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Abstract 

The paper studies the effect of some shape parameterization techniques on automatic two-dimensional 
aerodynamic shape optimization using the discrete adjoint method. In this paper, the Hicks-Henne Bump 
Functions (HHBF) technique and the Free-form Deformation (FFD) control points technique are used to 
parameterize the shape of the NACA 0012 airfoil. First, this paper makes a full, detailed description of the 
shape optimization workflow, including Euler equations, geometry parameterization techniques, discrete 
adjoint method, gradient evaluation, optimization algorithm, and mesh deformation. Second, it explores how 
shape parameterization techniques are implemented in the optimization problem. Finally, the results are 
evaluated to compare the efficiency of the mentioned techniques. The results suggest that, in general, both 
techniques were shown to be equally effective as geometry parameterization methods for the shape 
optimization problem. However, it appears that the HHBF technique demonstrates better performance with 
fewer design iterations compared to that of FFD technique. On the other hand, FFD shows stability and a 
smoother decrease in drag values, while HHBF exhibits greater unsteadiness during the optimization process. 

Keywords: Aerodynamic shape optimization, Hicks-Henne bump functions, Free-form Deformation. 

 

1. Introduction1 

Aerodynamic shape optimization of aircraft has 

played a crucial role in the aviation industry. In this 

scenario, the optimization of an aircraft wing's 

geometric shape to minimize drag while maintaining 

its lift is widely studied, as it helps preserve 

transportation efficiency while reducing fuel 

consumption by preventing the engine from operating 

beyond necessity. This is especially important for 

transonic flights, where shock waves form on the 

wings of the aircraft, significantly increasing drag. 

With advancements in numerical simulations, 

particularly computational fluid dynamics (CFD), the 

optimization of an aircraft wing’s geometric shape is 

now formulated using mathematical models, which 

significantly reduce costs compared to physical 

testing. Moreover, drag is ensured to be minimized 

through the gradient evaluation of the objective 

function concerning the design parameters due to the 

accuracy and efficiency of optimization algorithms. 

To represent mathematically an airfoil, several 

parameterization techniques are used to define the 

airfoil surface in mathematical form. Among these, the 

Hicks-Henne Bump Functions (HHBF) method 

employs a combination of bump functions to describe 

the airfoil shape, while the Free-form Deformation 
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(FFD) method utilizes control points that represent 

specific locations on the airfoil surface in its 

parametric volume. 

 Earlier in the 20𝑡ℎ century, several works were 

conducted in the field of aerodynamic shape 

optimization, aiming to improve aerodynamic 

performance through systematic modification of 

geometry. These works were the foundation, as well as 

an inspiration, for this article to be completed. Among 

these, the Hicks-Henne bump function method, 

originally introduced by Hicks and Henne in 1978 [1], 

has been widely used due to its simplicity and 

effectiveness in controlling airfoil surface geometry 

with a limited number of design variables. In the work 

published in 1978, R. M. Hicks and P. A. Henne 

demonstrate this technique through three design 

problems on a swept wing, including shock drag 

reduction with volume constraint, lift-drag ratio 

increment, and good stall progression achievement, by 

modifying the wing’s surface.  

Later in 1986, the Free-form Deformation 

technique was first introduced by Sederberg and Parry 

[2]. This offered greater geometric flexibility by 

embedding the geometry in a lattice of control points, 

making it particularly suitable for complex three-

dimensional shape modifications. 
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Later in the 21𝑠𝑡 century, some researchers have 

also done similar work to this aeroelastic shape 

optimization topic. In 2017, D. A. Masters et al. tested 

seven parameterization techniques, including CSTs, 

B-Splines, Hicks-Henne bump functions, Radial Basis 

function (RBF) approach, Bezier surfaces, a singular 

value decomposition method (SVD), and the PARSEC 

method, within the analysis of 2000 airfoils [3]. 

Regarding to the use of SU2 code, in 2018,           

G. Yang and A. D. Ronch also studied the 

aerodynamic shape optimization of the transonic 

airfoils, including inviscid NACA 0012 and turbulent 

RAE 2822 with lift constrained, with the 

implementation of HHBF and FFD methods in the 

SU2 environment [4], except that they employed the 

continuous adjoint approach in their work. 

The discrete adjoint solver was integrated into the 

SU2 framework in 2016 by T. Albring, M. Sagebaum, 

and N. R. Gauger to explore new and interesting 

optimization problems [5]. In their work, they applied 

the discrete adjoint method to the aerodynamic design 

of 3D models. 

In this work, we take on the task of studying the 

effect of HHBF and FFD methods, with the 

implementation of a discrete adjoint approach, on two-

dimensional lift-constrained airfoil optimization. 

These geometric parameterization methods are already 

integrated into the SU2 code, an open-source CFD 

simulation and optimization tool, which we will use to 

support this research [6]. 

 

Fig. 1. Optimal design loop for NACA 0012 

2. Numerical Approach 

2.1. Optimization Framework 

The flow solver analyzes aerodynamic forces on 

the NACA 0012 airfoil with initial conditions and a 

grid. The chosen objective function is drag, optimize 

the airfoil with minimum drag constraint, and the 

result is the optimized geometry of the NACA 0012 

airfoil after reaching the specified converged criterion 

or the maximum number of iterations. 

The optimization process starts with a baseline 

geometry and grid as input to the design loop, along 

with a chosen objective function (J) and a set of design 

variables (x). After analyzing the flow for the first 

time, if the analyzed sensitivity has converged, the 

process is completed. Otherwise, design variables will 

be optimized again until the objective function reaches 

the specified converged criterion, or the process 

reaches the maximum number of iterations. See Fig. 1 

to understand the airfoil shape optimization workflow. 

2.2. Numerical Flow Solver 

The compressible Euler equations based on the 

Navier-Stokes equations with zero viscosity and zero 

thermal conductivity are used in this case:  

R(𝑈) =
∂U

∂t
+ ∇ ⋅ 𝐹𝑐̅(𝑈) − S = 0 (1) 

where the conservative variables are the working 

variables and are given by: 

𝑈 = {𝜌, 𝜌𝑣̅, 𝜌𝐸}𝑇 (2) 

and S is a generic source term. The convective flux is: 

𝐹𝑐̅ = {𝜌𝑣̅, 𝜌𝑣̅ ⊗ 𝑣̅ + 𝐼𝑝̿, 𝜌𝐸𝑣̅ + 𝑝𝑣̅} (3) 

where ρ is the fluid density, 𝑣̅ = {𝑢, 𝑣, 𝑤}𝑇 ∈ 𝑅𝟛 is the 

flow speed in the Cartesian system of reference,  𝐸 is 

the total energy per unit mass, and 𝑝 is the static 

pressure. Using the gas model, which is a perfect gas 

with an adiabatic index of 𝛾 and gas constant 𝑅, the 

fluid solver can close the system by determining the 

pressure from 𝑝 = (γ − 1)ρ[𝐸 − 0.5(𝑣̅ ⋅ 𝑣̅)] [7]. 

2.3. Geometry Parameterization Techniques 

Parameterization methods are used to describe 

the surface of the airfoil. They are categorized as either 

constructive or deformative methods [3]. Hicks-Henne 

bump functions and Bezier surface FFD are two 

common deformative methods that have been 

integrated into SU2. The main idea is to manipulate the 

original airfoil shape to create a new one. 

2.3.1. Hicks-Henne bump functions 

Hicks-Henne bump functions are introduced to 

an existing airfoil baseline to mathematically deform it 

by ‘bumping’ at local positions where that function is 

defined. As mostly used in 2D problems, its equations 

are given as follows: 
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{
 
 

 
 𝑦 = 𝑦𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 +∑𝑏𝑖(𝑥)

𝑛

𝑖=1

𝑏𝑖(𝑥) = 𝑎𝑖 [sin (𝜋𝑥
log 0.5
log ℎ𝑖 )]

𝑡𝑖

 , 0 ≤ 𝑥 ≤ 1

(4) 

where n is the number of bump functions; 𝑏𝑖(𝑥) is the 

bump function proposed by Hicks and Henne [1]; 𝑎𝑖 is 

the amplitude of the ith function, which also serves as 

a design variable; ℎ𝑖 is the location of the maximum 

point of the bump on the X-axis and 𝑡𝑖 is the width of 

the bump. In Fig. 2, each bump function reaches its 

maximum value at 𝑥 = ℎ𝑖  and that x location is 

represented by a vertical red dotted line. 

 

Fig. 2. Airfoil parameterized using HHBF 

2.3.2. Free-form Deformation Bezier surface 

FFD was first presented by Sederberg and Perry 

[2], which encapsulates an airfoil or a wing inside a 

box defined by lattices, serving as control points. By 

moving them, we deform the enclosed airfoil. 

The problem’s dimension requires the use of 

either a bivariate surface (2D) or trivariate volume 

(3D), which utilizes Bézier curves or B-Spline for the 

blending function. 

The equations that govern the parameterized 

Bézier volume can be expressed as follows: 

𝑿(ξ, 𝜂, 𝜁) =∑∑∑𝑷𝑖𝑗𝑘𝐵𝑖
𝑙(𝜉)𝐵𝑗

𝑚(𝜂)𝐵𝑘
𝑛(𝜁)

𝑛

𝑘=0

𝑚

𝑗=0

𝑙

𝑖=0

 (5) 

where l, m, n are the degrees of the blending function; 

ξ, 𝜂, 𝜁 are the coordinates in the parametric 

coordinate system; 𝑷𝑖𝑗𝑘  are the Cartesian coordinates 

of the control point (i, j, k); 𝑿 are the corresponding 

Cartesian coordinates for given Bézier volume 

coordinates; 𝐵𝑖
𝑗(𝛼) is a Bernstein polynomial [4], 

which is expressed as: 

𝐵𝑖
𝑗(𝛼) =

𝑗!

𝑖! (𝑗 − 𝑖)!
𝛼𝑖(1 − 𝛼)𝑗−𝑖  (6) 

Fig. 3 describes how the NACA 0012 airfoil is 

encapsulated in an FFD box, defined by 40 control 

points in the x-direction and 1 in the y-direction. 

 

Fig. 3. Airfoil parameterized using FFD box 

2.4. Discrete Adjoint Method 

In the optimization framework, flow solution 

analysis, represented by the “Analysis” box in the 

flowchart in Fig. 1, is performed to evaluate how flow 

solutions affect the objective function. This calculation 

is called the adjoint solution. For the adjoint flow 

solver, a discrete adjoint approach is employed in this 

work. In SU2, the discrete adjoint method is an 

approach used for gradient-based aerodynamic shape 

optimization. It efficiently computes the gradients of 

an objective function (e.g., drag coefficient) 

concerning a large number of design variables. Unlike 

the continuous adjoint method, which derives adjoint 

equations from the continuous Navier-Stokes or Euler 

equations before discretization, the discrete adjoint 

method directly differentiates the discretized flow 

equations. This ensures that the adjoint solution is 

consistent with the numerical scheme used for solving 

the flow equations. 

In this research, the primal flow equations are 

solved by discretizing them using the finite volume 

method (FVM). The solution provides pressure, 

velocity, density, and lift coefficient 𝐶𝐿  and drag 

coefficient 𝐶𝐷. The discrete adjoint equations are 

derived by differentiating the discretized governing 

equations for the design variables. 

[
𝜕𝑅

𝜕𝑈
]
𝑇

𝝀 =
𝜕𝐽

𝜕𝑈
  (7) 

where 𝑅 are the residuals of the flow equations, 𝑈 are 

the flow variables (density, velocity, energy, etc.), 𝐽 is 

the objective function (drag coefficient 𝐶𝐷), 𝝀 are the 

adjoint variables (Lagrange multipliers) [5]. 

By solving this linear system, the adjoint 

variables 𝝀 are obtained, providing information on 

how the objective function changes to small 

perturbations in flow variables. 

2.5. Gradient Evaluation 

Continuing with the workflow of aerodynamic 

optimization, sensitivity analysis is subsequent to flow 

solution analysis. In this module, the gradient of the 

objective function concerning the shape design 

variables is computed. The sensitivity analysis within 

the optimal shape design loop is obtained with the 
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gradient evaluation using the discrete adjoint method, 

which can be described as the following equation: 

𝑑𝐽

𝑑𝑥𝑖
= −𝜆 [

𝜕𝑅

𝜕𝑥𝑖
]
𝑇

 (8) 

where 𝑅(𝑈, 𝑥) = 0 represents the flow governing 

equations (Euler) in SU2; 𝜆 is the adjoint variable, 

obtained by solving the adjoint equation [5]. 

This equation provides efficient gradient 

computation without requiring costly finite difference 

evaluations. 

2.6. Sequential Least Squares Programming 

Optimization Algorithm 

In this particular aerodynamic optimization using 

the SU2 code, this paper utilizes the Sequential Least 

Squares Programming Optimization Algorithm 

(SLSQP) to minimize the drag of the 2D NACA 0012 

airfoil in transonic flight conditions while taking 

constraints into consideration. SLSQP optimizer is a 

sequential least squares programming algorithm which 

uses the Han–Powell quasi–Newton method with a 

Broyden–Fletcher–Goldfarb–Shanno (BFGS) update 

of the B–matrix and an L1–test function in the step–

length algorithm [8]. 

Sequential Quadratic Programming (SQP) is one 

of the most successful classes of algorithms for solving 

non-linear optimization problems (NLP). It solves an 

NLP problem by iteratively formulating and solving a 

sequence of Quadratic Programming (QP) 

subproblems. The Sequential Least Squares 

Programming algorithm (SLSQP) has been one of the 

most widely used SQP algorithms since the 1980s [9]. 

In aerodynamic shape optimization, the problem 

is typically formulated as: 

min
𝑥
𝐽(𝑥) (9) 

subject to constraints: 

𝑔𝑖(𝑥) ≤ 0, 𝑖 = 1, 2, … ,𝑚 

ℎ𝑗(𝑥) = 0, 𝑗 = 1, 2, … , 𝑝 

where 𝑥 represents design variables (e.g., shape 

parameters like Hicks-Henne bump amplitudes or FFD 

control points); 𝐽(𝑥) is the objective function (e.g., 

minimizing drag coefficient 𝐶𝐷); 𝑔𝑖(𝑥) are inequality 

constraints (e.g., thickness constraints, volume 

constraints); ℎ𝑗(𝑥) are equality constraints (e.g., 

maintaining a fixed lift coefficient 𝐶𝐿). 

SLSQP solves a sequence of Quadratic 

Programming (QP) subproblems. At each iteration 𝑘, 

it approximates the objective function and constraints 

using a quadratic model: 

min
𝑑
∇𝐽(𝑥𝑘)𝑇𝑑 +

1

2
𝑑𝑇𝐻𝑑 (10) 

subject to: 

𝛻𝑔𝑖(𝑥
𝑘)𝑇𝑑 + 𝑔𝑖(𝑥

𝑘) ≤ 0, 𝑖 = 1,… ,𝑚 

𝛻ℎ𝑗(𝑥
𝑘)𝑇𝑑 + ℎ𝑗(𝑥

𝑘) = 0, 𝑗 = 1,… , 𝑝 

where 𝑑 = 𝑥𝑘+1 − 𝑥𝑘 is the step direction; 𝛻𝐽(𝑥𝑘) is 

the gradient of the objective function at iteration 𝑘, 

computed using the adjoint method in SU2; 𝐻 is an 

approximate Hessian matrix, often updated using 

BFGS quasi-Newton methods; 𝛻𝑔𝑖(𝑥
𝑘) and 

𝛻ℎ𝑗(𝑥
𝑘) are the gradients of the constraints [8]. 

For lift constraint enforcement, the following 

term is taken into consideration: 

ℎ(𝑥) = 𝐶𝐿(𝑥) − 𝐶𝐿
∗ (11) 

where 𝐶𝐿
∗ is the target lift coefficient. The gradient of 

𝐶𝐿 is also computed using the adjoint method: 

𝑑ℎ

𝑑𝑥𝑖
=
𝑑𝐶𝐿
𝑑𝑥𝑖

= −𝜆 [
𝜕𝑅

𝜕𝑥𝑖
]
𝑇

 (12) 

SLSQP ensures that ℎ(𝑥) = 0 is satisfied in each 

design iteration. 

Once the quadratic subproblem is solved at each 

iteration 𝑘, the design variables are updated using: 

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑
𝑘 

where 𝛼𝑘 is a step size determined by a line search 

strategy [8]. 

2.7. Mesh Deformation 

Mesh deformation also plays an essential role in 

the optimization framework. Once the airfoil geometry 

is deformed by the optimization algorithm after 

gradient evaluation, the surrounding volume mesh 

needs to be deformed. The technique applied in SU2 is 

to model the mesh element as an elastic solid using the 

equations of linear elasticity (ELA). 

ELA governs the small displacement vector       

𝑢(𝑥) = (𝑢, 𝑣, 𝑤) of an elastic solid subject to body 

forces and surface tractions [9], which can be written 

as: 

∇ ⋅ σ = 𝑓 on Ω, (13) 

where 𝑓 is body force, Ω is the computational domain 

and σ is the stress tensor given by the constitutive 

relation: 

σ = λ𝑇𝑟(ϵ)𝐼 + 2μ𝜖, (14) 

where 𝜖 is the strain tensor and 𝑇𝑟 is its trace. 𝜆 and 𝜇 

are the Lamé constants, depending on the properties of 

the elastic material, given as a function of Young’s 

modulus 𝐸 and Poisson’s ratio ν: 

              λ =
ν𝐸

(1 + ν)(1 − 2ν)
                                    (15)

                     μ =
𝐸

2(1 + ν)
                                           (16)  
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Young’s modulus 𝐸 indicates the stiffness of the 

material, where large 𝐸 means rigidity. Poisson’s ratio 

measures how much the material shrinks in the  

lateral direction as it extends in the axial direction 

(−1 < ν <
1

2
  for physical materials). 

To quantify the deformation of a material fiber in 

an elastic body, the equation of the linear kinematic 

law is applied: 

ϵ =
1

2
(∇𝑢 + ∇𝑢𝑇) (17) 

Then, the system is completed by applying 

Dirichlet boundary conditions, 𝑢 = 𝑔 on ∂Ω. 

This set of equations is discretized using a 

Galerkin method based on the trial and test spaces. 

Since a complete explanation of this approach exceeds 

the article's purpose, the reader should refer to [10]. 

To achieve robustness and accuracy when large 

displacements, K. Stein, Tayfun Tezduyar, and               

R. Benney have applied it with an elastic stiffness 

varying in inverse proportion to the cell volume, 

aiming to maintain quality mesh near the bodies (it 

could be boundary layers or high-resolution zones) 

[11]. To set up for 𝐸 and 𝜈, SU2 has several options, 

including the option called inverse volume, which is 

similar to the study [11]. 

By using the inverse volume method, SU2 

ensures mesh quality and accuracy when deforming 

the mesh. This approach effectively maintains mesh 

quality and enables reliable simulations. 

3. Optimization Model 

In this paper, two shape parameterization 

methods and the SLSQP algorithm are applied to solve 

an important optimization problem in aerospace 

engineering, which is drag minimization for an airfoil 

(2D problem) or an aircraft wing (3D problem). Drag 

reduction is important in transonic flight because, in 

this flight condition, normal shock waves are formed 

on the surface of aircraft wings. See Fig. 4 to see how 

the pressure distribution around the NACA 0012 

airfoil (basic profile) is disrupted in transonic flight 

conditions. 

This phenomenon is also known as the term 

“wave drag” in aerodynamics, which means this 

normal shock waves cause a loss of total pressure, 

resulting in an increment in drag. In this scenario, the 

purpose of the optimization algorithm is to minimize 

this drag caused by shock waves by deforming the 

basic airfoil geometry and, as a result, terminating 

shock waves formed on the airfoil surface.  

This paper focuses on studying the effect of 

different shape parameterization techniques on two-

dimensional aerodynamic shape optimization. Initial 

freestream conditions, including Mach number, 

pressure, temperature, and angle of attack, are given in 

Table 1. The lift coefficient (CL) obtained from the 

initial CFD simulation of the NACA 0012 airfoil is 

fixed in the optimization process. The thickness of the 

airfoil and pitching moment (MZ) derived from this 

solution are also constrained. 

 

 

Fig. 4. Pressure contours around the basic profile. 

 
Table 1. Initial flow conditions for the design loop 

Condition Value  

Mach number 0.75  

Pressure (Pa) 101325  

Temperature (K) 288.15  

Angle of attack (degree) 2.00  

 

During the design loop, the angle of attack of the 

airfoil varied due to shape deformation. This was done 

to ensure that the lift coefficient (obtained from the 

preliminary solution) remained the same throughout 

the design iterations. The results, i.e., the airfoil shape 

design such that the drag value is minimized, and the 

lift coefficient that was constrained, depended on the 

initial angle of attack. 

This work performs airfoil optimization with 

many design variables (DVs) varying from 20 to 80 in 

order to see how it affects the optimization process. 

Optimal shape design cases use two shape 

parameterization techniques, including Hicks-Henne 

bump functions (HHBF) and FFD. 

With the HHBF method, the bump position is set 

at 0.5 along the Ox axis, meaning it is located at the 

midpoint of the airfoil's chord.  With the FFD method, 

a user-defined box of FFD control points is created 

surrounding the airfoil. This FFD box is then divided 

with control points based on the number of DVs. In 

both cases, the optimization is performed with an 

increasing number of DVs, specifically 20, 40, 60, and 

80, resulting in deformed airfoil shapes that meet the 

requirements of the optimization problem. 
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4. Results and Comparison 

The optimization of the NACA 0012 airfoil using 

both the FFD and Hicks-Henne Bump Function 

(HHBF) parameterization techniques yielded 

significant reductions in drag coefficient (CD), with 

both methods demonstrating effectiveness in different 

aspects. Fig. 5 illustrates the comparison of each 

parameterization technique’s performance on the drag 

reduction process. 

It appears that the HHBF technique demonstrates 

better performance in terms of design iteration 

efficiency compared to that of FFD. Specifically, the 

HHBF technique appears to achieve comparable levels 

of drag coefficient (𝐶𝐷) reduction with a lower number 

of design iterations in most cases. Especially, with 20 

DVs, the HHBF method required only 20 iterations to 

reach a minimum 𝐶𝐷 of 0.001123, whereas the FFD 

method needed 101 iterations to achieve a slightly 

higher minimum 𝐶𝐷 of 0.001204. 

However, the 𝐶𝐷 graph of FFD shows stability 

and a smooth decrease, while HHBF exhibits greater 

oscillation during the optimization process. This 

indicates that FFD finds the optimal solution much 

more steadily and consistently than HHBF. 

Fig. 6 illustrates the pressure field of optimal 

solutions using HHBF and FFD techniques. 

Subfigures (a), (b), (c), and (d) are solutions obtained 

using the HHBF technique with 20, 40, 60, and 80 

DVs, respectively. Similarly, solutions using the FFD 

technique with the same order of DV numbers are 

shown in subfigures (e), (f), (g), and (h). 

 

Fig. 5. Comparison of drag reduction using two different shape parameterization techniques 

 

Fig. 6. Pressure fields around each optimal airfoil solutions by HHBF (left) and FFD (right) 

 

a b 

c

 

d

 

e

 

f

 

g

 

h
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The HHBF method yielded smoother and more 

regular airfoil profiles, suggesting a potential benefit 

in terms of manufacturing feasibility and aerodynamic 

performance. Fig. 7 reveals distinct differences in the 

optimized airfoil profiles produced by the two 

parameterization techniques. The FFD method appears 

to produce a more "kinked" or non-smooth airfoil 

profile compared to the HHBF method. Conversely, 

the HHBF method results in a smoother and more 

regular airfoil profile, due to its bump functions, 

resulting in a more consistently smooth airfoil surface. 

View Fig. 8 to see the evolution of the original airfoil 

throughout the shape CD optimization process.  

Most importantly, optimal solutions, including 

minimum value and decrement of CD concerning 

parameterization techniques and number of DVs, are 

shown in Table 2. Both techniques have demonstrated 

significant reductions in drag coefficient for the 

NACA 0012 airfoil through a profile optimization 

process. On average, an impressive 89.85% reduction 

in drag was achieved across all cases. Notably, the 

HHBF method exhibited a distinct advantage in 

convergence efficiency, requiring fewer design 

iterations to achieve comparable drag reduction levels. 

 Fig. 7. Basic profile (NACA 0012) and optimized 

profiles by FFD/HHBF methods

 

Table 2. Drag coefficients evaluation of optimal solutions by FFD and HHBF method

DVs 20 40 60 80 

Method FFD HHBF FFD HHBF FFD HHBF FFD HHBF 

Initial 0.0119129 

Minimum 0.001204 0.001123 0.001103 0.001244 0.001251 0.001289 0.001212 0.001252 

Reduction 0.010709 0.010790 0.010810 0.010669 0.010662 0.010624 0.010701 0.010661 

Reduction 

(%) 

89.8 90.5 90.7 89.5 89.4 89.1 89.8 89.4 

Design 

iterations 

101 20 90 59 71 27 96 42 

  

 

Fig. 8. Airfoil shape deformation during the optimization process by HHBF compared to FFD
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5. Conclusion 

This work focused on investigating the effects of 

shape parameterization techniques on numerical shape 

optimization of a two-dimensional airfoil. In this work, 

the open-source SU2 code was applied to perform 

gradient-based aerodynamic shape optimization using 

the discrete adjoint method. Two shape 

parameterization techniques were tested in the same 

transonic flight conditions, including Hicks-Henne 

Bump Functions and FFD. 

Several conclusions can be derived from this 

study. In terms of drag reduction, Hicks–Henne bump 

functions and Free–form Deformation were shown to 

be equally effective as geometry parameterization 

methods for both optimization problems.  In terms of 

design iterations, it appears that the HHBF technique 

demonstrates better performance in terms of design 

iteration efficiency compared to the FFD method. 

However, when it comes to stability, FFD shows 

stability and a smoother decrease in drag values, while 

HHBF exhibits greater unsteadiness during the 

optimization process. 
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