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Abstract

These days, collaborative robots (Cobot) are well-known for their adaptability and several uses. With a
7-degree-of-freedom cobot model, the work emphasises more the flexibility as a benefit to overcome the joint
constraints usually faced in robotic systems. Applying the Jacobian matrix approach with its null-space helps
one to consider the kinematics and dynamics issue in order to prevent joint limitation. Whereas orientation is
stated using Roll-Pitch-Yaw angles, the inverse kinematics problem involves parameterising the robot's
end-effector by its position in Cartesian coordinates. By means of the null space of the Jacobian matrix, one
can escape joint constraints in robotic mobility. Emphasising great accuracy in computations with two path
planning: rectilinear and curved path, this research offers a thorough study of the trajectory tracking control
dynamics. Different modules and simulation results of various challenges have been numerically implemented
in MATLAB-Simulink and the ROS environment to show the efficiency of the suggested method after analysis

of the computations.
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1. Introduction

Designed with capabilities as human hand,
collaborative robots—also known as cobots—can be
employed extensively with mass production. Robotic
manufacturing is evident daily in many different
contexts nowadays. Cobots are well-known for their
autonomous functioning, safety elements, and rapid
deployment adaptability. Unlike other industrial
robots, cobots have the main benefits in terms of
lightweight, small size and their capacity to perform
several tasks without changes [1].

Some cobot arms include 7 degrees of freedom
(DOF) with a human arm structure to improve
dexterity during operation. This structure lets us obtain
analytical solutions of the inverse kinematic issue by
means of position and orientation decoupling [2]
without offsets at shoulder and wrist. But since it's hard
to distribute three axes intersecting at one place, this
structure questions the mechanical design. Design and
construction of a manipulator with offsets at shoulder
and wrist is simpler conversely. Still, the structure with
offsets causes inverse kinematics problems to become
more challenging. For several studies, inverse
kinematics problem for redundant robots has been a
fascinating subject [3 - 5]. Analytical approaches using
position-orientation decoupling, numerical techniques
including the Newton-Raphson method, Jacobian

transpose methods [3, 5], pseudoinverse matrix
methods, and optimization-based constrained
solutions are among the several well-known
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approaches to solve inverse kinematics. Especially, the
analytical position-orientation decoupling technique is
relevant just for some configurations [6, 7].

Jacobian-based approach offers various benefits
using a redundant robot. Directly the joint velocities
and Cartesian velocities are solved using inverse
kinematics with velocity level. Moreover, by use of the
damped least squares pseudoinverse and the null space
of the Jacobian matrix [8, 12], obstruction, joint limit
limitations, and singularities can be essentially
avoided.

This paper introduces a fully integrated and
simulation-validated solution for a redundant 7-DOF
collaborative robot with non-ideal geometry, where
joint limit avoidance is achieved via Jacobian
null-space projection. During task performance, this
approach ensures the safe operational ranges for arm's
movements and joint angles. To show the success of
the suggested approach, numerical simulations are
carried out with high accuracy. While the differential
equations of motion are calculated using the Lagrange
method to enable trajectory tracking control based on
inverse dynamics, hence testing the accuracy of the
method, the end-effector orientation is defined in these
simulations using Roll-Pitch-Yaw angles. MATLAB
generates the simulation results; they are then
evaluated on the Robot Operating System (ROS)
platform, therefore guaranteeing practical applicability
and robustness.
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2. Kinematics Problem
2.1. Forward Kinematics

The 7-DOF collaborative robot model is shown
in Fig. 1. The forward kinematics solution is derived
using the Denavit-Hartenberg (DH) method. The
coordinate frames are assigned to the robot links
following the DH convention, and the corresponding
DH parameters are illustrated in Fig. 1 and listed in
Table 1, the upper and lower limits of each joint of the
cobot are listed in Table 2. Here,q; (i = 1,2,...,7)
represent the joint variables.

Fig. 1. Model of 7-DOF cobot

Table 1. D-H table of 7-DOF cobot

link i 0 (rad) d(m) a(m) «(rad)

1 q dy 0 /2
2 q2 d, 0 /2
3 qs ds 0 /2
4 qs d, 0 /2
S qs ds 0 /2
6 de de ag /2
7 q; d, 0 0

The homogeneous transformation matrix

Ai7Y(qy) for each joint is derived from the DH
parameters in Table 1 in the following form:

A7) =
cos@; —sinf;cosa; sinf;sina; a;cos6;
sinf; cos@;cosa; —cos6;sina; a;sing; (1)
0 sina; cos a; d;
0 0 0 1
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Table 2. The upper and lower limits of each joint of
7-DOF cobot

Joint  Lower limit Upper limit Range

) ©) ©)
1 175 —175 350
2 355 5 350
3 175 —175 350
4 355 5 350
5 175 —175 350
6 355 5 350
7 175 -175 350

Position and orientation of link k is determined
as following:

TR (q) = AY(q1)A%(q2) ... Ak (qx)
= [Rz(q) ré?m)], k=12,...7
0 1

Positions of coordinate frame origins of each
links are obtained through results of forward

kinematics: rgl)) (@) =1[0,0,d,]7,

2)

l‘ég)(Q) = [d;sing, —d; cos q, d;]",
r”(q) = [d, sing, +

d3 cos gy sing,,—d; cosq; +
dssing, sing,,d; — ds cos q;]"

3)

Due to the offsets in the shoulder and wrist, no
two coordinate frame origins coincide. The
expressions for the position and orientation of the
end-effector are highly complex in terms of the joint
variables. As a result, the position-orientation
decoupling method cannot be applied to the inverse
kinematics problem with this configuration.

2.2. Differential Kinematics and Jacobian Matrix

The end-point velocity and the angular velocity
of the end-effector link are linearly related to the joint

velocities q = [§1, 42, -, 47]-

vi” = (@4 (4)

0@ =Jz(q)q (5)

In these formulation, the rotational and
translational Jacobian matrices are obtained as
following:

@= 20 (tg — 16,), 2 (15 = 15,) -
2 (ry — 1o,)]
Jr(@) = [k RIKk,..,R?_/K,...,R2K],
where k = [0,0,1]7

(6)
()
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2.3. Position and Orientation of End-Effector

Let n; and m, be the position and orientation
vector of end-effector, in which:

n,=[* Y& 2e]7 is vector of position of
end-effector in fixed coordinate system;

N, =Y 6 ¢] is vector of Roll-Pitch-Yaw
angles (Z —Y — X Euler angles).

Rotation matrix of end-effector as function of
M is given by: R = R (¥)R,, ()R, (¢p)

The angular velocity vector of the end-effector
in terms of Z — Y — X Euler angles is computed as:

o©® = QM )M, (3)
and 1), = Q' (M) 0@ )
0 —siny cosycosh
with Q(m,) = [0 cosy  siny cos 9],
1 0 —sinf
cosytanf sinytand 1
Qi(my) = [ —siny cosy 0]
cosyp /cos@ sinyp /cosf O

To ensure the existence of the inverse matrix
Q1(my), Pitch angle 8 must satisfy: 8 # +m/2..

The velocity vector of the end-effector,
including linear and angular velocity, is expressed
as:

3= [m] _ [ Jr(Q)

N, Q' (m)Ir(@)

2.4. Inverse Kinematic

|a=10n. @410y

The inverse kinematics problem is formulated
as follows: Given the position and orientation of the

end-effector, represented by r7(0) and RY through six
parameters M, and 1, we need to determine the
joint variables q;, k =1,...,7..

Due to the offsets at the shoulder and wrist,
Pieper's method (position-orientation decoupling)
cannot be applied to solve the inverse kinematics of
the collaborative robot [2]. Additionally, since a
7-DOF collaborative robot is a redundant manipulator,
the inverse kinematics problem needs to be solved
at the velocity level based on (10).

Assuming the Jacobian matrix is ] = J(n,, q),
a 6 X 7 matrix with rank 6, and given vectors 1 and
q , the inverse kinematics problem consists of 6
equations with 7 unknown joint velocities ¢. Using
the weighted pseudoinverse matrix method, we
obtain the optimal solution for q as:

a = T + 1= 11z,
with Jif = WiT w17

(1)
(12)

where Jy;, is the weighted pseudoinverse matrix of J;
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Z, € R7 is an arbitrary vector, 1€ R”*7 is the
identity matrix, and W € R”*’is a weighting matrix.

In certain special cases, if the weighting matrix
is the identity matrix, we obtain:

Jr=7rr (13)

where J* is the pseudoinverse of the Jacobian
matrix. Substituting into Equation (11), we get:

Q=7+ [1-JTz (14)

By selecting an appropriate vector z,, the
redundancy of the manipulator can be leveraged to
avoid kinematic singularities, obstacle, and joint
limit. Typically, the vector z, is chosen as follows:

@\’
«(%5")
where « is a constant and greater than 0, and ¢(q)
is the objective function. Since the solution shifts
along the gradient of the objective function, the goal
is to locally maximize it while satisfying kinematic
constraints. Typical objective functions include
following:

Zo—

(15)

e The distance measurement to joint midpoints,

defined as:

o) = —33Lq ¢

where q;y, qim and g; represent the maximum limit,
minimum limit, and midpoint of the joint's working
range, respectively, with positive weights c;.
Maximizing this function drives the joint variables
toward their mid-range values, utilizing redundancy
to keep joints away from their limits, thus avoiding
joint collision to joint limits.

qi—d; )
qiM—4im

(16)

e The distance measurement to obstacles, defined

as:

®(q) = min||p(q) — of| (17)

where o0 is position vector of an arbitrary point
belonging to the obstacle (e.g: the mass center),
p(q) is the position of the point on the manipulator
that approaches an obstacle too closely.

The joint variables q(t) are computed using:
t .
q(t) = q(to) + J, qdt (18)

To reduce accumulated errors from numerical
integration, kinematic feedback is applied, and the
joint velocity q is computed as:

a=J*+Km-n@) +1-J*z (19

The block diagram of the velocity-level inverse
kinematics algorithm using the Jacobian method is
shown in Fig. 2.
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v

n(o)

o) d f
n(0) q(0)

Fig. 2. The block diagram of the velocity-level inverse
kinematics algorithm using the Jacobian method
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3. Dynamics and Control
3.1. Dynamic Model

The equations of motion are derived using
Lagrange's approach. Dynamic parameters are
presented in Table 3. The differential equation of
motion is formulated as:

M(q)q +C(q.9)q +g(q) = u (20)
The mass matrix is computed as following:
M(@) = S [Ifmidn + TRRARJR] - 2D

The generalized force vector due to gravity is
given by:

gl = -3, mJ1,(q)g® (22)

The Coriolis matrix is derived from the mass
matrix using Christoffel symbols:

C(q, @) ={Ci;(q, a4} = ¢ Cijidr

Ciop =+ (amii 4 Omae am}'k)
Uk ™ 2\ aqy aq; 9q;

(23)

3.2. Trajectory Tracking Control

Using the outcomes of the inverse kinematics
problem, we formulate the trajectory tracking control
problem through inverse dynamics. The problem's
input is the predetermined trajectory of the
end-effector. The intended joint trajectory is

Table 3. Dynamic parameters of 7-dof collaborative robot

established using a path planning algorithm, followed
by the application of inverse kinematics to ascertain
the requisite joint angles, then deriving the necessary
torques and forces operating on the joints. The
objective of the control challenge is to ensure the
robot's end-effector moves as intended and that the
tracking error approaches zero.

d+K,+K,g=0 (24)

To achieve this, we select the control function
as follows:

u = M(q)y + C(q,9)q + g(q) (25)
in whichy = 4, + K,4 + K, 4, d = q, — q.

The algorithm diagram for trajectory tracking
control based on inverse dynamics is illustrated in
Fig. 3.

4. Simulation Results

The inverse kinematics and trajectory tracking
control problem based on inverse dynamics is
simulated in MATLAB.

The desired trajectory is designed as follows:

_ (sp=si) (mt 1 . 2mt
@) = s; +T(§—551n?),0 <t<t (26)

The orientation of the end-effector, described by
Roll-Pitch-Yaw (R — P —Y) angles, is given as
follows:

le(tf) - 12(0) (ﬂ_t B lsin @),

12(0) = 1 (0) + S (- ST

The trajectory is designed in two following
cases:

Case 1: Circular trajectory

The end-effector moves along a circular path
with  radius R =0.133m, Dbegins from
A (0.3335,—0.4781, 0.2654) to B (0.3205,
—0.2131, 0.2855).

Link 1 Link 2 Link 3 Link 4 Link 5 Link 6 Link 7
Mass [kg] 4.89 4.14 4.12 242 2.74 1.74 0.33
Moment of Inertia
L;;[kg. m?] 0.012 0.11 0.08 0.04 0.067 0.00188 0.000339
L [kg. m?] 0.01 0.1 0.007 0.04 0.003 0.00188 0.000339
1,;[kg. m?] 0.01 0.007 0.008 0.003 0.067 0.00213 0.000528
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Fig. 3. The algorithm model for trajectory tracking control based on inverse dynamics
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Fig. 4. Simulation of inverse kinematics using joint limit avoidance in circular trajectory;

(a) Motion of cobot model; (b) Joint variables with respect to time;

(c) Desired position of end-effector; (d) Position error of end-effector;

(e) Desired orientation angles of end-effector; (f) Orientation angle error of end-effector
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Fig. 5. Simulation of inverse dynamics using joint limit avoidance in rectilinear trajectory;

(a) Motion of cobot model; (b) Error of joint variables with respect to time;

(c) Calculated joint variables with respect to time; (d) Desired joint varialbes with respect to time;

(e) Desired position of end-effector; (f) Position error of end-effector;

(g) Desired orientation angles of end-effector; (h) Orientation angle error of end-effector
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Fig. 6. Visualization of robot in different poses on ROS environment

Fig. 4 shows the inverse kinematics with joint
limit avoidance solution. The precision of the
suggested approach is demonstrated by the
inaccuracy of 107°m. The robot moves
continuously, without any sudden changes. The joint
variations are in safe operational areas, so they can
lower the danger of running across kinematic
singularities and hardware constraints.

Case 2: Rectilinear trajectory

The end-effector moves along a rectilinear path
from A (0.3534,—-0.4814, 0.2818) to B (0.2586,
—0.3318, 0.2256).

The example of trajectory control with joint
limit avoidance is depicted in Fig. 5. The error in this
calculation is 10~* m, which indicates that both in
position and orientation the suggested computing
techniques are efficient. For pragmatic uses, the
smooth and continuous trajectories of all links can be
advantageous. Well used during robot motion is the
joint limit avoidance.

Robot motion in ROS environment has been
implemented using MATLAB computation data
(Fig. 6). Both position and orientation angles in
various robot paths planning (circular and rectilinear
path) are shown in Fig. 6a and Fig. 6b in different
poses of robot. These figures show that the numerical
computations are concise and ready for use
practically.

5. Conclusion

This work addresses the inverse kinematic and
dynamic problems of a 7-degree-of-freedom
collaborative robot, focussing on the avoidance of
joint limits. Inverse kinematic control has been
implemented with great accuracy in two distinct
trajectory path planning methods: curved and
rectilinear paths. The null space of the Jacobian
matrix has been utilised for joint limit avoidance in
both kinematic and dynamic problems. The
computational efficiency has been demonstrated by
simulation results in MATLAB and ROS
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implementation. Future research aims to enhance the
computational efficiency and task specificity for
robotic applications.
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