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Abstract
Although overhead crane systems play a vital role in industrial operations, their control remains challenging due to
underactuated, strong dynamic coupling, and payload oscillations. Existing approaches have shown effectiveness in reducing
oscillations but often struggle with external disturbances, parameter variations, and the complexities of tuning. Moreover, many
previous studies assume constant payload vibration frequencies, whereas real-world operations frequently involve varying rope
lengths, leading to frequency changes and reduced controller performance. To overcome these limitations, this paper proposes
a dual control framework: a proportional-derivative and sliding mode control (PD-SMC) strategy for trolley positioning and
payload swing suppression, combined with an active disturbance rejection control (ADRC) scheme for cable length regulation.
The PD-SMC ensures accurate and robust motion control under disturbances, while ADRC provides fast tracking performance
with reduced modeling dependency. Simulation results validate that the proposed approach achieves precise positioning and
effective swing suppression, even under varying rope lengths.
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1. Introduction
Overhead crane systems are essential in numerous

industries, providing efficient solutions for material
handling and heavy load management. Traditionally,
trolley motion and payload lifting are performed
sequentially; however, simultaneous control can
significantly enhance productivity. A persistent
challenge in crane operations lies in payload
oscillations, which not only reduce system durability and
compromise safety but also make it difficult to achieve
precise control of trolley position and cable length.
With the growing trend of automation in manufacturing,
construction and transportation, the demand for safety,
energy efficiency, and high system performance has
stimulated increasing interest in advanced control
strategies for overhead cranes. Nevertheless, the crane
system is basically underactuated, with fewer control
inputs than degrees of freedom, and the strong coupling
among trolley movement, load swing, and variable
cable length further complicates the design of control
schemes aimed at achieving fast and accurate motions
with minimal oscillations [1].

Extensive studies have been devoted to the control
of overhead crane systems, resulting in a variety of
strategies for their operation. Among them, open-loop
techniques such as input shaping are widely adopted
due to their simplicity in design and effectiveness in
suppressing load oscillations [2, 3]. However, these
methods are generally less capable of compensating
for external disturbances. An alternative is output-
based command shaping, whose performance, however,
depends strongly on both the system order and the

selection of the reference model [4, 5]. Most of
these studies primarily address the suppression of
payload oscillations, whereas in real-world operations
cranes are also required to deliver loads to precise
target positions. Consequently, this approach is often
integrated with a trolley position control loop to
ensure accurate load transport [6, 7]. Closed-loop
control approaches have been extensively applied in
crane systems to mitigate payload oscillations and
achieve precise positioning. Methods such as sliding
mode control [8] and passivity-based control [9]
achieve system stability by exploiting energy-based
principles. Although effective, these approaches may
face challenges in practical applications due to issues
such as sensitivity to parameter variations and modeling
uncertainties. Advanced control strategies utilizing
the Takagi–Sugeno fuzzy model have also attracted
considerable attention [10]. However, their design and
parameter tuning are often complicated and require
substantial expertise from the designer.

Most previous studies have considered scenarios
with time-invariant payload vibration frequencies. In
practice, however, cranes often need to transport loads
while raising or lowering them simultaneously to
enhance efficiency. Such operations cause variations in
rope length, which in turn alter the payload’s vibration
frequency. Consequently, control strategies developed
for constant frequencies may prove inadequate when
dealing with varying vibration dynamics. To address
these challenges, this paper presents a dual control
scheme: a proportional-derivative and sliding mode
control (PD-SMC) for the trolley position and payload
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swing control, selected due to its effectiveness in
minimizing the swing during high-speed motion, and
a conventional active disturbance rejection control
(ADRC) for the cable length control, which requires
less intervention in the load swing but requires fast
and accurate tracking. The PD-SMC combines PD
control with a sliding mode component to enhance
robustness against external disturbances without the
need for additional state observers.

The remainder of this paper is structured as
follows. Section 2 introduces the dynamic model of a
2D overhead crane system and the proposed control
approach. Section 3 provides simulation scenarios and
results. Finally, section 4 concludes the paper.

2. Dynamic Model of Overhead Crane Systems and
Proposed Control Method

2.1. Dynamic Model

The dynamics of the overhead crane system shown
in Fig.1 are given by the following equations [11]:

(M+m)ẍ+ml̈ sinθ +2ml̇θ̇ cosθ

−mlθ̇ 2 sinθ +mlθ̈ cosθ = Fx +Frx − fxẋ
(1)

(m+ml)l̈ +mẍsinθ −mlθ̇ 2 −mgcosθ

= Fl +Frl − fl l̇
(2)

lθ̈ + ẍcosθ +2l̇θ̇ +gsinθ = 0 (3)

Fig. 1. Schematic illustration of a overhead crane

In the system model, x(t), θ(t) and l(t) represent the
trolley displacement, payload swing angle, and variable
rope length, respectively. The control inputs Fx(t) and
Fl(t) correspond to the actuating forces applied for
trolley motion and for hoisting/lowering operations.
The parameters M, m and ml denote the trolley mass,
payload mass and lifting mechanism mass, while g is the

gravitational acceleration constant. The terms fx and fl
represent the viscous friction coefficients associated with
trolley translation and rope motion, respectively. Frx, Frl
denote the external disturbances acting on the system,
respectively.

From (2) and (3), it can be obtained that:

l̈ =
−mẍsinθ +mlθ̇ 2 +mgcosθ +Fl +Frl − fl l̇

m+ml
(4)

θ̈ =− ẍcosθ +2l̇θ̇ +gsinθ

l
(5)

Substituting (4), (5) into (1) we obtain:(
M+

mml sin2
θ

m+ml

)
ẍ+

(Fl(t)+Frl − fl l̇)msinθ

m+ml

− mml sinθ(lθ̇ 2 +gcosθ)

m+ml

= Fx +Frx − fxẋ

(6)

To control the position of the trolley to the desired
position xd , the following error signal e is defined as:

e = x− xd (7)

From (7), we had the first derivative and the second
derivative of the error function as follows:

ė = ẋ (8)

and

ë = ẍ (9)

From (6) and (9) we obtain:(
M+

mml sin2
θ

m+ml

)
ë+

(Fl(t)+Frl − fl l̇)msinθ

m+ml

− mml sinθ(lθ̇ 2 +gcosθ)

m+ml
= Fx +Frx − fxẋ

(10)

By introducing a positive constant m̄ into (10), (6)
can be rewritten as:

Fx = m̄ë+
(

M+
mml sin2

θ

m+ml
− m̄

)
ë

+

(
M+

mml sin2
θ

m+ml
− m̄

)
ẍd

+
(Fl(t)+Frl − fl l̇)msinθ

m+ml

− mml sinθ(lθ̇ 2 +gcosθ)

m+ml

−Frx + fxẋ

(11)
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For simplicity, define Pd as:

Pd =

(
M+

mml sin2
θ

m+ml
− m̄

)
ẍd

+
(Fl(t)+Frl − fl l̇)msinθ

m+ml

− mml sinθ(lθ̇ 2 +gcosθ)

m+ml
−Frx + fxẋ

+

(
M+

mml sin2
θ

m+ml
− m̄

)
ë

(12)

Then, (11) can be rewritten as:

Fx = m̄ë+Pd (13)

2.2. Control Law Design for Trolley Position and
Payload Swing Reduction

2.2.1. Proposed control law

To reduce the computational burden associated with
traditional sliding mode control (SMC) [12], which
typically includes two components: the equivalent
control term Ueq and the switching control term
Usmc, this study adopts a simplified control strategy.
Specifically, the equivalent control component Ueq is
replaced with a Proportional-Derivative (PD) control law
Upd , which is easier to implement and requires less
computational effort. To further suppress load swing
during trolley movement, an additional control term
Uswing, which is proportional to the first derivative of the
swing angle, is incorporated into the control input.

The sliding surface is selected as:

s = e+α ė (14)

where α is a positive coefficient.

Inspired by the control strategy in [13], we propose
a modified control law to improve robustness in trolley
position control and payload swing reduction:

Fx =−(Kpe+Kd ė)−Kθ θ̇
2ė−Ks sign(s) (15)

where Kp and Kd are the proportional and derivative
control gains of PD component Upd , Kθ is the gain of
stands for the swing-elimination component Uswing and
Kd is the SMC gain of Usmc.

Assumption 1: The payload swing angle follows the
condition −π/2 < θ < π/2.

Assumption 2: For some upper bound constant σ > 0,
the inequality |θ̇ θ̈ |< σ holds.

The PD–SMC law in (15) ensures trolley positioning
and reduce payload swing, as detailed below:

lim
t→∞

[
x ẋ θ θ̇

]T
=
[
xd 0 0 0

]T (16)

if the following conditions are satisfied: Kd > m̄
α

Kp > Kθ σ > 0
Ks > ∥Pd∥

(17)

The proof of stability for the proposed PD–SMC
method starts with establishing the positive definiteness
of the matrix L:

L =

[
Kd m̄
m̄ αm̄

]
(18)

From (17), it can be obtained that:{
Kd > 0

S = αm̄− m̄2

Kd
> 0

(19)

where S is the Schur complement of Kd in L. Then
following [13], L is positive definite. The Lyapunov
candidate function is defined as:

V (t) =
1
2
[

e ė
]
L
[

e
ė

]
+

1
2

αKpe2+
1
2

Kθ θ̇
2e2 (20)

Derivative of Lyapunov function V (e, ė) can be easily
concluded that:

V̇ (t) =
[
e ė

][Kd m̄
m̄ αm̄

][
ė
ë

]
+αKpeė+Kθ θ̇

2eė+Kθ θ̇ θ̈e2 (21)

=
[
e ė

][Kd ė+ m̄ë
m̄ė+αm̄ë

]
+αKpeė+Kθ θ̇

2eė+Kθ θ̇ θ̈e2 (22)

or

V̇ (t) = αKpeė+Kθ θ̇
2eė+Kθ θ̇ θ̈ e2

+
[
e ė

][ Kd ė−Kpe− (Kd +Kθ θ̇ 2)ė−Ks sign(s)−Pd
m̄ė+α

(
−Kpe− (Kd +Kθ θ̇ 2)ė−Ks sign(s)−Pd

)]
(23)

or

V̇ (t) = s(−Pd −Ks sign(s))−
(
Kp −Kθ θ̇ θ̈

)
e2

− (αKd − m̄)ė2 −αKθ θ̇
2 ė2 (24)

The inequality below is obtained from (17):

sKs sign(s) = ∥s∥Ks > ∥Pd∥∥s∥
⇒ s(−Pd −Ks sign(s))≤ 0

(25)

Kd >
m̄
α

⇒ (αKd − m̄)> 0 (26)

Kp > Kθ σ ⇒ Kp −Kθ θ̇ θ̈ > 0 (27)
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Combining conditions (24), (25), (26), and (27), we
get the following:

V̇ ≤ 0 ∀e, ė (28)

and V̇ = 0 if and only if e = 0, ė = 0. Since the
Lyapunov candidate function V is positive definite and
its derivative V̇ (t) is negative definite, the overhead
crane system under the proposed PD–SMC controller is
asymptotically stable. When the state reaches the sliding
manifold, the tracking error and its derivative converge
asymptotically to zero, in the sense that:

e = 0, ė = 0 (29)

From (29) and (14) it can be concluded that:

s = 0,e = 0, ė = 0, ë = 0 (30)

Substituting the results into (15) yields the following:

Fx = 0 (31)

In steady state, when the system has converged to
the desired position x = xd and external disturbances are
absent Frx = 0, assume that the response of the cable
length controller is satisfactory in steady state, namely
l = ld , l̇ = 0, and Frl = 0. Then from (2):

Fl =−mlθ̇ 2 −mgcosθ (32)

By using (30), (31), and (32), after some
arrangements, (6) can be reduced as:

−msinθ(lθ̇ 2 +gcosθ) = 0 (33)

From Assumption 1, we know that cosθ > 0. Then,
it is obtained from (33):

sinθ = 0 ⇒ θ = 0, θ̇ = 0 (34)

2.2.2. Finite-time convergence property of the sliding
mode control law

To complement the asymptotic stability established
through the Lyapunov analysis, we now show that
the proposed PD–SMC law can guaranty finite-time
reaching of the sliding surface.

From (14) and (15):

ṡ = ė+α ë

= ∆(t)− α

m̄
Kssign(s)

(35)

where

∆(t) = ė− α

m̄

[
Kpe+Kd ė+Kθ θ̇

2ė+Pd
]

(36)

Assumption 3: There exists a constant ∆max > 0, such
that the inequality |∆(t)| ≤ ∆max holds ∀t.

This assumption is standard because ∆(t) consists of
terms that depend on the bounded variables e, ė, θ , θ̇ ,
and on the disturbance term Pd , which is bounded by
design. Consider the Lyapunov candidate:

W =
1
2

s2 (37)

The time derivative of W is given by:

Ẇ = sṡ = s(∆(t)− α

m̄
Kssign(s)) (38)

Under the assumption that |∆| ≤ ∆max, the following
inequality holds: s∆(t) ≤ |s||∆(t)| ≤ ∆max|s|, which
implies:

Ẇ ≤ ∆max|s|−
α

m̄
Ks|s|=−(

α

m̄
Ks −∆max)|s| (39)

If we choose
α

m̄ Ks > ∆max, then (α

m̄ Ks −∆max) = η > 0.

Therefore:

Ẇ ≤−η |s| (40)

Since |s|=
√

2W :

Ẇ ≤−η
√

2W or
Ẇ√
W

≤−η
√

2 (41)

Then ∫ T

0

Ẇ (t)√
W (t)

dt ≤
∫ T

0
−η

√
2dt (42)

which implies:

2(
√

W (T )−
√

W (0))≤−
√

2ηT (43)

Suppose that s(T )= 0 then W (T )= 0, then from (43)
we obtain the finite-time reaching bound:

T ≤
√

2W (0)
η

=
|s(0)|

η
(44)

Consequently, provided Assumption 3 holds, the sliding
variable s is driven to s = 0 within a finite time T and
remains on the sliding surface afterwards.

Since the use of sign(s) in the sliding mode
control can lead to chattering, the switching term
is modified by replacing sign(s) with the hyperbolic
tangent function tanh(s). This smooth approximation
helps reduce chattering while retaining the robustness
characteristic of sliding mode control. Note that if a
smooth approximation such as tanh(s) is used instead
of sign(s), the result becomes practical finite–time
convergence to a small neighborhood of the sliding
surface.

Consequently, the modified control input is
expressed as follows:

Fx =−Kpe− (Kd +Kθ θ̇
2)ė−Ks tanh(s) (45)
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2.3. Controller Design for Cable Length

Rewrite (2) in the form:

l̈ = fl +
1

m+ml
Fl = fl +b.Fl (46)

where

fl =
−mẍsinθ +mlθ̇ 2 +mgcosθ −Frl + fl

m+ml
(47)

Generally, fl consists of nonlinear terms and
uncertain parameters, which are treated as a unified
disturbance. Following [14], an Extended State Observer
(ESO) is employed to estimate f̂l , thereby compensating
for the impact of fl on the system dynamics by
disturbance rejection. The extended state observer is
then formulated as follows: ˙̂x1

˙̂x2
˙̂x3

=

−l1 1 0
−l2 0 1
−l3 0 0

x̂1
x̂2
x̂3

+
0

b
0

Fl +

l1
l2
l3

l (48)

with l1, l2, and l3 representing the ESO parameters, they
are determined so that x̂1, x̂2, and x̂3 provide estimates of
l, l̇, and fl , respectively.

Based on the state estimates, the control law is
defined as:

Fl =
u0 − x̂3

b
(49)

where u0 = kp(ld − x̂1)−kd x̂2. Substituting (49) into (46)
yields:

l̈ = fl − f̂l +u0

≈ kp(ld − l)− kd l̇(t)
(50)

From (50) we obtain the closed-loop dynamics:

L(s)
Ld(s)

=
kp

s2 + kds+ kp
(51)

Given the desired system settling time Tset , the
parameters are obtained as follows:

sCL ≈ −5.85
Tset

, KP = (sCL)2, KD =−2sCL

l1 =−3sESO, l2 = 3(sESO)2, l3 =−(sESO)3

sESO = k · sCL, k > 1
(52)

3. Simulation Results

To evaluate the effectiveness of the proposed control
approach, we compare it with other methods presented
in the literature, the H-infinity approach for disturbance
rejection in T–S fuzzy systems proposed in [11]. To
ensure meaningful comparison, model parameters and
simulation scenarios are selected to closely match those
in [11], particularly with respect to the trolley position
and cable length trajectories. This setup allows us
to highlight the advantages of the proposed PD-SMC
method more clearly.

In the simulation, the model parameters are adopted
from [11] as follows: M = 5(kg), ml = 2(kg),
m = 0.85(kg), fx = 20(Ns/m), fl = 50(Ns/m).

To minimize load swing, the input trajectory is
designed and used as the reference signal (setpoint).
As stated previously, all simulation cases are based on
the setup in [11] for consistency. The parameters of the
two controllers (PD-SMC and ADRC) are selected as
described in Table 1.

Table 1. Parameter of two controller ADRC and
PD-SMC.

ADRC Value PD-SMC Value
b 1/(m+ml) α 5.9
kp 3600 Kp 300
kd 120 Kd 60
l1 18.102 Kθ 200
l2 108.104 Ks 4
l3 216.105

We have chosen these following cases in paper [11]
to verify the effectiveness of the controller.

• Case 1: It aims to evaluate the performance of
the proposed controller under nominal conditions
without external disturbances. The objective is to
move the trolley from the initial position of 0 m
to 1.5 m within 6 s, while simultaneously hoisting
the load from an initial cable length of 0.6 m to
0.2 m, and subsequently lowering it back to 0.6 m.
This scenario is designed to assess the controller’s
capability in handling coordinated motion of both the
trolley and the hoisting mechanism, ensuring smooth
trajectory tracking and effective suppression of load
swing.

In case 1, the position trajectory and cable length
are designed similarly to the reference [11] to ensure a
consistent comparison. The proposed controller gives a
response closely matching the results reported in [11]as
shown in Fig. 2. In particular, the simulated load swing
angle indicates that the PD-SMC controller achieves
a smaller peak sway angle and significantly reduced
oscillations after the trolley reaches the target position,
demonstrating improved damping performance.
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Fig. 2. Case1: Tracking controller without disturbance.

• Case 2: Scenario maintains the same trolley motion
and load hoisting trajectory as described in Case 1.
However, in this scenario, external disturbance is
introduced into the system to evaluate the robustness
of the controller under disturbance conditions. This
setup allows for an assessment of the controller’s
ability to maintain trajectory tracking accuracy and
suppress load swing in the presence of external
perturbations.

Fig. 3. Case 2: Tracking controller with disturbance with
amplitude 20N.

In Case 2, the setpoints for trolley position and
cable length remain unchanged. However, disturbance
with an amplitude of 20N is introduced, as shown
in Fig. 3 and consistent with the conditions in
[11]. Despite the disturbance, the PD-SMC controller
maintains effective trajectory tracking performance.
Furthermore, the swing angle results demonstrate
that the PD-SMC controller outperforms the T–S
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fuzzy descriptor approach, exhibiting a notably smaller
deviation. In addition, the PD-SMC controller provides
well-damped oscillations after the trolley reaches the
target position, indicating enhanced robustness against
external disturbances.

• Case 3: In this case, the model parameters
are adopted from [11] as follows:
M = 2(kg), ml = 0(kg), m = 0.8(kg),
fx = 5(Ns/m), fl = 5(Ns/m). The case aims to
evaluates the performance of the proposed controller
under ideal conditions without external disturbances.
In this scenario, the trolley is required to move from
the initial position of 0 m to 2 m within 6 s, while
simultaneously lowering the load by extending the
cable length from 2 m to 3 m. This test case is
designed to verify the controller’s ability to handle
the downward lifting motion in coordination with
the horizontal trolley movement, ensuring smooth
trajectory tracking and effective suppression of the
load swing.

Fig. 4. Case 3: Tracking controller when increasing cable
length and trolley position.

In Case 3, we investigate the behavior of the system
when both the trolley travel distance, the initial and final
cable lengths are increased. The trajectory is designed
such that the trolley and hoisting motions reach their
setpoints simultaneously. Under these conditions, in
Fig. 4 the PD-SMC controller achieves a comparable
performance to the control strategy in [11] in terms
of trajectory tracking and swing suppression during
motion. However, a key distinction is observed in the
nature of the load swing. With the PD-SMC controller,
the swing angle exhibits a damped response, even
without explicitly modeling damping or frictional forces,
while the swing response in [11] remains periodic
(undamped). This characteristic of the PD-SMC results
in a significant reduction in residual oscillations after
the trolley reaches its target position, demonstrating
improved swing suppression and dynamic stability.

4. Conclusion

This paper has addressed the trajectory tracking
problem of a two-dimensional overhead crane system
with variable cable length through a hybrid control
framework that combines PD-SMC for trolley
positioning and ADRC for cable length regulation. In
contrast to conventional methods, the proposed scheme
integrates oscillation suppression into the PD-SMC
law and incorporates trajectory planning to improve
tracking accuracy and robustness against disturbances.
The simulation results demonstrate that the approach
achieves precise positioning, significantly reduces
payload swing, and maintains stable performance under
varying rope lengths. Although complete elimination
of oscillations remains theoretically challenging, the
proposed method ensures safe and efficient operation for
practical crane applications. Future research will explore
the integration of disturbance observers to estimate
unmeasured dynamics, thereby enhancing the autonomy
and robustness of the system.
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