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Abstract 

The article focuses on developing a predictive and optimization model for surface roughness in ultra-precision 
turning (UPT) using a diamond cutter on the spherical surface of Al6061 material. An experimental model with 
30 experiments was established, considering three input parameters: spindle speed, feed rate, and depth of 
cut. The results from this model were collected to create an input dataset for an artificial neural network (ANN) 
to build a surface roughness prediction model. The ANN structure 3-5-10-1 provided the best prediction 

results, with Coefficient of Determination ( 2R ) is 0.98, Mean Absolute Percent Error ( MAPE ) is 13.36%, 

Mean Square Error ( MSE ) is 0.68, and Root Mean Square Error ( RMSE ) is 0.82. Additionally, the artificial 

bee colony (ABC) algorithm was employed to determine the optimal cutting parameters that minimize surface 
roughness. The results indicated that the minimum roughness value achieved was 0.76 nm with the cutting 
parameters: spindle speed of 823 rev/min, feed rate of 13 mm/min, and depth of cut of 1 µm. Moreover, the 
effects of different cutting parameter combinations on surface roughness were analyzed and evaluated. The 
integration of the ANN model with the ABC algorithm enables a reliable prediction model for surface roughness 
and demonstrates high efficiency in optimizing the objective function. This research contributes valuable 
insights into surface roughness prediction and optimization in ultra-precision turning of Al6061 material. 
Furthermore, the proposed modeling and optimization approach can be extended to other materials and the 
processing of aspherical and diffractive surfaces. 
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1. Introduction* 

Ultra-precision machining (UPM) is becoming 

increasingly important due to its capability to fabricate 

ultra-small components with form accuracy below     

0.2 µm and surface roughness under 10 nm. It is widely 

applied and indispensable in various high-tech 

industries such as optics, electronics, and 

semiconductors [1]. Among UPM techniques, Single 

Point Diamond Turning (SPDT) is commonly used for 

machining high-precision and complex-profile 

surfaces to meet the ever-growing demands in 

precision component manufacturing. SPDT enables 

the achievement of the desired surface finish on flat, 

spherical, and aspherical surfaces of lens mold 

components and mirror surfaces in optical systems [2].  

Huang [3] explored the tool-material interaction 

mechanism in SPDT of single-crystal SiC, providing 

insights into the challenges and advantages of UPM in 

generating curved microstructures. 

Spherical mirror surfaces play a crucial role in 

optical systems such as telescopes [4], optical 
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metrology [5], and the fabrication of polymer mold 

negatives and positives for contact lenses and 

intraocular lenses [6]. These surfaces are typically 

manufactured using UPM techniques with materials 

such as ceramics, copper, and aluminum, particularly 

Aluminum 6061, which is widely used due to its 

machinability and ability to achieve high surface 

quality. Mukaida [7] presented the integration of 

SPDT with a slow tool servo (STS) system to generate 

single-crystal silicon spherical surfaces with low 

roughness and uniform structure, making them 

suitable for optical applications. The study also 

highlighted the influence of cutting parameters on 

spherical surface quality and proposed solutions to 

minimize tool wear during machining. 

Surface roughness significantly affects the 

quality of optical systems as it causes scattering, 

reducing contrast, and the sharpness of optical images 

[8]. Numerous studies have highlighted the importance 

of controlling surface roughness in UPM. For instance, 

Zhang [9] comprehensively reviewed the factors 
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influencing surface roughness in UPM, including 

machine tool characteristics, cutting conditions, tool 

geometry, environmental conditions, material 

properties, chip formation, tool wear, and vibrations. 

Hatefi [10] provided an overview of SPDT, 

particularly emphasizing its capability to generate 

ultra-precision optical surfaces with extremely low 

roughness while analyzing the key factors affecting 

surface quality. Li [11] focused on analyzing the 

impact of low feed rate SPDT on the surface roughness 

and optical reflectivity of Al6061 aluminum alloy. 

Optimizing surface roughness is essential for 

improving functional properties. For mold surfaces, it 

enhances the surface quality of molded products, while 

for mirror surfaces, it reduces light scattering and 

increases reflectivity. Gao [12] investigated the effects 

of cutting parameters on surface roughness in UPM, 

highlighting that process optimization can 

significantly improve surface quality. Similarly, 

Bensingh [13] optimized the injection molding process 

for double-spherical lenses, proving the feasibility of 

optimization techniques in improving surface finish. 

According to Mozammel [14], among various 

artificial intelligence-based computational techniques, 

ANN have been widely used in machining due to their 

high predictive accuracy. Liman [15] employed the 

Response Surface Methodology (RSM) and ANN to 

predict surface roughness in UPM of polymer 

materials for contact lenses, demonstrating the 

importance of advanced modeling techniques in 

surface roughness prediction and control. 

In smart manufacturing, various optimization 

algorithms are employed, including evolutionary 

algorithms (EA), swarm intelligence (SA) algorithms, 

convolutional neural networks (CNN), Q-learning, 

fuzzy logic, support vector machines (SVM), long 

short-term memory (LSTM), random forests (RF), 

backpropagation networks (BP), and K-nearest 

neighbor (KNN). Among these, the ABC algorithm, 

classified under SA, is an optimization algorithm 

inspired by the intelligent foraging behavior of 

honeybee colonies. Roy in [16] explored the 

integration of the genetic algorithm (GA) with ABC to 

solve the Green Four-Dimensional Traveling 

Salesman Problem (4DTSP). This approach optimized 

profitability in green manufacturing systems while 

effectively handling both discrete and continuous 

variables in logistics and resource management. 

This paper focuses on developing a predictive 

model and optimizing surface roughness based on 

cutting parameters in the UPT of Al6061 spherical 

surfaces. Optimizing surface quality is crucial, 

particularly in high-precision applications such as 

optical systems, mold fabrication, and ultra-precision 

mechanical joints, where surface roughness plays a 

key role in ensuring operational performance. 

Experimental data from 30 experiments were used to 

analyze the interaction between cutting parameters and 

to develop an ANN model for predicting surface 

quality. Additionally, the ABC algorithm effectively 

handled complex solution spaces and was employed to 

identify optimal machining conditions, ensuring the 

required surface roughness while improving 

machining efficiency. 

2. Research Content 

2.1. ANN Model and ABC Algorithm 

ANN has been widely utilized in research [13-15] 

due to its high prediction accuracy, while ABC is an 

intelligent optimization algorithm capable of 

efficiently searching for solutions in multidimensional 

spaces. The combination of these two methods enables 

highly accurate predictions of optimal outcomes in 

experimental models in general and SPDT machining 

conditions in particular. This integration helps reduce 

experimental machining time and enhances the quality 

of machined aparts. 

2.1.1. ANN model 

An ANN is a nonlinear mapping system inspired 

by the functions of the human brain. It consists of three 

layers (Fig. 1): the input layer, the hidden layer, and 

the output layer, each composed of one or more 

neurons, forming the general structure of an ANN. 

Numerical values are fed into the network through the 

neurons of the input layer. In the surface roughness 

optimization problem, these input values correspond to 

spindle speed, feed rate, and depth of cut. Each neuron 

in the input layer receives a single input value, which 

is then propagated to the hidden layers.  

 

Fig. 1. Neural Network Structure 

These layers are interconnected through synaptic 

weights, ensuring that every neuron in the hidden layer 

is connected to every neuron in the output layer, which 

in this case represents the predicted surface roughness 

value. The output layer provides numerical feedback 

values. Four key performance indicators: 2 ,R MAPE  

[17], MSE , and RMSE  [18] are used to evaluate the 

accuracy of predictions by comparing the measured 

values (
iy ) from N  experiments with the predicted 

values ( ˆ
iy ), thereby assessing the training quality and 

the model is fit.  
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2.1.2. ABC Algorithm 

The ABC algorithm is one of the swarm 

intelligence algorithms inspired by the foraging 

behavior of honeybees. It was first introduced by 

Karaboga in [19]. This model simplifies the selection 

of food sources, which leads to the emergence of 

swarm intelligence in honeybee colonies. It consists of 

three main components: food sources, employed bees 

exploiting the sources, and unemployed bees, also 

known as scout bees. The model defines two primary 

behaviors: selecting employed bees for nectar sources 

and abandoning a food source. This model is 

illustrated in Fig. 2, while Table 1 summarizes the 

algorithm parameters. 

Table 1. ABC Algorithm Parameters 

N  Number of scout bees 

A  Number of improved scout bees 

B  Number of optimal scout bees 

bN  Number of worker bees following the 

optimal scout bees 

aN  Number of worker bees following the 

improved scout bees 

H  Initial size of the neighborhood region 

R  Neighborhood shrinking factor 

T  Iteration limit before abandoning a site 

D  Algorithm stopping criteria 

 

 

Fig. 2. ABC algorithm flowchart 

 

 

Fig. 3. Diagram of the ANN prediction model combined with the ABC optimization algorith 
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2.1.3. Building a predictive ANN model combined with 

the ABC optimization algorithm 

The steps for integrating the ANN prediction 

model with the ABC optimization algorithm are 

illustrated in Fig. 3: 

Step 1: Collect experimental data with input 

1 2 3, ,x x x   and output    variables. 

Step 2: Examine ANN structures: Test different 

ANN configurations (number of hidden layers, 

number of neurons per layer, activation functions, 

etc.). Define the ANN structure by selecting a specific 

network configuration based on the evaluation results. 

Step 3: Select the best ANN model for predicting 

values based on the criteria: 2 , ,R MAPE MSE  and 

RMSE . 

Step 4: Use the ABC algorithm to find the 

optimal Min value corresponding to
1 2 3, ,x x x . 

Step 5: Analyze each pair of variables to evaluate 

the impact of parameters on Y . 

2.2. Establishing the Experimental Setup 

The experiments were conducted on the 

Nanoform® X diamond turning machine from 

Precitech, which uses two linear axes ( ,X Z ) 

combined with a rotary axis ( C ) and supported by 

STS. The cutting tool used is a NN60R0635mWGC-

MS0454 diamond tool, with specific parameters listed 

in Table 2, and the workpiece setup diagram is shown 

in Fig. 4. 

The experimental workpiece is made of 

aluminum 6061, with dimensions ∅30 mm x 20 mm 

and a spherical radius of R19.5, which has been 

machined on a CNC lathe. The chemical composition 

of the workpiece is listed in Table 3. The experiment 

investigates the influence of cutting parameters with 

their value ranges shown in Table 4, including: spindle 

speed n  (rev/min), feed rate ( F  - mm/min), and depth 

of cut ( t  - μm) on the surface roughness (
aR  - nm). 

 

 

Table 2. Parameters of the diamond turning tool 

Number Radius Included Angle Rake Angle 
Primary 

Clearance 
Cutting Height 

477052 0.684 mm 60° -25° 12° 7.475 mm 

 

Table 3. Chemical composition of Al6061 

Aluminum 
Chemical composition (%) 

Mg Si Fe Cu Cr Zn Ti Mn Al 

6061 0.8-1.2 0.4-0.8 0.7 0.15-0.4 0.04-0.35 0.25 0.15 0.15 Balance 

 

 

 
(c) Experimental system 

(a) Workpiece 

 
(b) Diamond turning tool 

Fig. 4. Diagram of the Workpiece Setup.
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Fig. 5. Measuring surface roughness with Zegage HR 

interferometer 

Table 4. Restrict experimental parameter range 

Technology 

parameters 

N 

(rev/min) 

F 

(mm/min) 

t 

(μm) 

Corresponding 

variables 1x  
2x  

3x  

Low level 
1ix = −  1000 5 2 

Basic level 
0ix =  1500 15 5 

High level 
1ix = +  2000 25 8 

Min value 823 1 1 

Max value 2177 29 9 

 

Table 5. Surface roughness measurements and machining conditions for 30 experiments 

No. 
n 

(rev/min) 

F 

(mm/min) 

t 

 (µm) 

Ra 

(nm) 
No. 

n 

 (rev/min) 

F 

(mm/min) 

t 

(µm) 

Ra 

(nm) 

1 1000 5 5 4.61 16 1000 5 2 5.61 

2 2000 5 5 4.05 17 2000 5 2 4.43 

3 1000 25 5 6.29 18 1000 25 2 4.22 

4 2000 25 5 2.09 19 2000 25 2 4.11 

5 1000 15 2 2 20 1000 5 8 2.23 

6 2000 15 2 4.85 21 2000 5 8 2.96 

7 1000 15 8 6.62 22 1000 25 8 6.13 

8 2000 15 8 5.5 23 2000 25 8 6.77 

9 1500 5 2 5.82 24 823 15 5 6.96 

10 1500 25 2 6.99 25 2177 15 5 4.34 

11 1500 5 8 3.59 26 1500 1 5 3.77 

12 1500 25 8 5.82 27 1500 29 5 5.48 

13 1500 15 5 7.46 28 1500 15 1 4.79 

14 1500 15 5 8.38 29 1500 15 9 7.23 

15 1500 15 5 8.23 30 2000 15 5 3.27 

 

2.3. Computation Results and Discussion 

2.3.1. ANN model building results 

The ANN model has a neural network structure 

defined with parameters shown in Table 6.  

Several ANN models were built with the first 

hidden layer having 4, 5, or 6 neurons and the second 

hidden layer having 9, 10, 11, or 12 neurons. 

Specifically, the models include (3-4-9-1), (3-5-9-1), 

(6-9), (3-5-10-1), (3-4-11-1), (3-5-11-1), (3-6-11-1), 

and (3-6-12-1). The model evaluation results are 

shown in Table 7. 

In all 8 models, the 2R  values are all greater than 

0.92, reaching 0.98 in the (3-5-10-1) model. This 

indicates that the predictive models fit the actual data 

very well. As for the accuracy indicators such as 

,MAPE MSE , and RMSE , they show the differences 

between the models. The bar charts in Fig. 6 compare 

the ,MAPE MSE , and RMSE values corresponding to 

those in Table 7. 
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Table 6. Structure and computation results of the indicators: 2 ,R MSE , and MAPE  

No. ANN Model Parameters Value 

1 Number of input layer variables 3 

2 Number of output layer variables 1 

3 Number of neurons in the first hidden layer Table 7 

4 Number of neurons in the second hidden layer Table 7 

5 Data split ratio: Training / Validation / Testing 80%/10%/10% 

6 Number of experiments 30 

7 Transfer function Poslin 

8 Training function traingd 

9 Maximum number of epochs to train 10000 

10 Fitness function MSE  

11 Learning rate 0.01 

12 Momentum constant 0.9 

13 Maximum allowable runs when the network fails to improve 6 

 

Table 7. Networks structure (NS) and computation values for indicators 2 , ,R MSE RMSE , and MAPE . 

NS 

2R  MSE  MAPE  (%) RMSE  

Train Test 
All 

data 
Train Test 

All 

data 
Train Test 

All 

data 
Train Test 

All 

data 

4-9 0.94 0.94 0.94 1.78 1.34 1.74 20.52 23.83 21.48 1.33 1.16 1.32 

5-9 0.93 0.98 0.94 2.05 0.66 1.81 21.98 13.36 20.61 1.43 0.81 1.34 

6-9 0.95 0.97 0.94 1.42 0.99 1.64 20.41 12.07 20.02 1.19 1.00 1.28 

5-10 0.98 0.92 0.98 0.47 2.75 0.68 12.31 27.89 13.36 0.68 1.66 0.82 

4-11 0.92 0.97 0.93 2.27 0.70 1.92 21.04 14.22 19.36 1.51 0.84 1.39 

5-11 0.93 0.96 0.93 2.03 0.72 1.73 22.78 19.61 20.96 1.13 0.85 1.31 

6-11 0.94 0.99 0.95 1.77 0.21 1.45 20.54 9.41 18.03 1.33 0.46 1.21 

6-12 0.95 0.99 0.96 1.29 0.21 1.06 16.34 5.19 13.93 1.13 0.46 1.03 

 

   

Fig. 6. MAPE , MSE , and RMSE  values corresponding to the structure ratios 
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Fig. 7. Illustration of the 3-5-10-1 network structure. 

 
 

 

   
Number of runs Number of runs Number of runs 

Fig. 8. MAPE , MSE , and RMSE  values for the 3-5-10-1 structure over 6 runs. 

 

Table 8. Number of runs (NOR) and Computation Results for 2 , ,R MSE RMSE , and MAPE . 

NOR 

2R  MSE  MAPE  (%) RMSE  

Train Test 
All 

data 
Train Test 

All 

data 
Train Test 

All 

data 
Train Test 

All 

data 

1 0.97 0.99 0.97 0.95 0.28 0.96 16.91 9.73 16.80 0.97 0.53 0.98 

2 0.98 0.92 0.98 0.47 2.75 0.68 12.31 27.89 13.36 0.68 1.66 0.82 

3 0.97 0.86 0.96 0.82 3.29 1.01 15.43 37.41 16.79 0.90 1.81 1.00 

4 0.94 0.99 0.95 1.52 0.14 1.28 17.29 7.98 16.36 1.23 0.37 1.13 

5 0.94 0.98 0.95 1.64 0.74 1.40 19.36 10.74 17.52 1.28 0.86 1.18 

6 0.94 0.96 0.95 1.66 1.62 1.52 17.24 16.98 16.87 1.29 1.27 1.23 

In the models above, the (5-10) model achieves 

the highest 2R  value and the lowest MAPE , MSE , 

and RMSE , demonstrating its superior prediction 

accuracy. The network structure 3-5-10-1 is shown in 

Fig. 7. 

Each time the network is trained, the datasets for 

"Training," "Validation," and "Test" are randomly 

selected at the respective ratios of 80%:10%:10%. This 

results in different outcomes with each activation, 

reflecting the objectivity of the network construction 

and selection process. The 3-5-10-1 structure was run 

six consecutive times to identify the optimal dataset, 

and the survey results are presented in Table 8. 

Based on the results in Table 8 and the depiction 

in Fig. 6, the (3-5-10-1) model in the second run 

achieved the highest 2R  value of 0.98 and the lowest 

values for MAPE  (13.36%), MSE  (0.68), and RMSE  

(0.82) compared to the other runs. The results from this 

run were subsequently used for ABC optimization. 

2.3.2. Optimization results via the ABC algorithm 

The ABC algorithm is configured with input 

parameters as shown in Table 9, which include          

100 scout bees (initial solution count) and the 

optimization of 3 input variables [ 1 2 3, ,x x x ] within the 

range from [823, 1, 1] to [2177, 29, 9]. The objective 

function is the pre-trained neural network with a          

(3-5-10-1) structure, with a maximum of 1000 

evaluations and a failure limit of 300 per solution. 

These parameters are optimized to ensure rapid 

convergence and high accuracy. 

JST
 In

 Press



 

JST: Smart Systems and Devices 

Volume 35, Issue 3, September 2025, 034-044 

 

41 

Table 9. Input parameters (P) of the ABC algorithm. 

P Meaning Value 

N  Number of scout bees 100 

B  
Number of optimal 

scout bees 
3 

T  
Iteration limit before 

abandoning a site 
300 

H  

Initial size of the neighborhood region 

Lower Limit [823, 1, 1] 

Upper Limit [2177, 29, 9] 

D  
Algorithm stopping 

criteria 

Model ANN  

(3-5-10-1) 

 

Table 10. Optimal results of the ABC algorithm runs 

Number 

of runs 1x  2x  3x  Ra 

1 823 13 1 0.76 

2 823 13 1 0.76 

3 823 13 1 0.84 

4 823 14 1 0.93 

5 823 13 1 0.80 

6 823 12 1 0.78 

7 823 13 1 0.78 

8 823 13 1 0.78 

9 823 13 1 0.76 

10 823 13 1 0.79 

 

Table 11. Experimental results with optimal cutting 

conditions 

No.exp 
exp

aR  (nm) 
pred

aR  (nm) Error (%) 

1 0.761 0.76 0.13 

2 0.763 0.76 0.39 

3 0.762 0.76 0.26 

 

The ABC algorithm relies on random factors in 

initialization, search, and solution selection, so the 

optimal results vary with each run. Specifically, in this 

problem, the optimal surface roughness corresponding 

to the determined values of the three input variables 

over 10 consecutive runs is presented in Table 10. 

Based on these results, in runs 1, 2, and 9, the optimal 

surface roughness achieved the lowest value of 

0.76 nm with the following cutting conditions: a 

spindle speed of 823 rev/min, a feed rate of 13 mm/min, 

and a depth of cut of 1 µm. 

Machining of the spherical surface was carried 

out using SPDT with the following cutting conditions: 

a spindle speed of 823 rpm, a feed rate of 13 mm/min, 

and a depth of cut of 1 µm. The results from three 

experimental measurements of surface roughness  

(
exp

aR , nm) are presented in Table 11. When these 

values are compared with the optimal surface 

roughness predicted by the ABC algorithm  

(
pred

aR , nm), the percentage error between the 

predicted and experimental values is less than 1%, 

demonstrating the high accuracy of the predictive 

model. 

2.3.3. Results of factors influence analysis 

Based on the optimal surface roughness of        

0.76 nm, the influence of input variable pairs on the 

objective function was evaluated. 

Effect of n  and F on 
aR  (Fig. 7): value of 

aR

increases rapidly as spindle speed increases, reaching 

a maximum when the spindle speed is in the               

mid-range, and then decreases sharply as spindle speed 

continues to rise. When the spindle speed is below 

1150 rev/min and the feed rate is between 9 and            

22 mm/min, the surface roughness reaches a minimum 

value of less than 2nm. 

Influence of F  and t on 
aR  (Fig. 8): when t  is 

less than 4.5µm, the surface roughness remains low; in 

this range, as the F  increases, the surface roughness 

slightly decreases to a minimum, and then slightly 

increases as the feed rate continues to rise. Moreover, 

as the depth of cut increases, the surface roughness 

also increases. The minimum surface roughness, 

below 2 nm, is achieved when the feed rate is between 

9 and 22 mm/min and the depth of cut is less than 

2.5 µm. 

Influence of n  and t  on 
aR  (Fig. 9): as the 

spindle speed gradually increases up to 1800 rev/min 

and the depth of cut gradually reaches 5.5 µm, the 

surface roughness increases markedly from its 

minimum to maximum values. Then, as both spindle 

speed and depth of cut continue to rise, the surface 

roughness gradually decreases. When the spindle 

speed is below 1040 rev/min and the depth of cut is less 

than 2 µm, the surface roughness remains in the 

minimum range, with values below 2 nm. 

In general, value of 
aR  is predominantly 

influenced by spindle speed and a lesser extent by feed 

rate and cutting depth. A good surface finish with 
aR  

less than 2 nm is achieved when the spindle speed is 

below 1040 rev/min, the feed rate is between 9 and     

22 mm/min, and the cutting depth is less than 2 µm. 
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Fig. 7. Influence of n  and F on 
aR  

 

  
Fig. 8. Influence of F  and t on 

aR  
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Fig. 9. Influence of n  and t  on 

aR  

 

3. Conclusion 

In this paper, an ANN combined with the ABC 

algorithm is applied to predict and optimize surface 

roughness in the spherical surface machining process 

by SPDT for Al6061 material. The ANN is used to 

model the nonlinear relationship between cutting 

parameters ( n , F , t ) and 
aR , while the ABC 

algorithm helps optimize the ANN model parameters 

to enhance prediction accuracy. With 30 experiments 

and the optimal ANN structure (3-5-10-1), the study 

achieved high reliability with an 2R  of 0.98 and 

performance metrics of MAPE  is 13.36%, MSE  is 

0.68, and RMSE is 0.82. Based on the ABC algorithm, 

the optimal surface roughness was determined to be as 

low as 0.76nm under the cutting conditions of a spindle 

speed of 823 rev/min, a feed rate of 13 mm/min, and a 

depth of cut of 1µm. Furthermore, the study results 

indicate that cutting parameters such as spindle speed, 

feed rate and depth of cut significantly affect the 

surface roughness of Al6061, with spindle speed 

having the greatest influence. This research provides 

important insights into modeling and optimizing 

cutting parameters in ultra-precision turning of 

Al6061, and the approach can also be extended to other 

quality factors, such as dimensional error or surface 

form, as well as to other materials and machining 

processes for aspherical and diffractive surfaces. 
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