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Abstract
The preservation of digital evidence integrity currently faces critical challenges, notably manual chain-of-custody errors
ranging from 15-20%, the proliferation of sophisticated tampering techniques, and inherent scalability limitations. To address
these issues, this paper presents an integrated framework that synergistically combines blockchain-based immutable custody
chains, dual-branch convolutional neural networks for tampering detection, and hybrid consensus mechanisms. Through
systematic ablation studies, we demonstrate that the proposed smart contract automation effectively mitigates manual custody
errors, ensuring a tamper-evident and immutable custody record. Furthermore, our dual-branch architecture, enhanced with
adaptive fusion (α = 0.6), attains a 98.5% tampering detection accuracy—representing a 5.3% improvement over single-branch
baselines. Additionally, the hybrid Proof-of-Authority and Byzantine Fault Tolerant consensus mechanism delivers a throughput
of 10,000 transactions per second, marking a 1,429-fold improvement over traditional blockchain implementations. A
comprehensive evaluation on the NIST CFReDS, supported by statistical validation (p < 0.001), demonstrates the superiority
of our approach over six baseline methods. We further provide a detailed failure analysis, a computational cost breakdown, and
validation through simulated forensic scenarios, alongside proposed integration pathways for commercial forensic tools such
as EnCase and FTK to facilitate practical adoption.
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1. Introduction

Digital evidence constitutes a critical component in
over 80% of contemporary criminal investigations [1].
However, preserving the integrity of such evidence
remains a formidable challenge due to three fundamental
vulnerabilities. First, manual chain-of-custody
documentation is prone to human error, exhibiting
rates as high as 15-20% in multi-handler scenarios [2].
Second, sophisticated digital tampering techniques
have evolved to defeat traditional hash-based
verification mechanisms, necessitating advanced
detection models [3]. Finally, centralized storage
architectures create single points of failure, leaving
repositories susceptible to unauthorized modifications
and coordinated attacks.

Traditional forensic methodologies predominantly
rely on cryptographic hashing (e.g., MD5, SHA-
256) for integrity verification, coupled with paper-
based custody logs. While these approaches may
suffice for rudimentary scenarios, they are increasingly
inadequate against advanced threats. Notably, the
Message Digest Algorithm 5 (MD5) has demonstrated
collision vulnerabilities since 2004, thereby enabling
potential evidence forgery [1]. Furthermore, manual
documentation introduces errors in approximately

15 - 20% of multi-jurisdictional cases [2], while
centralized evidence repositories create single points of
failure susceptible to insider threats.

Recent studies have explored blockchain technology
for immutable evidence logging [4–6] and machine
learning for automated tampering detection [3, 7, 8].

In the realm of blockchain-based solutions,
AlKhanafseh et al. [4] achieved 97% integrity
through a Blockchain and Long Short-Term Memory
(LSTM) integration; however, this method incurred
a computational overhead exceeding 200% and
necessitated manual verification. Similarly, while
Imrankhan et al. [6] implemented a Byzantine
Fault Tolerant (BFT) consensus mechanism attaining
99.1% reliability, the system was limited to a
throughput of only 50 TPS, which is insufficient for
enterprise-scale deployment. Furthermore, Lone et al.
[5] designed frameworks specific to IIoT, which lack
the generalization required for heterogeneous evidence
types.

Regarding machine learning approaches, Tyagi [3]
introduced dual-branch CNNs that achieved 93.2%
accuracy in image forgery detection. However,
conventional models often rely on fixed fusion weights,
limiting their adaptability to complex forgery scenarios.
To address this, advanced frameworks such as HiFi-Net
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by Guo et al. [7] have been proposed, achieving accuracy
ranges of 89-94% on benchmark datasets. Specifically
for video forensics, Feng et al. [8] leveraged a hybrid
Multi-Scale Dilated Convolutional Neural Network
and Long Short-Term Memory (MSDCNN-LSTM)
architecture to detect frame deletion with a precision of
96.86%.

A significant deficiency in these approaches is the
lack of integration with custody chain mechanisms
and the absence of failure analysis for real-world
deployment. Consequently, a distinct research gap
remains, as no existing work provides an integrated
blockchain-ML framework that offers a systematic
evaluation, ablation studies quantifying component
contributions, failure analysis identifying system
limitations, scalability validation beyond small-scale
prototypes, or practical pathways for tool integration.

This paper addresses the aforementioned challenges
by presenting an integrated framework with four primary
contributions.

First, we design intelligent Smart Contracts for Chain
of Custody to enable autonomous custody validation.
Unlike manual systems that suffer from high error rates,
our systematic ablation study demonstrates that this
automated validation effectively eliminates the 15-20%
error rate observed in traditional documentation [2],
thereby achieving 100% integrity preservation versus
95% in manual systems.

Second, to enhance tampering detection, we propose
an Adaptive Dual-Branch CNN. We extend Tyagi’s
architecture [3] by incorporating adaptive fusion
weights optimized through systematic grid search.
Comprehensive ablation studies evaluate the impact
of fusion weights (α ∈ {0.4,0.5,0.6,0.7,0.8}), compare
single versus dual-branch architectures, and assess
backbone networks (ResNet50/101, EfficientNet)
alongside robustness to JPEG compression. Our
optimized configuration achieves 98.5% accuracy,
a statistically significant 5.3% improvement over
single-branch baselines (p < 0.001, paired t-test).

Third, we address the scalability bottleneck by
architecting a Hybrid Consensus Mechanism that
combines Proof-of-Authority (POA) with Byzantine
Fault Tolerance (BFT). This novel consensus model
delivers a throughput of 10,000 TPS, which is 1,429
times faster than Bitcoin [9] and 200 times faster
than Imrankhan’s BFT implementation [6]. Scalability
experiments further validate the system’s performance
across 10 to 100 validator nodes.

Finally, we provide a comprehensive evaluation of
the proposed framework. This includes a comparison
with six baseline methods on the National Institute
of Standards and Technology Computer Forensic
Reference Data Sets (NIST CFReDS) [10], statistical
validation with confidence intervals and significance

tests, and a detailed failure analysis identifying
adversarial scenarios. We also present a computational
cost breakdown, a real-world case study with quantified
metrics, and integration pathways for commercial
forensic tools such as EnCase Forensic and Forensic
Toolkit (FTK) to facilitate practical adoption.
2. Related Work
2.1. Traditional Digital Forensics

Foundational principles regarding evidence
acquisition, preservation, analysis, and presentation
were established by Casey [2]. Conventionally, integrity
verification within this domain relies upon cryptographic
hashing algorithms, such as Message Digest Algorithm
5 (MD5), Secure Hash Algorithm SHA-1, and Secure
Hash Algorithm SHA-256, coupled with manual
chain-of-custody logs. However, the National Institute of
Standards and Technology (NIST) has identified critical
vulnerabilities in these methods [1], specifically noting
the susceptibility of MD5 to collision attacks, high
documentation error rates of 15-20%, and the inherent
risks of centralized storage. Consequently, our proposed
smart contract automation is designed to systematically
address these deficiencies.
2.2. Blockchain-Based Evidence Management

Recent scholarship has sought to mitigate these risks
through distributed ledger technologies. AlKhanafseh
and Surakhi [4] pioneered a blockchain-LSTM
integration that achieved 97% integrity; however,
this approach incurred a substantial computational
overhead exceeding 200% and necessitated manual
verification. In a specific application domain, Lone et
al. [5] architected frameworks tailored for the Industrial
Internet of Things (IIoT). While achieving 98% integrity,
their solution lacks generalization capabilities beyond
industrial environments. Addressing this gap, Cuevas
et al. [11] recently conducted a systematic review
of blockchain-based Chain of Custody procedures,
confirming their superiority over manual logging.
Furthermore, Hung et al. [12] proposed a dedicated
design for compliant evidence handling, validating the
architectural shift towards decentralized verification.

Recent literature from 2025 has further validated the
convergence of these technologies. For instance, Igonor
et al. [13] provided a systematic review highlighting the
shift towards automated, smart-contract-based forensic
workflows. In parallel, Nargis et al. [14] demonstrated
a prototype for evidence protection using decentralized
ledgers, while El-Kady [15] explored the specific
integration of AI models for advanced forensic analysis
in blockchain environments.
2.3. Machine Learning Tampering Detection

In the context of automated detection, state-of-the-art
methods like the hierarchical approach (HiFi-Net) [7]
demonstrate robust performance. Notably, Tyagi [3]
introduced dual-branch CNNs that process both spatial
and frequency domains, achieving 93.2% accuracy
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on CASIA v2.0. Despite these advances, the rigid
reliance on a fixed fusion weight (α = 0.5) limits the
model’s adaptability to diverse tampering techniques.
Furthermore, Feng et al. [8] proposed a hybrid
MSDCNN-LSTM framework specifically to capture
long-term variation patterns and spatial anomalies in
video forensics. In a parallel development, Darwish et
al. [16] introduced an enhanced approach based on
perceptual hash functions to secure video copyright and
integrity on blockchain platforms. Collectively, these
existing works exhibit notable deficiencies, particularly
regarding the absence of systematic ablation studies,
failure case analysis, robustness evaluation against
compression artifacts, and the lack of integration with
custody chain mechanisms.

2.4. Comparative Analysis
Table 1 synthesizes the critical limitations observed

in prior literature and highlights how our contributions
address these gaps across integrity, accuracy, throughput
(TPS), and systematic ablation.
Table 1. Comparison with related work

Work Integrity Accuracy TPS Ablation

Casey [2] 95% N/A N/A No
AlKhanafseh et al. [4] 97% N/A 7 No
Tyagi [3] N/A 93.2% N/A Limited
Lone et al. [5] 98% N/A 50 No
Imrankhan et al. [6] 99.1% N/A 50 No
Feng et al. [8] N/A 96.9% N/A N/A
HiFi-Net [7] N/A 94.0% N/A Yes
Ours 100% 98.5% 10,000 Yes

3. Proposed Framework
3.1. Overview of the Integrated Framework

Our integrated framework comprises three primary
components: (1) blockchain-based chain of custody
with smart contract automation, (2) dual-branch CNN
for tampering detection with adaptive fusion, and
(3) hybrid consensus mechanism for scalability. As
illustrated in Fig. 1, the framework processes evidence
through parallel pipelines: blockchain for immutable
custody logging and deep learning for content tampering
detection.

3.2. Blockchain Chain of Custody
Traditional custody documentation is frequently

compromised by manual error rates ranging from
15-20%, as noted by Casey [2]. To address this,
we implement a permissioned blockchain architecture
leveraged by smart contracts to facilitate autonomous
validation. The structural integration of the smart
contract within the blockchain is depicted in Fig. 2.

The operational logic for securing the chain of
custody is formalized in Algorithm 1. The smart contract
enforces four critical rules: custodian authentication
via digital certificates, temporal consistency to ensure
monotonic timestamps, geographic plausibility for
location-based validation, and role-based access control
governed by a permissions matrix.

Evidence
Sources

Blockchain CoC
(Smart

Contracts)

ML Detection
(Dual-Branch

CNN)

Hybrid
Consensus
(PoA-BFT)

Tamper Analysis
(Adaptive
Fusion)

Verified
Evidence

Fig. 1. Integrated system architecture

Genesis Block

Block 1: Hash
+ Timestamp

Block 2:
Custody Transfer

Block 3: Smart Contract

Block N: Verification

Fig. 2. Blockchain chain of custody structure

Algorithm 1 Smart contract chain of custody

1: Initialize blockchain with genesis block B0
2: Define smart contract rules R = {r1, ...,rn}
3: for each custody transfer event ei do
4: Compute hash: hi = SHA-256(evidencei)
5: Extract metadata: mi =
{timestamp,custodian, location}

6: Generate signature: σi = Sign(privkeyi,hi∥mi)
7: Create block: Bi = {hi,mi,σi,hi−1}
8: if ValidateContract(Bi,R) = TRUE then
9: Append via hybrid consensus (Section 3.4)

10: Broadcast to network
11: else
12: Reject and alert administrator
13: end if
14: end for
15: return Immutable custody chain
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To validate the efficacy of this approach, we
conducted a systematic ablation study by incrementally
removing components. As presented in Table 2, the
results demonstrate that smart contract automation
eliminates manual errors entirely, achieving a 100%
integrity rate. This improvement is statistically
significant, as confirmed by McNemar’s test (p< 0.001).
Table 2. Blockchain component ablation study

Configuration Integrity Error Rate

Baseline (Manual) 95.0% 15.2%
+ Blockchain Only 98.2% 8.3%
+ Smart Contracts 99.8% 1.1%
+ All Rules 100.0% 0.0%

3.3. Dual-Branch CNN Tampering Detection

We extend the architecture proposed by Tyagi [3] by
incorporating an adaptive fusion mechanism optimized
through systematic grid search. The dual-branch
processing pipeline is illustrated in Fig. 3.

Input Image/Video

Spatial Branch
ResNet50

Frequency Branch
DCT+ResNet50

Adaptive Fusion
α = 0.6

Fully Connected
Softmax

Tamper/Genuine

Fs Ff

Fig. 3. Proposed dual-branch CNN architecture with
adaptive feature fusion.

3.3.1. Optimization objective

Unlike standard cross-entropy minimization, we
formulate a joint loss function to enforce feature
consistency between spatial and frequency domains. Let
Lcls denote the cross-entropy loss for classification.
We introduce a consistency regularization term Lcons
to minimize the divergence between the spatial feature
distribution Ps and frequency distribution Pf . The total
objective function Ltotal is defined as:

Ltotal = Lcls(y, ŷ)+λ ·DKL(Ps||Pf )+ γ||W ||22 (1)

where:

• DKL represents the Kullback-Leibler divergence to
align feature manifolds.

• λ is a hyperparameter balancing domain consistency
(empirically set to 0.1).

• γ||W ||22 is the L2 regularization term to prevent
overfitting.

Minimizing this objective ensures that the adaptive
fusion mechanism α learns to prioritize the most
informative domain while suppressing noise, thereby
theoretically justifying the improvements observed in
Table 3.

The detection process is detailed in Algorithm 2,
which outlines the spatial and frequency feature
extraction followed by the adaptive fusion step.

Algorithm 2 Adaptive dual-branch detection

1: Load pre-trained ResNet50 backbone M
2: Spatial Branch: Fs = M (IRGB) ∈ R2048

3: Frequency Branch:
4: IDCT = DCT(IRGB)
5: Ff = M (IDCT) ∈ R2048

6: Adaptive Fusion:
7: α = 0.6 (optimized via grid search)
8: F = αFs +(1−α)Ff
9: Classification:

10: P(y|I) = softmax(W ·F +b)
11: y = argmaxc P(c|I)
12: return Tamper probability and confidence

We evaluated the impact of the fusion weight α

on the CASIA v2.0 test set (N = 5,123). As shown
in Table 3, the optimal value of α = 0.6 achieves a
balance between spatial detail (60%) and frequency
artifacts (40%). This configuration results in an F1-score
of 98.4% and shows statistical significance compared to
the baseline α = 0.5 (p = 0.003, paired t-test).

Table 3. Fusion weight ablation study (N = 5,123)

α Accuracy Precision Recall F1-score

0.4 97.2% 96.8% 97.5% 97.1%
0.5 97.9% 97.4% 98.2% 97.8%
0.6 98.5% 98.1% 98.7% 98.4%
0.7 98.1% 97.8% 98.3% 98.0%
0.8 97.6% 97.2% 97.9% 97.5%

Furthermore, we compared different architectural
configurations. Table 4 indicates that the dual-branch
approach provides a 5.3% improvement in accuracy
over the single-branch baseline (p< 0.001). Among the
tested backbones, ResNet50 offers the optimal trade-off
between accuracy and computational efficiency.

We also assessed the system’s robustness against
JPEG compression. The results in Table 5 show that
the system maintains an accuracy greater than 97% for
quality factors Q ≥ 75, which corresponds to typical
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Table 4. Architecture ablation study

Architecture Accuracy FLOPs (G)

Single-Branch ResNet50 93.2% 4.1
Dual-Branch ResNet50 98.5% 8.2
Dual-Branch ResNet101 98.3% 15.6
Dual-Branch EfficientNet-B4 98.1% 9.4

forensic acquisition quality. However, performance
degradation becomes statistically significant at lower
quality levels (Q≤ 50).

Table 5. Robustness to JPEG compression

Quality Accuracy ∆ vs Q100 Significant

Q100 98.5% 0.0% –
Q90 98.2% -0.3% No

(p = 0.12)
Q75 97.6% -0.9% Yes

(p = 0.02)
Q50 95.8% -2.7% Yes

(p < 0.001)
Q25 91.2% -7.3% Yes

(p < 0.001)

3.4. Hybrid Consensus Mechanism

Traditional blockchain suffers from throughput
limitations. We design a hybrid Proof-of-Authority
(PoA) combined with Byzantine Fault Tolerance (BFT)
to balance speed and security.

Security analysis and validator selection:

The network operates as a Permissioned Blockchain.
Validators are strictly selected from trusted entities (e.g.,
forensic laboratories, judicial bodies, law enforcement
agencies) identified via Digital Certificates (PKI).
This pre-selection eliminates Sybil attacks common in
public networks. Regarding fault tolerance, the BFT
layer employs a standard quorum mechanism requiring
n ≥ 3 f + 1 nodes, where f is the maximum number
of malicious or faulty nodes. A block is finalized
only when it receives signatures from more than 2n/3
validators. This ensures safety and liveness even if
up to 33% of the network is compromised or offline.
To ensure dynamic governance, the smart contract
incorporates a Validator Management Protocol. This
allows the existing consortium to vote on adding new
nodes or revoking compromised validators (e.g., in case
of decertification). A change is executed automatically
upon reaching a > 2/3 supermajority vote, ensuring the
network adapts without downtime.

Scalability experiments presented in Table 6 validate
the performance of this mechanism. The system
maintains a throughput exceeding 8,900 TPS even with
100 validators, representing a 178-fold improvement
over the standard BFT implementation by Imrankhan et
al. [6].

Algorithm 3 Hybrid PoA-BFT consensus

1: Select n trusted validators (forensic agencies)
2: Primary validator vp proposes block B
3: Sign with certified key: σp = Sign(privkeyp,B)
4: Broadcast: (B,σp)→ Validators
5: for each validator vi (i ̸= p) do
6: Verify: VerifySignature(B,σp)
7: Vote: votei ∈ {Accept,Reject}
8: end for
9: Collect votes: V = {vote1, ...,voten}

10: if |{Accept}|> 2n/3 then
11: Finalize block (BFT threshold)
12: else
13: Initiate view change
14: end if

Table 6. Consensus scalability (1000 tx batch)

Validators TPS Latency (s) Finality (s)

10 12,500 0.08 0.4
25 11,200 0.09 0.5
50 10,000 0.10 0.5

100 8,900 0.11 0.6

It is worth noting the trade-off inherent in
this permissioned design. Unlike public blockchains
that prioritize censorship resistance via unrestricted
participation, our forensic consortium model prioritizes
throughput, finality, and accountability. In a real-world
deployment, we anticipate a network size of N = 10
to N = 50 validator nodes (representing varying
jurisdictional labs), which remains well within the
scalable limits of our BFT layer while ensuring sufficient
decentralization to prevent single-point failures.

3.5. Formal Security Analysis Using BAN Logic

To rigorously verify the authentication properties
of the proposed chain-of-custody protocol, we employ
Burrows-Abadi-Needham (BAN) logic. We define the
principals: P (Prover/Custodian), V (Validator/Smart
Contract), and S (Server/Blockchain). The idealized
protocol goal is to prove that V believes the evidence
E originates from P.

Assumptions:

1) V |=
Kp7→ P: Validator believes Kp is P’s public key.

2) V |= #(T ): Validator believes timestamp T is fresh.

3) P |= P
K−1

p←→V : Prover trusts the shared secret channel
established via PKI.

Remark: The formal verification scope is strictly
limited to the protocol’s logical correctness. We
explicitly assume the secrecy of private keys (K−1

P ),
treating physical compromise risks (the Oracle Problem)
as external factors managed by hardware-level security
mechanisms.
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Proof Derivation:

The message exchange is idealized as: M1 : P→ V :
{H(E),T,Loc}K−1

p
. Applying the BAN inference rule for

signatures:

V |=
Kp7→ P,V ◁{M}K−1

p

V |= P∼M
(2)

We derive that V believes P said M. Next, applying
the freshness rule:

V |= #(M),V |= P∼M
V |= P |= M

(3)

Since T is part of M and V |= #(T ), it follows
that V |= P |= E. Thus, the protocol guarantees non-
repudiation and origin authentication mathematically.

4. Experimental Evaluation

4.1. Datasets

To evaluate the proposed framework
comprehensively, we utilized three distinct datasets
representing various forensic scenarios. First, we
employed the NIST Computer Forensic Reference Data
Sets (CFReDS) [10], which provide realistic case studies
including Hacking Cases (1.5 GB of network intrusion
data), Data Leakage incidents (2.3 GB representing
insider threats), and Mobile Device images. It is
important to note that within the NIST dataset, only the
Mobile Device images were used to evaluate the CNN
tampering detection model, while the non-image subsets
(Hacking logs, Data Leakage) were utilized exclusively
to assess the integrity preservation performance of the
Blockchain Chain of Custody.

Second, for image tampering detection, we utilized
the CASIA v2.0 dataset, which comprises a balanced
collection of 5,123 tampered images (featuring copy-
move and splicing attacks) and 5,123 authentic samples.
Finally, to ensure robust training and testing, we
generated a Custom Synthetic dataset containing 10,000
tampered images created via copy-move, splicing, and
retouching techniques, complete with pixel-level ground
truth masks.

It is imperative to clarify the operational scope
of our framework regarding heterogeneous data types.
The Blockchain Chain of Custody (CoC) is designed
to preserve the integrity of all evidence formats. This
includes binary logs, network packet captures (PCAP),
and disk images found in the Hacking and Data Leakage
subsets. In contrast, the Deep Learning Tampering
Detection module is exclusively activated for image
and video evidence within the Mobile Device subset.
Consequently, non-image files bypass the CNN branch
and are processed directly by the smart contract for
hashing and timestamping.

4.2. Baseline Methods
To ensure a rigorous comparative analysis, we

benchmarked the proposed framework against six
representative approaches, ranging from fundamental
integrity checks to state-of-the-art forensic models.
Initially, traditional SHA-256 hash verification was
employed to establish a baseline for data integrity. In the
domain of distributed consensus and ledger technology,
we compared our system with the standard Byzantine
Fault Tolerant (BFT) mechanism implemented by
Imrankhan et al. [6], as well as the blockchain-LSTM
integration approach proposed by AlKhanafseh et
al. [4]. Furthermore, to evaluate forensic detection
capabilities, the framework was tested against advanced
deep learning architectures. These include Tyagi’s
dual-branch CNN [3] utilizing fixed fusion weights
(α = 0.5), and the hybrid MSDCNN-LSTM network by
Feng et al. [8], which is specialized for video frame
deletion forensics. Finally, we incorporated HiFi-Net [7]
as a state-of-the-art benchmark to assess the model’s
performance against leading standards in fine-grained
forgery detection.

4.3. Evaluation Metrics
We adopted a multi-faceted evaluation strategy

covering both detection performance and system
efficiency. For the tampering detection module, we
utilized standard classification metrics including
Accuracy, Precision, Recall, F1-score, True Positive
Rate (TPR), and False Positive Rate (FPR), alongside the
Area Under the ROC Curve (AUC). Regarding system
scalability and reliability, we measured Computational
Cost (FLOPs, latency), Transaction Throughput (TPS),
and the overall Custody Integrity rate.

4.4. Implementation Details
All experiments were conducted on a high-

performance computing workstation equipped with an
NVIDIA RTX 3090 GPU (24GB VRAM), an AMD
Ryzen 9 5950X processor, and 128GB of RAM.
The software environment was built using Python
3.8 and PyTorch 1.9 for deep learning tasks, while
Hyperledger Fabric 2.3 was employed for the blockchain
implementation.

For the training process, we utilized the
Adam optimizer with a learning rate of 10−4

(β1 = 0.9,β2 = 0.999) and a batch size of 32.
We employed an early stopping mechanism over
100 epochs to prevent overfitting. Additionally, data
augmentation techniques, including rotation (±15◦)
and scaling (0.8-1.2×), were applied to enhance model
generalization.

5. Results and Analysis
5.1. Tampering Detection Performance

The comparative performance of our proposed
method against state-of-the-art baselines on the CASIA
v2.0 dataset is detailed in Table 7.
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Table 7. Tampering detection results (N = 5,123)

Method Acc Prec Recall F1

Tyagi [3] 93.2 92.8 93.5 93.1
Feng et al. [8] 96.2 95.9 96.6 96.2
HiFi-Net (Guo et al.) [7] 94.0 93.6 94.3 93.9
Ours 98.5 98.1 98.7 98.4

Improvement +4.5% +4.5% +4.4% +4.5%
P-value < 0.001 < 0.001 < 0.001 < 0.001

Notably, our approach achieves an overall accuracy
of 98.5% with a 95% confidence interval of [98.2%,
98.8%]. This represents a statistically significant
improvement (p< 0.001, paired t-test) over the best-
performing baseline (Feng et al.), confirming the
efficacy of the adaptive dual-branch architecture.

To provide granular insights into the model’s
capabilities, we further analyzed performance across
specific tampering categories, as shown in Table 8.
The results indicate consistent high performance across
copy-move, splicing, and retouching attacks.

Table 8. Performance per tampering type

Type N Accuracy Precision Recall

Copy-Move 1,708 98.9% 98.7% 99.1%
Splicing 1,704 98.3% 97.9% 98.6%
Retouching 1,711 98.2% 97.8% 98.5%

Regarding adaptability, the system supports Transfer
Learning. When a new tampering technique emerges, the
pre-trained dual-branch model requires only fine-tuning
on a small subset of new samples (N ≈ 500).
Experimental results show that the model converges to
> 95% accuracy on new patterns within approximately
1.5 hours on a single GPU, ensuring rapid response to
zero-day threats.

5.2. Chain of Custody Performance

We subsequently evaluated the integrity of the
blockchain-based custody mechanism over 10,000
transfer events, with results summarized in Table 9.

Table 9. Chain of custody results (N = 10,000)

Method Integrity Errors Latency

Manual
SHA-256

95.0% 15.2% 0.05 s

AlKhanafseh
[4]

97.0% 8.7% 3.2 s

Imrankhan
et al. [6]

99.1% 2.3% 1.8 s

Ours 100.0% 0.0% 0.5 s
Note: Latency for Manual SHA-256 refers to computational
hashing time only; procedural latency in manual systems is
significantly higher.

The experimental data demonstrates that smart
contract automation effectively eliminates human error,
achieving perfect integrity. Furthermore, the system

processes transactions 6.4 times faster than the approach
by AlKhanafseh et al., highlighting the efficiency of the
hybrid consensus mechanism.

5.3. Integrated System Performance

Table 10 provides a holistic evaluation of the end-
to-end system performance using the NIST CFReDS
dataset, encompassing metrics for accuracy, integrity,
and throughput.

Table 10. Integrated system results

Metric Value 95% CI

Overall Accuracy 98.7% [98.4, 99.0]
Custody Integrity 100.0% [99.8, 100]
Detection
Precision

98.1% [97.7, 98.5]

Detection Recall 98.7% [98.3, 99.1]
Throughput
(TPS)

10,000 [9,850, 10,150]

End-to-End
Latency

0.8 s [0.75, 0.85]

5.4. Failure Analysis

Despite the high overall accuracy, a detailed failure
analysis reveals specific vulnerabilities where system
performance degrades, as outlined in Table 11.

Table 11. Failure case analysis

Scenario Accuracy Root Cause

Normal Operation 98.5% –
JPEG Q<50 95.8% Compression artifacts
GAN-Generated 87.2% Adversarial examples
Micro-Manipulation 89.6% Sub-pixel changes
Network Partition 100.0%* *Custody only

Specifically, the system exhibits vulnerabilities
in three primary scenarios. First, sophisticated
GAN-generated forgeries significantly reduce detection
accuracy to 87.2%. This performance drop highlights
the necessity of incorporating adversarial training in
future iterations to robustly learn boundary-invariant
features against zero-day generative attacks. Second,
micro-manipulations that fall below the perceptual
threshold result in an accuracy of 89.6%. Third, heavy
compression artifacts (where JPEG quality Q < 50)
impact the frequency features, lowering accuracy to
95.8%. Conversely, it is important to note that the
blockchain custody module maintains 100% integrity
even during network partitions, thanks to the eventual
consistency property of the consensus protocol.

5.5. Computational Cost Analysis

Finally, we analyzed the computational resource
requirements of the framework, as detailed in Table 12.
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Table 12. Computational cost breakdown

Component FLOPs (G) Memory (MB) Time (s)

Spatial Branch 4.1 512 0.15
Frequency Branch 4.1 512 0.15
Fusion 0.01 8 0.001
Classification 0.02 16 0.002
Blockchain Write – 4 0.5

Total 8.2 1,052 0.8

While the dual-branch architecture inherently
necessitates a two-fold increase in Floating Point
Operations (FLOPs) compared to single-branch
baselines, it delivers a critical 5.3% improvement in
accuracy. In the context of digital forensics, where
false negatives can have severe legal implications,
this trade-off between computational cost and
detection precision is considered favorable. Given the
computational intensity of the dual-branch architecture
(8.2 GFLOPs), purely CPU-based execution is feasible
but suboptimal for time-sensitive investigations.
Therefore, the target deployment environment for
this framework is a centralized Digital Forensic
Laboratory equipped with specialized GPU-accelerated
workstations (e.g., NVIDIA RTX 3090/4090 or
Datacenter GPUs). This hardware specification ensures
that the high detection accuracy and throughput required
for legal proceedings are maintained, distinguishing our
professional forensic solution from lightweight tools
intended for resource-constrained edge devices.

5.6. Theoretical Complexity Analysis
To demonstrate scalability beyond empirical TPS

metrics, we analyze the asymptotic complexity of the
proposed Hybrid PoA-BFT consensus compared to
standard PBFT.

Let N be the number of validators. Standard PBFT
requires a three-phase commit (Pre-prepare, Prepare,
Commit) with a message complexity of O(N2), leading
to network congestion as N increases. In contrast, our
Hybrid approach utilizes a leader-based proposal with
signature aggregation.

CHybrid = O(N)︸ ︷︷ ︸
Broadcast

+ O(1)︸︷︷︸
Verification (Aggregated)

≈O(N) (4)

Table 13 summarizes the computational and
communication complexity. This linear complexity
O(N) theoretically proves why our system achieves
1,429x throughput improvement over traditional
approaches, validating the empirical results in Section
3.5.

6. Discussion
6.1. Commercial Tool Integration Pathways

To bridge the gap between academic research and
forensic practice, we propose seamless integration
pathways for two industry-standard platforms. For

Table 13. Asymptotic complexity comparison

Algorithm Comm. Complexity Latency

PoW (Bitcoin) O(N) Probabilistic
PBFT (Standard) O(N2) Deterministic
Hybrid PoA-BFT (Ours) O(N) Deterministic

EnCase (v8+), we designed a proof-of-concept
EnScript module architecture aimed at automating
the submission of evidence hashes directly to the
blockchain. Additionally, we defined a REST API
endpoint structure to facilitate real-time Machine
Learning tampering detection. The proposed deployment
process is streamlined, envisioning only the migration
of the script to the EnCase/EnScripts/ directory and the
configuration of the endpoint parameters.

Similarly, for FTK (v7+), we conceptualized an
Export Bridge utilizing a Python script mechanism
that systematically exports the hash database to the
blockchain ledger. This component is designed to
be deployed as an FTK Custom Tool, allowing
investigators to trigger immutable logging as part of
their standard evidence processing workflow without
disrupting existing procedures.

6.2. Simulated Pilot Study and Future Potential

The practical efficacy of the proposed framework
was validated in a simulated forensic scenario involving
contested video evidence, replicating a high-stakes
criminal trial. The evidence consisted of a 5-minute
surveillance video (approximately 9,000 frames) where
the defense alleged deepfake manipulation generated
via FaceSwap techniques. Under a strict court-imposed
deadline of 48 hours, manual verification was estimated
to require 95 hours.

By applying our system, the total analysis time was
drastically reduced to 2 hours. The model returned
a detection confidence of 99.1%, correctly classifying
the footage as authentic. Quantitatively, the automated
deep learning module processed the video feed at an
average rate of 75 frames per second (FPS), completing
the frame-by-frame tampering scan in under 3 minutes,
while the blockchain consensus finalized the custody
log in 0.5 seconds per transaction block. Crucially,
the blockchain custody log demonstrated an unbroken
chain, effectively refuting hypothetical allegations of
tampering.

6.3. Limitations

Despite the demonstrated capabilities, our analysis
identifies specific limitations that necessitate future
investigation. First, regarding adversarial robustness, the
current model exhibits vulnerability to sophisticated
GAN-generated forgeries, which reduce detection
accuracy to 87.2%. Future iterations will incorporate an
Adversarial Training loop, where the dual-branch model
is iteratively exposed to evolving Deepfake samples
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during training to learn boundary-invariant features.
Second, the system entails significant computational
requirements, necessitating GPU acceleration (e.g., RTX
3090) for optimal performance, which currently restricts
deployment on resource-constrained edge devices.

Furthermore, regarding dataset specificity, the model
is primarily trained on CASIA and NIST datasets.
To ensure broad applicability in specialized domains
such as medical imaging or industrial SCADA,
domain adaptation techniques are required. Finally,
performance degradation is observed under high
compression scenarios. While the system maintains
high accuracy for typical forensic acquisition (Q ≥ 75),
detection rates decline when JPEG quality falls below
Q = 50. To address this in practical deployments
(e.g., evidence via instant messaging apps), we propose
integrating a Generative Adversarial Network-based
Super-Resolution (SR) module, such as the Super-
Resolution Generative Adversarial Network (SRGAN)
or Swin Transformer for Image Restoration (SwinIR).
By reconstructing high-frequency components lost
during compression, this pre-processing step aims to
restore critical pixel-level artifacts necessary for the
frequency-branch analysis, thereby recovering detection
performance before the tampering detection pipeline.

Finally, while the blockchain ensures immutability
post-ingestion, the system currently relies on the
physical security of the validators’ private keys
(the ‘Oracle Problem’). If a trusted custodian’s
credentials are compromised, false evidence could be
immutably logged. Future work will mitigate this risk
by implementing Multi-Factor Authentication (MFA)
linked to Hardware Security Modules (HSM) for all
write-access transactions.

6.4. Threats to Validity

We systematically addressed potential threats to
the validity of our findings. Internal validity was
ensured through controlled experiments utilizing fixed
random seeds to guarantee reproducibility, alongside
5-fold cross-validation to prevent overfitting. External
validity was strengthened by evaluating the framework
across diverse datasets (CASIA, NIST CFReDS, and
custom synthetic data), while the real-world case study
demonstrated practical applicability beyond laboratory
settings.

Regarding construct validity, the selected metrics
(including accuracy, precision, recall, F1-score, and
AUC) align directly with forensic requirements that
emphasize the minimization of false negatives. Finally,
statistical conclusion validity is supported by large
sample sizes (N > 5,000) and rigorous analysis using
confidence intervals and significance tests (paired
t-test, McNemar’s test), ensuring that the reported
improvements are not artifacts of chance.

7. Conclusion

This paper presents a comprehensive blockchain-ML
framework designed to preserve the integrity of digital
evidence, achieving three pivotal advancements. First,
the implementation of smart contract automation
successfully eradicates manual chain-of-custody errors,
elevating integrity preservation from a 95% baseline
to 100%. Second, the systematically optimized adaptive
dual-branch CNN attains a tampering detection accuracy
of 98.5%, representing a statistically significant
improvement of 5.3% over prior art (p < 0.001). Third,
the hybrid PoA-BFT consensus mechanism yields a
throughput of 10,000 TPS, outperforming traditional
blockchain implementations by a factor of 1,429.

Comprehensive evaluations on the National Institute
of Standards and Technology Computer Forensic
Reference Data Sets against six baseline methods
substantiate the framework’s superiority regarding
integrity, accuracy, and computational efficiency.
Furthermore, systematic ablation studies quantify the
distinct contributions of each component; notably,
the dual-branch architecture contributes a 5.3% gain
over single-branch models, while smart contract rules
eliminate the 15.2% error rate observed in manual
systems. However, detailed failure analysis identifies
specific limitations, particularly regarding forgeries
generated by Generative Adversarial Networks (87.2%
accuracy), micro-manipulations (89.6%), and heavy
compression artifacts (95.8% at Q < 50).

The practical efficacy of the system was validated
through a simulated deployment in a mock trial
scenario, where it reduced analysis time from 95 hours
(manual) to just 2 hours, achieving 99.1% authentication
confidence and demonstrating robust potential for
legal admissibility. Moreover, the proposed integration
pathways for commercial tools such as EnCase and
FTK facilitate future adoption within existing forensic
workflows.

Future research will prioritize strategic
enhancements to address the identified limitations.
Specifically, we will implement adversarial training to
bolster robustness against zero-day forgeries generated
by Generative Adversarial Networks and develop a
lightweight Super-Resolution (SR) front-end to recover
forensic artifacts from highly compressed media.
Furthermore, to mitigate the ’Oracle Problem’, we
plan to integrate Hardware Security Modules (HSM) for
secure custody logging. Parallel efforts will focus on
extending detection capabilities to audio and document
tampering, applying model quantization for edge
deployment, and developing explainable AI (XAI)
modules to enhance legal admissibility.

Ultimately, we aim to apply this research to
the broader investigation of cybersecurity and the
increasingly complex landscape of high-tech crime.
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Looking forward, the applicability of this framework
could be expanded to the entire Ministry of Public
Security for digital forensics, thereby contributing to the
effective resolution of complex cases in the evolving
digital environment.
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