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Abstract

The paper studies the effect of some shape parameterization techniques on automatic two-dimensional
aerodynamic shape optimization using the discrete adjoint method. In this paper, the Hicks-Henne Bump
Functions (HHBF) technique and the Free-form Deformation (FFD) control points technique are used to
parameterize the shape of the NACA 0012 airfoil. First, this paper makes a full, detailed description of the
shape optimization workflow, including Euler equations, geometry parameterization techniques, discrete
adjoint method, gradient evaluation, optimization algorithm, and mesh deformation. Second, it explores how
shape parameterization techniques are implemented in the optimization problem. Finally, the results are
evaluated to compare the efficiency of the mentioned techniques. The results suggest that, in general, both
techniques were shown to be equally effective as geometry parameterization methods for the shape
optimization problem. However, it appears that the HHBF technique demonstrates better performance with
fewer design iterations compared to that of FFD technique. On the other hand, FFD shows stability and a
smoother decrease in drag values, while HHBF exhibits greater unsteadiness during the optimization process.

Keywords: Aerodynamic shape optimization, Hicks-Henne bump functions, free-form deformation

1. Introduction

Aerodynamic shape optimization of aircraft has
played a crucial role in the aviation industry. In this
scenario, the optimization of an aircraft wing's
geometric shape to minimize drag while maintaining
its lift is widely studied, as it helps preserve
transportation  efficiency while reducing fuel
consumption by preventing the engine from operating
beyond necessity. This is especially important for
transonic flights, where shock waves form on the
wings of the aircraft, significantly increasing drag.

With advancements in numerical simulations,
particularly computational fluid dynamics (CFD), the
optimization of an aircraft wing’s geometric shape is
now formulated using mathematical models, which
significantly reduce costs compared to physical
testing. Moreover, drag is ensured to be minimized
through the gradient evaluation of the objective
function concerning the design parameters due to the
accuracy and efficiency of optimization algorithms.

To represent mathematically an airfoil, several
parameterization techniques are used to define the
airfoil surface in mathematical form. Among these, the
Hicks-Henne Bump Functions (HHBF) method
employs a combination of bump functions to describe
the airfoil shape, while the Free-form Deformation
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(FFD) method utilizes control points that represent
specific locations on the airfoil surface in its
parametric volume.

Earlier in the 20" century, several works were
conducted in the field of aerodynamic shape
optimization, aiming to improve aerodynamic
performance through systematic modification of
geometry. These works were the foundation, as well as
an inspiration, for this article to be completed. Among
these, the Hicks-Henne bump function method,
originally introduced by Hicks and Henne in 1978 [1],
has been widely used due to its simplicity and
effectiveness in controlling airfoil surface geometry
with a limited number of design variables. In the work
published in 1978, R. M. Hicks and P. A. Henne
demonstrate this technique through three design
problems on a swept wing, including shock drag
reduction with volume constraint, lift-drag ratio
increment, and good stall progression achievement, by
modifying the wing’s surface.

Later in 1986, the FFD technique was first
introduced by Sederberg and Parry [2]. This offered
greater geometric flexibility by embedding the
geometry in a lattice of control points, making it
particularly suitable for complex
three-dimensional shape modifications.
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Later in the 21 century, some researchers have
also done similar work to this aeroelastic shape
optimization topic. In 2017, D. A. Masters et al. tested
seven parameterization techniques, including CSTs,
B-Splines, HHBF, Radial basis function (RBF)
approach, Bézier surfaces, a singular value
decomposition (SVD) method, and the PARSEC
method, within the analysis of 2000 airfoils [3].

Regarding to the use of SU2 code, in 2018,
G. Yang and A. D. Ronch also studied the
aerodynamic shape optimization of the transonic
airfoils, including inviscid NACA 0012 and turbulent
RAE 2822 with lift constrained, with the
implementation of HHBF and FFD methods in the
SU2 environment [4], except that they employed the
continuous adjoint approach in their work.

The discrete adjoint solver was integrated into the
SU2 framework in 2016 by T. Albring, M. Sagebaum,
and N. R. Gauger to explore new and interesting
optimization problems [5]. In their work, they applied
the discrete adjoint method to the aerodynamic design
of 3D models.

In this work, we take on the task of studying the
effect of HHBF and FFD methods, with the
implementation of a discrete adjoint approach, on
two-dimensional lift-constrained airfoil optimization.
These geometric parameterization methods are already
integrated into the SU2 code, an open-source CFD
simulation and optimization tool, which we will use to
support this research [6].
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Fig. 1. Optimal design loop for NACA 0012
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2. Numerical Approach
2.1. Optimization Framework

The flow solver analyzes aerodynamic forces on
the NACA 0012 airfoil with initial conditions and a
grid. The chosen objective function is drag, optimize
the airfoil with minimum drag constraint, and the
result is the optimized geometry of the NACA 0012
airfoil after reaching the specified converged criterion
or the maximum number of iterations.

The optimization process starts with a baseline
geometry and grid as input to the design loop, along
with a chosen objective function (J) and a set of design
variables (x). After analyzing the flow for the first
time, if the analyzed sensitivity has converged, the
process is completed. Otherwise, design variables will
be optimized again until the objective function reaches
the specified converged criterion, or the process
reaches the maximum number of iterations. See Fig. 1
to understand the airfoil shape optimization workflow.

2.2. Numerical Flow Solver

The compressible Euler equations based on the
Navier-Stokes equations with zero viscosity and zero
thermal conductivity are used in this case:

ou -
R(U)=E+V-FC(U)—S=O @8]
where the conservative variables are the working
variables and are given by:

U ={p,pv,pE}" ()
and S is a generic source term. The convective flux is:
F.={p0,po @ 5+ Ip,pEv +pi}  (3)

where p is the fluid density, 7 = {u, v,w}" € R? is the
flow speed in the Cartesian system of reference, E is
the total energy per unit mass, and pis the static
pressure. Using the gas model, which is a perfect gas
with an adiabatic index of y and gas constant R, the
fluid solver can close the system by determining the
pressure from p = (y — 1)p[E — 0.5(7 - ©)] [7].

2.3. Geometry Parameterization Techniques

Parameterization methods are used to describe
the surface of the airfoil. They are categorized as either
constructive or deformative methods [3]. HHBF and
Bézier surface FFD are two common deformative
methods that have been integrated into SU2. The main
idea is to manipulate the original airfoil shape to create
a new one.

2.3.1. Hicks-Henne bump functions

HHBF are introduced to an existing airfoil
baseline to mathematically deform it by “bumping” at
local positions where that function is defined. As
mostly used in 2D problems, its equations are given as
follows:
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( Y = Ybaseline + Z bi(x)
@

log 0.5\ 1ti
b;(x) = a; [sin (nxlOghi )] ,0<x<1

where 7 is the number of bump functions; b; (x) is the
bump function proposed by Hicks and Henne [1]; a; is
the amplitude of the i function, which also serves as
a design variable; h; is the location of the maximum
point of the bump on the X-axis and ¢; is the width of
the bump. In Fig. 2, each bump function reaches its
maximum value at x = h; and that x location is
represented by a vertical red dotted line.

— NACA 0012 airfoi

Fig. 2. Airfoil parameterized using HHBF
2.3.2. Free-form deformation Bézier surface

FFD was first presented by Sederberg and Perry
[2], which encapsulates an airfoil or a wing inside a
box defined by lattices, serving as control points. By
moving them, we deform the enclosed airfoil.

The problem’s dimension requires the use of
either a bivariate surface (2D) or trivariate volume
(3D), which utilizes Bézier curves or B-Spline for the
blending function.

The equations that govern the parameterized
Bézier volume can be expressed as follows:

XEn,0) = iz

i=0 j=0

n

> PuBLOBIMBIQ) (5)

k=0

where [, m, n are the degrees of the blending function;
§& n, { are the coordinates in the parametric
coordinate system; P, are the Cartesian coordinates
of the control point (i, j, k); X are the corresponding
Cartesian coordinates for given Bézier volume
coordinates; Bij () is a Bernstein polynomial [4],
which is expressed as:
il
ﬁ (Xi(l — (X)j_i
Fig. 3 describes how the NACA 0012 airfoil is
encapsulated in an FFD box, defined by 40 control
points in the x-direction and 1 in the y-direction.

B/(a) = (6)
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Fig. 3. Airfoil parameterized using FFD box
2.4. Discrete Adjoint Method

In the optimization framework, flow solution
analysis, represented by the “Analysis” box in the
flowchart in Fig. 1, is performed to evaluate how flow
solutions affect the objective function. This calculation
is called the adjoint solution. For the adjoint flow
solver, a discrete adjoint approach is employed in this
work. In SU2, the discrete adjoint method is an
approach used for gradient-based aerodynamic shape
optimization. It efficiently computes the gradients of
an objective function (e.g., drag coefficient)
concerning a large number of design variables. Unlike
the continuous adjoint method, which derives adjoint
equations from the continuous Navier-Stokes or Euler
equations before discretization, the discrete adjoint
method directly differentiates the discretized flow
equations. This ensures that the adjoint solution is
consistent with the numerical scheme used for solving
the flow equations.

In this research, the primal flow equations are
solved by discretizing them using the finite volume
method (FVM). The solution provides pressure,
velocity, density, and lift coefficient C; and drag
coefficient Cp. The discrete adjoint equations are
derived by differentiating the discretized governing
equations for the design variables.

[BR T
aul © au
where R are the residuals of the flow equations, U are
the flow variables (density, velocity, energy, etc.), J is

the objective function (drag coefficient Cp), 4 are the
adjoint variables (Lagrange multipliers) [5].

()

By solving this linear system, the adjoint
variables 4 are obtained, providing information on
how the objective function changes to small
perturbations in flow variables.

2.5. Gradient Evaluation

Continuing with the workflow of aerodynamic
optimization, sensitivity analysis is subsequent to flow
solution analysis. In this module, the gradient of the
objective function concerning the shape design
variables is computed. The sensitivity analysis within
the optimal shape design loop is obtained with the
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gradient evaluation using the discrete adjoint method,
which can be described as the following equation:

d _ _[0Ry"
dxi B axi

®

where R(U,x) = 0 represents the flow governing
equations (Euler) in SU2; A is the adjoint variable,
obtained by solving the adjoint equation [5].

This equation provides efficient gradient
computation without requiring costly finite difference
evaluations.

2.6. Sequential Least
Optimization Algorithm

Squares Programming

In this particular aerodynamic optimization using
the SU2 code, this paper utilizes the Sequential Least
Squares Programming Optimization Algorithm
(SLSQP) to minimize the drag of the 2D NACA 0012
airfoil in transonic flight conditions while taking
constraints into consideration. SLSQP optimizer is a
sequential least squares programming algorithm which
uses the Han—Powell quasi—-Newton method with a
Broyden—Fletcher—Goldfarb—Shanno (BFGS) update
of the B-matrix and an Ll-test function in the
step—length algorithm [8].

Sequential Quadratic Programming (SQP) is one
of the most successful classes of algorithms for solving
non-linear optimization problems (NLP). It solves an
NLP problem by iteratively formulating and solving a
sequence of Quadratic Programming (QP)
subproblems. The SLSQP has been one of the most
widely used SQP algorithms since the 1980s [9].

In aerodynamic shape optimization, the problem
is typically formulated as:

min J(x) (9)
X
subject to constraints:
gi(x)<0, i=12..,m
hi(x) =0, j=12,..,p

where x represents design variables (e.g., shape
parameters like Hicks-Henne bump amplitudes or FFD
control points); J(x) is the objective function (e.g.,
minimizing drag coefficient Cp); g;(x) are inequality
constraints (e.g., thickness constraints, volume
constraints); h;(x) are equality constraints (e.g.,
maintaining a fixed lift coefficient C;).

SLSQP solves a sequence of QP subproblems. At

each iteration k, it approximates the objective function
and constraints using a quadratic model:

1
mdin Vi(x*)Td +§dTHd (10)

subject to:

Vgi(x)Td + g;(x*) <0, i=1,...,m
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Vhi(x*)"d + hj(x*) = 0, j=1,..,p

where d = x**1 — x¥ is the step direction; V] (x*) is
the gradient of the objective function at iteration k,
computed using the adjoint method in SU2; H is an
approximate Hessian matrix, often updated using
BFGS quasi-Newton methods; Vg;(x¥) and
Vh; (x*) are the gradients of the constraints [8].

For lift constraint enforcement, the following
term is taken into consideration:

h(x) = C,(x) = C[ (11
where C; is the target lift coefficient. The gradient of
C;, is also computed using the adjoint method:
dh _dC, _ [6R]T
dxi B dxl- axi
SLSQP ensures that h(x) = 0 is satisfied in each
design iteration.

(12)

Once the quadratic subproblem is solved at each
iteration k, the design variables are updated using:

xktt = x¥ + q, d¥

where aj, is a step size determined by a line search
strategy [8].

2.7. Mesh Deformation

Mesh deformation also plays an essential role in
the optimization framework. Once the airfoil geometry
is deformed by the optimization algorithm after
gradient evaluation, the surrounding volume mesh
needs to be deformed. The technique applied in SU2 is
to model the mesh element as an elastic solid using the
equations of linear elasticity (ELA).

ELA governs the small displacement vector
u(x) = (u,v,w) of an elastic solid subject to body
forces and surface tractions [9], which can be written
as:

(13)

where f is body force, () is the computational domain
and o is the stress tensor given by the constitutive
relation:

V-o=f onQ

o = ATr(e)l + 2ue (14)

where € is the strain tensor and T is its trace. A and u
are the Lamé constants, depending on the properties of
the elastic material, given as a function of Young’s
modulus E and Poisson’s ratio v:

vE

Yaena-m )
E

m (16)

T 2(1+v)

Young’s modulus E indicates the stiffness of the
material, where large E means rigidity. Poisson’s ratio
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measures how much the material shrinks in the
lateral direction as it extends in the axial direction

(-1<v< % for physical materials).

To quantify the deformation of a material fiber in
an elastic body, the equation of the linear kinematic
law is applied:

1
€=3 (Vu + vu’) 17
Then, the system is completed by applying
Dirichlet boundary conditions, u = g on 9Q.

This set of equations is discretized using a
Galerkin method based on the trial and test spaces.
Since a complete explanation of this approach exceeds
the article's purpose, the reader should refer to [10].

To achieve robustness and accuracy when large
displacements, K. Stein, Tayfun Tezduyar, and
R. Benney have applied it with an elastic stiffness
varying in inverse proportion to the cell volume,
aiming to maintain quality mesh near the bodies (it
could be boundary layers or high-resolution zones)
[11]. To set up for E and v, SU2 has several options,
including the option called inverse volume, which is
similar to the study [11].

By using the inverse volume method, SU2
ensures mesh quality and accuracy when deforming
the mesh. This approach effectively maintains mesh
quality and enables reliable simulations.

3. Optimization Model

In this paper, two shape parameterization
methods and the SLSQP algorithm are applied to solve
an important optimization problem in aerospace
engineering, which is drag minimization for an airfoil
(2D problem) or an aircraft wing (3D problem). Drag
reduction is important in transonic flight because, in
this flight condition, normal shock waves are formed
on the surface of aircraft wings. See Fig. 4 to see how
the pressure distribution around the NACA 0012
airfoil (basic profile) is disrupted in transonic flight
conditions.

This phenomenon is also known as “wave drag”
in aerodynamics, which means this normal shock
waves cause a loss of total pressure, resulting in an
increment in drag. In this scenario, the purpose of the
optimization algorithm is to minimize this drag caused
by shock waves by deforming the basic airfoil
geometry and, as a result, terminating shock waves
formed on the airfoil surface.

This paper focuses on studying the effect of
different shape parameterization techniques on
two-dimensional aerodynamic shape optimization.
Initial freestream conditions, including Mach number,
pressure, temperature, and angle of attack, are given in
Table 1. The lift coefficient (C;) obtained from the
initial CFD simulation of the NACA 0012 airfoil is
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fixed in the optimization process. The thickness of the
airfoil and pitching moment (M) derived from this
solution are also constrained.

Fig. 4. Pressure contours around the basic profile

Table 1. Initial flow conditions for the design loop

Condition Value
Mach number 0.75
Pressure (Pa) 101.325
Temperature (K) 288.15
Angle of attack (degree) 2.00

During the design loop, the angle of attack of the
airfoil varied due to shape deformation. This was done
to ensure that the lift coefficient (obtained from the
preliminary solution) remained the same throughout
the design iterations. The results, i.e., the airfoil shape
design such that the drag value is minimized, and the
lift coefficient that was constrained, depended on the
initial angle of attack.

This work performs airfoil optimization with
many design variables (DVs) varying from 20 to 80 in
order to see how it affects the optimization process.
Optimal shape design cases use two shape
parameterization techniques, including HHBF and
FFD.

With the HHBF method, the bump position is set
at 0.5 along the Ox axis, meaning it is located at the
midpoint of the airfoil's chord. With the FFD method,
a user-defined box of FFD control points is created
surrounding the airfoil. This FFD box is then divided
with control points based on the number of DVs. In
both cases, the optimization is performed with an
increasing number of DVs, specifically 20, 40, 60, and
80, resulting in deformed airfoil shapes that meet the
requirements of the optimization problem.
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4. Results and Comparison

The optimization of the NACA 0012 airfoil using
both the FFD and Hicks-Henne Bump Function HHBF
parameterization techniques yielded significant
reductions in drag coefficient (Cp), with both methods
demonstrating effectiveness in different aspects. Fig. 5
illustrates the comparison of each parameterization
technique’s performance on the drag reduction
process.

It appears that the HHBF technique demonstrates
better performance in terms of design iteration
efficiency compared to that of FFD. Specifically, the
HHBEF technique appears to achieve comparable levels
of drag coefficient (Cp) reduction with a lower number
of design iterations in most cases.

Especially, with 20 DVs, the HHBF method
required only 20 iterations to reach a minimum Cp of

1072 Drag reduction using HHBF parameterization technique

0.001123, whereas the FFD method needed 101
iterations to achieve a slightly higher minimum Cj, of
0.001204.

However, the Cp graph of FFD shows stability
and a smooth decrease, while HHBF exhibits greater
oscillation during the optimization process. This
indicates that FFD finds the optimal solution much
more steadily and consistently than HHBF.

Fig. 6 illustrates the pressure field of optimal
solutions using HHBF and FFD techniques.
Subfigures (a), (b), (c), and (d) are solutions obtained
using the HHBF technique with 20, 40, 60, and 80
DVs, respectively.

Similarly, solutions using the FFD technique
with the same order of DV numbers are shown in
subfigures (¢), (f), (), and (h).

102 Drag reduction using FFD parameterization technique
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Fig. 5. Comparison of drag reduction using two different shape parameterization techniques

Fig. 6. Pressure fields around each optimal airfoil solution by HHBF (left) and FFD (right)
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The HHBF method yielded smoother and more
regular airfoil profiles, suggesting a potential benefit
in terms of manufacturing feasibility and aecrodynamic
performance. Fig. 7 reveals distinct differences in the
optimized airfoil profiles produced by the two
parameterization techniques. The FFD method appears
to produce a more "kinked" or non-smooth airfoil
profile compared to the HHBF method. Conversely,
the HHBF method results in a smoother and more
regular airfoil profile, due to its bump functions,
resulting in a more consistently smooth airfoil surface.
Fig. 8 illustrates to see the evolution of the original
airfoil throughout the shape Cp optimization process.

Most importantly, optimal solutions, including
minimum value and decrement of Cp concerning
parameterization techniques and number of DVs, are
shown in Table 2. Both techniques have demonstrated
significant reductions in drag coefficient for the
NACA 0012 airfoil through a profile optimization
process. On average, an impressive 89.85% reduction
in drag was achieved across all cases. Notably, the

HHBF method exhibited a distinct advantage in
convergence efficiency, requiring fewer design
iterations to achieve comparable drag reduction levels.

0.1} NACA 0012 —

FFD 20DV HHBF 20DV
HHBF 40DV
HHBF 60DV

HHBF 80DV — ||

FFD 140DV
FFD 60DV
FFD 80DV

0.08 |

0.03 |

0.03 |

—-0.05 |

0.08 |
0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1

Fig. 7. Basic profile (NACA 0012) and optimized
profiles by FFD/HHBF methods

Table 2. Drag coefficients evaluation of optimal solutions by FFD and HHBF method

DVs 20 40 60 80
Method FFD HHBF FFD HHBF FFD HHBF FFD HHBF
Initial 0.0119129
Minimum  0.001204 0.001123 0.001103 0.001244 0.001251 0.001289 0.001212 0.001252
Reduction  0.010709  0.010790 0.010810 0.010669 0.010662 0.010624 0.010701 0.010661
Reduction 89.8 90.5 90.7 89.5 89.4 89.1 89.8 89.4
(%)
Design 101 20 90 59 71 27 96 42
iterations
0.1 NACA 0012 0.1 [—  wacaonz |
-~ FFD DSN30 40DV - - - HHBF DSN20 40DV
FFD DSN60 40DV HHRF DSK43 40DV
—— FFD DSN90 40DV
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Fig. 8. Airfoil shape deformation during the optimization process by HHBF compared to FFD
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5. Conclusion

This work focused on investigating the effects of
shape parameterization techniques on numerical shape
optimization of a two-dimensional airfoil. In this work,
the open-source SU2 code was applied to perform
gradient-based aerodynamic shape optimization using
the discrete adjoint method. Two  shape
parameterization techniques were tested in the same
transonic flight conditions, including HHBF and FFD.

Several conclusions can be derived from this
study. In terms of drag reduction, HHBF and
FFD were shown to be equally effective as geometry
parameterization methods for both optimization
problems. In terms of design iterations, it appears that
the HHBF technique demonstrates better performance
in terms of design iteration efficiency compared to the
FFD method. However, when it comes to stability,
FFD shows stability and a smoother decrease in drag
values, while HHBF exhibits greater unsteadiness
during the optimization process.
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