parameters (rev/min) (mm/min)  (pm)
G x s
Low level
x =1 1000 5 2
Basic level
x, =0 1500 15 5
High level
X =+1 2000 25 8
» : Min value 823 1 1
Fig. 5. Measuring surface roughness with Zegage HR Max value 2177 29 9
interferometer
Table 5. Surface roughness measurements and machining conditions for 30 experiments
No. n . F . t Ra No. n . F . t Ra
(rev/min) (mm/min)  (pm) (nm) (rev/min) (mm/min)  (um) (nm)
1 1000 5 5 4.61 16 1000 5 2 5.61
2 2000 5 5 4.05 17 2000 5 2 4.43
3 1000 25 5 6.29 18 1000 25 2 4.22
4 2000 25 5 2.09 19 2000 25 2 4.11
5 1000 15 2 2 20 1000 5 8 2.23
6 2000 15 2 4.85 21 2000 5 8 2.96
7 1000 15 8 6.62 22 1000 25 8 6.13
8 2000 15 8 5.5 23 2000 25 8 6.77
9 1500 5 2 5.82 24 823 15 5 6.96
10 1500 25 2 6.99 25 2177 15 5 4.34
11 1500 5 8 3.59 26 1500 1 5 3.77
12 1500 25 8 5.82 27 1500 29 5 5.48
13 1500 15 5 7.46 28 1500 15 1 4.79
14 1500 15 5 8.38 29 1500 15 9 7.23
15 1500 15 5 8.23 30 2000 15 5 3.27

2.3. Computation Results and Discussion
2.3.1. ANN model building results

The ANN model has a neural network structure
defined with parameters shown in Table 6.

Several ANN models were built with the first
hidden layer having 4, 5, or 6 neurons and the second
hidden layer having 9, 10, 11, or 12 neurons.
Specifically, the models include (3-4-9-1), (3-5-9-1),
(6-9), (3-5-10-1), (3-4-11-1), (3-5-11-1), (3-6-11-1),
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and (3-6-12-1). The model evaluation results are
shown in Table 7.

In all 8 models, the R* values are all greater than
0.92, reaching 0.98 in the (3-5-10-1) model. This
indicates that the predictive models fit the actual data
very well. As for the accuracy indicators such as
MAPE, MSE, and RMSE, they show the differences
between the models. The bar charts in Fig. 6 compare
the MAPE, MSE, and RMSE values corresponding to
those in Table 7.
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Table 6. Structure and computation results of the indicators: R?, MSE, and MAPE

No. ANN Model Parameters Value
1 Number of input layer variables 3
2 Number of output layer variables 1
3 Number of neurons in the first hidden layer Table 7
4 Number of neurons in the second hidden layer Table 7
5 Data split ratio: Training / Validation / Testing 80%/10%/10%
6 Number of experiments 30
7 Transfer function Poslin
8 Training function traingd
9 Maximum number of epochs to train 10000
10  Fitness function MSE
11  Learning rate 0.01
12 Momentum constant 0.9
13 Maximum allowable runs when the network fails to improve 6

Table 7. Networks structure (NS) and computation values for indicators R?, MSE, RMSE, and MAPE

R? MSE MAPE (%) RMSE

NS All All All All

Train Test data Train Test data Train Test data Train Test data
49 094 094 094 178 134 1.74 2052 2383 2148 133 1.16 1.32
59 093 098 094 205 066 1.81 2198 1336 20.61 143 0.81 134
69 095 097 0094 142 099 1.64 2041 1207 2002 119 1.00 128
510 098 092 098 047 275 068 1231 2789 1336 068 1.66 0.82
4-11 092 097 093 227 070 192 21.04 1422 1936 151 084 139
511 093 096 093 203 072 173 2278 1961 2096 1.13 085 131
6-11 094 099 0.95 1.77 021 145 2054 941 1803 133 046 121
6-12 095 099 0.96 129 021 1.06 1634 519 1393 1.13 046 1.03
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Fig. 6. MAPE, MSE, and RMSE values corresponding to the structure ratios
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Fig. 7. Illustration of the 3-5-10-1 network structure
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Fig. 8. MAPE, MSE, and RMSE values for the 3-5-10-1 structure over 6 runs

Table 8. Number of runs and computation results for R?, MSE, RMSE, and MAPE

R’ MSE MAPE RMSE
NOR Train  Test dlzltla Train  Test dlzila Train  Test dl:ltla Train  Test (i: ltla
1 097 099 097 095 028 096 1691 973 1680 0.97 0.53 0.98
2 098 092 098 047 275 068 1231 27.89 1336 0.68 1.66 0.82
3 097 08 096 0.82 329 1.01 1543 3741 16.79 0.90 1.81 1.00
4 094 099 095 .52 0.14 128 1729 798 1636 1.23 0.37 1.13
5 094 098 095 1.64 074 140 1936 10.74 1752 1.28 0.86 1.18
6 094 096 095 1.66 1.62 152 1724 1698 1687 1.29 1.27 1.23

In the models above, the (5-10) model achieves
the highest R? value and the lowest MAPE, MSE, and
RMSE demonstrating its superior prediction accuracy.
The network structure 3-5-10-1 is shown in Fig. 7.

Each time the network is trained, the datasets for
"Training," "Validation," and "Test" are randomly
selected at the respective ratios of 80%/10%/10%. This
results in different outcomes with each activation,
reflecting the objectivity of the network construction
and selection process. The 3-5-10-1 structure was run
six consecutive times to identify the optimal dataset,
and the survey results are presented in Table 8.

Based on the results in Table 8 and the depiction
in Fig. 6, the (3-5-10-1) model in the second run
achieved the highest R* value of 0.98 and the lowest
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values for MAPE (13.36%), MSE (0.68), and RMSE
(0.82) compared to the other runs. The results from this
run were subsequently used for ABC optimization.

2.3.2. Optimization results via the ABC algorithm

The ABC algorithm is configured with input
parameters as shown in Table 9, which include
100 scout bees (initial solution count) and the
optimization of 3 input variables [ X;, X, , X; ] within the
range from [823, 1, 1] to [2177, 29, 9]. The objective
function is the pre-trained neural network with a
(3-5-10-1) structure, with a maximum of 1000
evaluations and a failure limit of 300 per solution.
These parameters are optimized to ensure rapid
convergence and high accuracy.
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Table 9. Input parameters (P) of the ABC algorithm

P Meaning Value

N Number of scout bees 100

B Number of optimal 3
scout bees

T bandoningasic 300
Initial size of the neighborhood region

H Lower Limit [823,1,1]
Upper Limit [2177, 29, 9]

D Al.goﬁthm stopping Model ANN
criteria (3-5-10-1)

Table 10. Optimal results of the ABC algorithm runs

P S
1 823 13 1 0.76
2 823 13 1 0.76
3 823 13 1 0.84
4 823 14 1 0.93
5 823 13 1 0.80
6 823 12 1 0.78
7 823 13 1 0.78
8 823 13 1 0.78
9 823 13 1 0.76
10 823 13 1 0.79

Table 11. Experimental results with optimal cutting
conditions

Noexp RS (nm) R”* (nm) Error (%)
1 0.761 0.76 0.13
2 0.763 0.76 0.39
3 0.762 0.76 0.26

The ABC algorithm relies on random factors in
initialization, search, and solution selection, so the
optimal results vary with each run. Specifically, in this
problem, the optimal surface roughness corresponding
to the determined values of the three input variables
over 10 consecutive runs is presented in Table 10.
Based on these results, in runs 1, 2, and 9, the optimal
surface roughness achieved the lowest value of
0.76 nm with the following cutting conditions: a
spindle speed of 823 rev/min, a feed rate of 13
mm/min, and a depth of cut of 1 pm.
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Machining of the spherical surface was carried
out using SPDT with the following cutting conditions:
a spindle speed of 823 rpm, a feed rate of 13 mm/min,
and a depth of cut of 1 pm. The results from three
experimental measurements of surface roughness

(R, nm) are presented in Table 11. When these

values are compared with the optimal surface
roughness predicted by the ABC algorithm

(Rf“’d, nm), the percentage error between the

predicted and experimental values is less than 1%,
demonstrating the high accuracy of the predictive
model.

2.3.3. Results of factors influence analysis

Based on the optimal surface roughness of
0.76 nm, the influence of input variable pairs on the
objective function was evaluated.

Effect of n and F on R, (Fig. 7): value of R,

increases rapidly as spindle speed increases, reaching
a maximum when the spindle speed is in the
mid-range, and then decreases sharply as spindle speed
continues to rise. When the spindle speed is below
1150 rev/min and the feed rate is between
9 and 22 mm/min, the surface roughness reaches a
minimum value of less than 2 nm.

Influence of F' and fon R, (Fig. 8): when ¢ is

less than 4.5um, the surface roughness remains low; in
this range, as the F' increases, the surface roughness
slightly decreases to a minimum, and then slightly
increases as the feed rate continues to rise. Moreover,
as the depth of cut increases, the surface roughness
also increases. The minimum surface roughness,
below 2 nm, is achieved when the feed rate is between
9 and 22 mm/min and the depth of cut is less than
2.5 pm.

Influence of n and ¢ on R, (Fig. 9): as the

spindle speed gradually increases up to 1800 rev/min
and the depth of cut gradually reaches 5.5 um, the
surface roughness increases markedly from its
minimum to maximum values. Then, as both spindle
speed and depth of cut continue to rise, the surface
roughness gradually decreases. When the spindle
speed is below 1040 rev/min and the depth of cut is
less than 2 pm, the surface roughness remains in the
minimum range, with values below 2 nm.

In general, value of R, is predominantly

influenced by spindle speed and a lesser extent by feed
rate and cutting depth. A good surface finish with R,

less than 2 nm is achieved when the spindle speed
is below 1040 rev/min, the feed rate is between 9 and
22 mm/min, and the cutting depth is less than 2 pm.
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