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Abstract 

The paper presents a method for determining the energized operating point of an AC contactor coil using the finite element 
method (FEM) combined with a Bayesian neural network (BNN) model. Under actual operating conditions, the magnetic 
flux density and air-gap length of the electromagnet directly influence the electromagnetic force within the contactor and, 
consequently, the overall device performance. However, these quantities are difficult to measure accurately in practice. The 
objective of this study is to propose a computational approach for estimating the magnetic flux density and air-gap length of 
the contactor by integrating machine learning techniques with FEM simulations. The proposed method establishes an 
electromagnetic model of the contactor coil, in which the magnetic flux density varies from 1.0 T to 1.5 T and the air-gap 
length ranges from 0.05 mm to 0.30 mm, generating the corresponding voltage drops across the coil. The simulated dataset 
is then used to train a BNN in an inverse inference direction, enabling prediction of the magnetic flux density and air-gap 
length from a known operating voltage. Based on these estimated quantities, the electromagnetic attraction force is calculated 
using FEM, facilitating analysis of the contactor’s operating characteristics and providing a foundation for design 
optimization in industrial applications. 

Keywords: AC contactor coil, Bayesian neural network, finite element method. 

1. Introduction

In*modern industrial electrical systems, switching
devices are essential components responsible for the 
reliable connection and disconnection of electrical 
circuits, as well as for ensuring protection against 
abnormal operating conditions or electrical faults. These 
devices enable safe control of power flow, automation 
of processes, and protection of equipment from damage 
caused by overloads or short circuits. Among the various 
types of switching devices, the AC contactor stands out 
as a fundamental electromagnetic switch that is 
extensively employed in industrial and commercial 
applications. It is primarily used for controlling, 
protecting, and switching high-power electrical loads, 
such as motors, heating systems, and lighting circuits. 
By providing remote and automatic control of power 
circuits, AC contactors enhance both the efficiency and 
safety of modern electrical installations. 

During continuous operation, mechanical wear and 
electrical stresses-such as arcing, contact erosion, and 
material degradation-gradually accumulate in AC 
contactors, leading to increased contact resistance, 
reduced switching performance, and potential loss of 
contact integrity. As deterioration progresses, the device 
may exhibit delayed response, incomplete closure, or 
even total failure. Consequently, numerous studies have 
focused on accurately assessing and predicting the 
reliability and remaining electrical life of AC contactors. 
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These efforts aim to clarify degradation mechanisms, 
model aging behaviour, and develop predictive 
maintenance strategies to detect potential failures in 
advance, thereby improving system reliability, safety, 
and operational continuity while minimizing downtime 
and maintenance costs [1-3]. 

Over the past decades, the finite element method 
(FEM) has been widely employed to simulate 
the electromagnetic and mechanical characteristics 
of various electromagnetic devices. In [4], a 
two-dimensional (2D) FEM model was developed that 
integrates electromagnetic field analysis, transient 
electrical circuit modelling, and the mechanical motion 
of the armature, enabling the simulation of the dynamic 
behaviour of AC contactors during coil excitation. The 
FEM approach provides a reliable means of accurately 
predicting the operating performance of the contactor 
coil, with simulation results showing strong agreement 
with experimental measurements. 

The operating characteristics of an AC contactor coil 
are strongly influenced by key electromagnetic 
parameters, particularly the magnetic flux density and 
the length of the air gap within the magnetic circuit. 
These quantities directly determine the magnitude of the 
electromagnetic attraction force generated by the 
contactor’s electromagnet, which governs the closing 
dynamics, response time, and stability of the armature 
movement. Accurate estimation of these parameters is 
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therefore essential for ensuring high operating 
efficiency, reliable switching performance, and 
extended service life of the device. However, under real 
operating conditions, direct measurement of magnetic 
flux density and air-gap variations is extremely difficult. 
The installation of sensors within the confined structure 
of the electromagnetic mechanism is limited by space 
constraints, harsh electromagnetic interference, and the 
risk of altering the device's behavior. Additionally, the 
fast transient nature of switching events further 
complicates measurement. These practical challenges 
motivate the development of advanced modeling, 
estimation, and signal-based diagnostic techniques 
capable of capturing these internal parameters without 
intrusive access to the system. 

Full-scale finite element method (FEM) simulations 
often demand substantial computation time, particularly 
when performing parameter sweeps or multi-condition 
analyses. In modern industrial systems, where 
computational efficiency and real-time responsiveness 
are crucial, the integration of FEM with machine 
learning techniques has emerged as a promising solution 
[5, 6]. Among these approaches, artificial neural 
networks (ANNs) have demonstrated strong potential, as 
they can learn the complex nonlinear relationships 
between electrical signals (e.g., voltage and current) and 
mechanical quantities (e.g., armature displacement and 
electromagnetic force) in AC contactors. This capability 
enables accurate prediction of device behaviour without 
relying on time-intensive FEM simulations. 

Bayesian neural networks (BNNs) are an advanced 
extension of traditional artificial neural networks. 
Unlike conventional models that treat network weights 
and biases as fixed parameters, BNNs represent them as 
probability distributions, enabling the model to naturally 
capture prediction uncertainty [7]. Through Bayesian 
inference, these distributions are updated based on 
observed data, resulting in a posterior distribution over 
the network parameters. Predictions are then obtained by 
averaging over this posterior, providing both output 
values and associated confidence estimates. BNNs offer 
key advantages such as uncertainty quantification, 
improved generalization on small or noisy datasets, 
robustness in the presence of incomplete data, and the 
ability to incorporate prior knowledge into the learning 
process. These features make BNNs particularly useful 
in safety-critical or data-limited applications. 

In this study, the dataset for BNN training was 
generated using the electromagnetic model of a 
commercial AC contactor, simulated with Finite 
Element Method Magnetics (FEMM) [8], an open 
source 2D FEM tool for magnetostatic and 
electromagnetic analysis. In the simulations, the 
magnetic flux density in the air gap was varied from 
1.0 T to 1.5 T, while the air-gap length was swept from 
0.05 mm to 0.30 mm. The coil current was measured 
experimentally and used as the input to the FEM-based 
model, from which the corresponding coil voltage was 

obtained. The resulting dataset was then used to train a 
BNN capable of mapping coil voltage to flux density and 
air-gap length, thereby enabling the estimation of the 
contactor’s operating condition directly from voltage 
measurements. 

The main innovation of this study is its ability to 
estimate key internal parameters of AC contactors, 
including magnetic flux density and air-gap length, 
without the need for intrusive sensors or 
computationally expensive full FEM simulations.  

By combining experimentally measured coil current 
with FEM-generated data to train a BNN, the proposed 
approach enables fast, accurate, and uncertainty-aware 
estimation directly from coil voltage measurements. 
This non-invasive method simplifies measurement, 
enhances reliability, and supports real-time monitoring 
and predictive maintenance of industrial switching 
devices. 

The remainder of this paper is structured as follows. 
Section 2 briefly describes the construction and 
operation of AC contactors. Section 3 introduces Finite 
Element Method Magnetics (FEMM) as an effective 2D 
FEM tool for analysing their electromagnetic behaviour. 
Section 4 presents the concept of BNNs for regression 
applications. Section 5 explains the determination of the 
operating point of the energized AC contactor coil. 
Section 6 outlines the experimental setup for measuring 
electrical parameters and the procedure used to estimate 
the operating point. Finally, Section 7 concludes the 
study. 

2. Construction and Operation of AC Contactors 

An AC contactor, as shown in Fig. 1, consists of 
several key components that work together to control the 
switching of electrical circuits. The coil (solenoid 
winding) generates a magnetic field when energized by 
an AC supply, which produces the force needed to move 
the armature. The magnetic core (fixed iron core), 
usually made of laminated soft iron, provides a low-
reluctance path for the magnetic flux and directs it 
toward the movable part. The armature (moving iron 
core) is attracted to the fixed iron core when the coil is 
energized, causing the contacts to close and complete the 
electrical circuit.  

 
Fig. 1.  Key components of an AC contactor 
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Two shading coils, small copper rings placed on two 
pole faces, are used to create a phase-shifted magnetic 
flux that prevents armature vibration. The contacts, 
divided into main and auxiliary types, are responsible for 
carrying the large current and performing control or 
signaling functions, respectively. A spring returns the 
armature to its original position when the coil is  
de-energized, ensuring the contacts open quickly and 
safely. Finally, the frame and housing provide structural 
support, electrical insulation, and protection for all 
internal components, ensuring reliable and durable 
operation. 

When the AC supply is applied to the coil, an 
alternating magnetic field is produced in the magnetic 
core. The magnetic flux induces an electromagnetic 
force that attracts the armature. The magnitude of this 
force depends on the coil current, the number of turns of 
the coil, the magnetic permeability of the core material, 
and the air gap between the armature and the core. The 
electromagnetic force can be computed as follows:  

    
( )22

0
2

02 2
NI AB AF
g

µ
µ

= =                       (1) 

where 

• F : Electromagnetic force ( N ), 

• B : Magnetic flux density (T ), 

• A : Cross-sectional area of the core ( 2m ), 

• 0µ : Permeability of free space ( 74 10 /H mπ − ), 

• N : Number of turns of the coil, 

• I : Current through the coil, 

• g : Air-gap distance between armature and core  
( m ). 

Number of turns can be determined as follows: 

4.44 m

VN
fB A

=                                 (2) 

where 

• V : Root-mean-square (RMS) voltage of the coil, 

• f : Frequency (Hz), 

• mB : Maximum flux density (T), 

• A : Core cross-sectional area (m2). 

3. Electromagnetic Analysis of AC Contactors Using 
Finite Element Method Magnetics 

The FEM is a powerful numerical technique used to 
solve complex electromagnetic field problems that are 
difficult or impossible to address analytically. In FEM, 
the geometry of a device is divided into many small, 

discrete regions called elements, over which the 
governing field equations are approximated. By 
assembling the solutions of all elements, FEM provides 
an accurate approximation of the overall 
electromagnetic behavior of the system. This method is 
widely employed in the design, analysis, and 
optimization of electrical machines, transformers, 
actuators, sensors, and other electromagnetic devices, 
enabling engineers to predict performance, identify 
potential issues, and improve efficiency before physical 
prototyping. 

In this study, electromagnetic analyses of an AC 
contactor were performed using FEMM, which allows 
accurate computation of the magnetic flux density, field 
distribution, and electromagnetic force as functions of 
coil excitation and air-gap length. FEMM can solve 
simplified forms of Maxwell’s equations, depending on 
the type of problem-magnetostatic, harmonic, or 
electrostatic.  

FEMM provides multiple advantages over 
commercial platforms such as ANSYS, particularly in 
academic and research settings. Unlike ANSYS, FEMM 
is completely free, lightweight, and does not require 
expensive licenses or high-end computing hardware, 
which makes it highly accessible for researchers and 
educators. Its interface is straightforward and well-
suited for 2D planar and axisymmetric problems, 
enabling fast model creation and efficient numerical 
computation. In addition, FEMM offers built-in Lua 
scripting capabilities that support automated parametric 
simulations, batch processing, and seamless interaction 
with external tools such as MATLAB, Octave, and 
machine-learning frameworks. These features allow 
flexible customization and efficient data generation, 
which are essential for developing and training 
predictive models. As a result, FEMM serves as a 
practical, user-friendly platform for electromagnetic 
device modeling when rapid simulation, low 
computational cost, and integration with external 
algorithms are required. 

The core Maxwell’s equations implemented in 
FEMM are as follows: 

D ρ∇ ⋅ =                                     (3) 

0B∇⋅ =                                     (4) 

BE
t

∂
∇× = −

∂
                                (5) 

DH J
t

∂
∇× = +

∂
                             (6) 

where 

• E : Electric field intensity ( /V m ), 

• D Eε= : Electric flux density ( 2/C m ), 

• H : Magnetic field intensity ( /A m ), 
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• B Hµ= : Magnetic flux density (T ), 

• J : Current density ( 2/A m ), 

• C : Charge density ( 3/C m ). 

The FEM-based analysis model of the AC contactor 
is primarily based on the equations governing time-
harmonic (AC) magnetic problems, as follows: 

1
sA j A Jωσ

µ
 

∇× ∇× = − 
 

                   (7) 

where 

• ω : Angular frequency ( /rad s ), 
• σ : Conductivity ( /S m ), 
• sJ : Source current density ( 2/A m ). 

By using FEMM, it is possible to analyze the 
influence of parameters such as coil current, air-gap 
variation, and core geometry on the electromagnetic 
characteristics of the AC contactor. The following 
parameters of the AC contactor coil can be determined: 
the resistance, reactance, and electromagnetic force. 

4. Bayesian Neural Networks 

BNNs are a type of artificial neural networks 
(ANNs) that incorporate Bayesian inference to handle 
uncertainty in network parameters (weights and biases). 
Instead of assigning fixed values to the weights, BNNs 
treat them as probability distributions, enabling the 
network to make probabilistic predictions. 

According to Bayes’ theorem, the inference equation 
can be expressed as follows: 

( ) ( ) ( )
( )

|
|

p D w p w
p w D

p D
=                      (8) 

where 

• ( )|p w D : The posterior distribution of weights 
and biases in the network, 

• ( )|p D w : The data likelihood (how likely the 
data is given the weights and biases), 

• ( )p w : The prior distribution of weights and 
biases in the network, 

• ( )p D : The evidence. 
In Bayesian inference for neural networks, the 

hyperparameters of the cost function, such as prior 
variances, regularization terms, or noise levels, are not 
set arbitrarily but are determined according to the 
principle of maximum evidence. This principle, also 
known as type-II maximum likelihood, involves 
selecting hyperparameters that maximize the marginal 
likelihood of the observed data, integrating over all 
possible network weights. By doing so, the network 
automatically balances model complexity and data fit, 

leading to more robust learning, improved 
generalization, and principled handling of uncertainty in 
predictions. 

BNNs usually consist of three layers as follows: 

• The input layer receives the input data (features), 

• The hidden layer performs computations and 
extracts relationships or patterns, 

• The output layer produces the result or decision. 

4.1. Forward Propagation 

First, the input values to the network are denoted by 
ix  where 1,...,i d= . The activation of the hidden layer 

is as follows: 

( ) ( ) ( )1 1 1

1

d

j ji i j
i

a w x b
=

= +∑     1,...,j M=    (9) 

where 

• ( )1
jiw : Weight on the connection from the i -th 

input to the j -th hidden node, 

• ( )1
jb : Bias of the j -th hidden node, 

• ( )1
ja : Activation of the j -th hidden node, 

• d : Number of inputs, 

• M : Number of hidden nodes. 

The activation of the hidden layers is then used to 
compute the outputs of hidden nodes as follows: 

( ) ( )( )1 1
1j jy f a=        1,...,j M=   (10) 

where ( )1f ⋅  is the activation function of the hidden 
layer, which is a ‘tanh’ function as follows: 

( ) ( )( )1 1tanhj jy a=                          (11) 

The activation function of the hidden layer has the 
following properties: 

21j
j

j

y
y

a
∂

= −
∂

                            (12) 

The activations of output nodes are computed as 
follows: 

( ) ( ) ( )2 2 2

1

M

k kj j k
j

a w y b
=

= +∑     1,...,k c=   (13) 

where 

• ( )2
kjw : Weight on the connection from the j -th 

hidden node to the k -th output node,  
• ( )2

kb : Bias of the k -th output node, 
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• ( )2
ka : Activation of the k -th output node, 

• c : Number of output nodes. 

For regression problems, the linear function is used 
for the activation of output nodes, which is as follows: 

( )2
k kz a=                                  (14) 

4.2. Cost Function 

The BNN training requires the definition of a cost 
function, which has the following form: 

D WS E Eβ α= +                            (15) 

where DE  is the sum-of-square error function as 
follows: 

( ){ }2

1 1

1 ;
2

N c

D k n nk
n k

E z x w t
= =

= −∑∑            (16) 

where 

• N : Number of patterns in the training data, 

• nx : The n -th input data, 

• nt : The n -th target data corresponding to the k -
th output, 

• w : Vector of weights and biases in the network. 

In (15), β  represents the constant inverse variance 
and α  denotes the regularization constant that penalizes 
large weights and biases, thereby mitigating the 
overfitting phenomenon in the network after training. 

DE  is also called the data error function. β  and α  are 
also called ‘hyperparameters’. WE  is called the weight 
function, which is given by: 

2 2

1

1
2

W

W i
i

E w w
=

= = ∑                          (17) 

where W  is the number of weights and biases in the 
network. β  and α  can be automatically determined 
using the Bayesian inference. At the most probable 
vector of weights and biases, MPw , the relationship 
between MP

WE  and α is as follows:                      

1
2

W
MP

W
i i

E W αα
λ α=

= −
+∑                       (18) 

where ( )1,...,i i Wλ =  are the eigenvalues of the Hessian 
matrix of the data error, DE .  The right-hand side of (18) 
is equal to a value γ  defined as follows: 

1

W
i

i i

λ
γ

λ α=

=
+∑                                 (19) 

From (18) and (19), the value of α  can be computed 
as follows: 

 
2 MP

WE
γα =                                   (20) 

At the most probable vector of weights and biases, 
MPw , the relationship between MP

DE  and β  is as follows:                      

1
2

W
MP i

W
i i

E N N
λ

β γ
λ α=

= − = −
+∑                (21) 

From (21), the value of β  can be calculated as 
follows: 

 
2 MP

W

N
E

γβ −
=                                 (22) 

Equations (19), (20) and (22) are used to update the 
values of α  and β  during the network training process.  

4.3. Update of Weights and Biases 

The vector of the network weights and biases can be 
updated via an iterative process as follows: 

[ ] [ ] [ ] [ ]1w k w k k d kη+ = +                (23) 

where 

• [ ]w k : Vector of weights and biases at the k -th 
iteration, 

• [ ]1w k + : Vector of weights and biases at the 
k -th iteration, 

• [ ]d k : Search direction at the k -th iteration, 

• [ ]kη : Learning rate at the k -th iteration. 

The vector of weights and biases are updated to 
minimize the difference between the predicted and 
actual outputs. This is done through training algorithms, 
typically using a method called backpropagation, 
combined with an optimization algorithm such as the 
scaled conjugate gradient method [9]. 

The BNN training procedure includes the following 
steps. 

• Step 1: Initialize the values for α  and β . The 
network weights and biases are initialized from 
the prior distribution defined for α . 

• Step 2: Update the vector of the network weights 
and biases to minimize the cost function, S . 

• Step 3: When the cost function has reached a 
local minimum, the values of α  and β  can be 
re-estimated as follows: 

2
old

new
WE

γ
α =                                  (24) 
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2
old

new
W

N
E
γ

β
−

=                             (25)       

• Step 4: Repeat Steps 2 and 3 until convergence 
is reached. 

5. Determination of the Energized State Operating 
Point of the AC Contactor Coil 

FEMM is used to simulate the electromagnetic 
behavior of the AC contactor coil under different 
excitation conditions, illustrating how the magnetic flux 
density and air-gap length vary with the applied voltage. 
A BNN is then employed to estimate the magnetic flux 
density and air-gap length at the energized-state 
operating point of the AC contactor coil. Let mB  in the 
range of 1 to 1.5T represent the vector of magnetic flux 
density values and g  in the range of 0.05 to 0.5 mm 
represent the vector of corresponding air-gap lengths. 
These vectors form the dataset used for BNN training. 
The magnetic flux density values were discretized with 
an increment of 0.05 (T), covering the full range from 
the minimum to the maximum observed limits. 
Similarly, the air-gap length values were sampled at 
steps of 0.05 (mm) across their entire operating range. 
Based on these step resolutions and limits, a total of 110 
distinct data patterns were generated for the dataset. 

The input and target variables used for training the 
BNN are organized as follows. 

• Input: the applied coil voltage of the AC 
contactor, 

• Targets: the corresponding magnetic flux density 
and air-gap length. 

Based on this configuration, the BNN architecture 
consists of one input node, ten hidden nodes (which may 
be adjusted depending on the training performance), and 
two output nodes representing the predicted magnetic 
flux density and air-gap length. 

Once trained, the BNN establishes a direct mapping 
from the measured applied voltage to the estimated 
electromagnetic parameters of the AC contactor. By 
predicting the magnetic flux density and air-gap length 
and using the experimentally measured coil current, 
several key parameters of the energized coil can be 
determined: 

• Voltage drops across the coil, 
• Coil resistance, 
• Coil reactance, 
• Instantaneous electromagnetic force. 

This approach eliminates the need for direct 
measurement of these internal parameters, enabling 
efficient and non-intrusive evaluation of the contactor’s 
operating condition. 

6. Experiment 

This section describes the procedure used to set up 
the experimental system for measuring the electrical 
parameters of an AC contactor coil. The complete 
arrangement is shown in Fig. 2, which illustrates the 
method used to acquire both the voltage applied to the 
coil and the current flowing through it. The experimental 
system is designed to accurately capture real-time 
electrical signals while ensuring safe and reliable 
operation. The setup consists of the following 
components: 

• Voltage and current sensors, used to measure the 
instantaneous coil voltage and current 
waveforms, 

• A National Instruments USB-6009 data 
acquisition (DAQ) device, which converts the 
analog sensor outputs into digital signals suitable 
for processing, 

• A laptop running a graphical user interface 
(GUI)-based DAQ software, used for real-time 
signal monitoring, data recording, and export of 
measurement results for further analysis. 

Together, these components form an integrated 
measurement system capable of capturing coil behavior 
under energized operating conditions, providing the 
necessary data for subsequent parameter estimation and 
BNN-based prediction. 

 
Fig. 2. The experimental system 

Fig. 3 shows the graphical user interface (GUI) of the 
DAQ software, which provides real-time monitoring and 
visualization of the electrical quantities measured from 
the AC contactor coil. The software displays the 
following parameters: 

• Waveform of the applied voltage, 
• Waveform and fast Fourier transform (FFT) of 

the coil current, 
• RMS value of the voltage, 
• RMS value of the current, 
• Total harmonic distortion (THD) of the voltage, 
• THD of the current. 
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In addition, Fig. 4 illustrates typical examples of the 
voltage waveform, current waveform, and their 
corresponding FFT analyses obtained from the 
measurement system. The DAQ software also enables 
the user to record these waveforms for offline evaluation 
and post-processing. From the recorded voltage and 
current data, RMS values of the voltage and current can 
be computed as follows: 

2

1

1 N

RMS i
i

V V
N =

= ∑                            (26) 

2

1

1 N

RMS i
i

I I
N =

= ∑                            (27) 

where 

• RMSV : RMS value of the voltage, 
• RMSI : RMS value of the current, 
• iV : Value of the voltage at the i -th sampling 

instant, 
• iI : Value of the current at the i -th sampling 

instant, 
• N : Number of samples of the voltage and 

current. 

 
Fig. 3. GUI of the DAQ software 

 

 
Fig. 4. Waveforms and FFT analyses of the coil voltage 
and current with an applied voltage of 220 V 

The real power of the coil is computed as follows: 

1

1 N

i i
i

P V I
N =

= ∑                             (28) 

The appearance power of the coil is given by: 

RMS RMSS V I=                             (29) 

The resistance of the coil is calculated as follows: 

2
RMS

PR
I

=                                 (30) 

The impedance of the coil is given by: 

RMS

RMS

V
Z

I
=                                (31) 

The reactance of the coil is computed as follows: 

2 2X Z R= −                          (32) 

The electromagnetic force that attracts the armature 
can be accurately computed using finite element analysis 
(FEA). It directly depends on the following parameters: 

• Number of turns of the coil, 

• Air-gap length, 

• Current flowing through the coil. 

Fig. 5 illustrates the implementation of FEMM to 
perform a 2D finite element analysis of the AC contactor 
coil and its magnetic structure. In this simulation, the 
magnetic field distribution and magnetic flux density are 
computed based on the applied coil excitation, the 
material properties, and the geometry of the magnetic 
circuit. By examining these results, the influence of coil 
current, air-gap length, and material saturation on the 
overall magnetic behavior can be clearly evaluated. This 
provides a reliable basis for modeling the pull-in force, 
estimating performance under different operating 
conditions, and supporting design optimization of the 
contactor. 

Fig. 6 demonstrates the learning principle of BNN, 
showing how weights and biases are iteratively updated 
during training. This probabilistic update process 
enables the network to learn the mapping between inputs 
and outputs while quantifying the uncertainty associated 
with each prediction. 

Fig. 7 presents the methodology for generating the 
BNN training dataset using FEMM simulations. The 
electromagnetic analysis results are systematically 
extracted to create input–output samples, which serve as 
the training data for the BNN. This establishes a direct 
link between finite element modeling and data-driven 
prediction, ensuring that the neural network reflects 
realistic electromagnetic behavior of the AC contactor. 
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Fig. 5. 2D FEM analysis of the AC contactor 

 

 
Fig. 6. Principle for updating the weights and biases of 
the BNN 

 

 
Fig. 7. Principle for generating the training data for the 
BNN 

 

The BNN, which provides a mapping from the 
voltage applied to the coil to the corresponding flux 
density and air-gap length, has the following 
architecture: 

• One input corresponding to the voltage applied to 
the coil, 

• Ten hidden units in the hidden layer, 

• Two outputs, corresponding to the flux density 
and air-gap length. 

The network training procedure was then 
implemented as follows: 

• Step 1: Choosing initial values for the 
hyperparameters,  β  and α . Initializing the 
values for weights and biases. 

• Step 2: Training the network using scaled 
conjugate gradient optimization algorithm to 
minimize the cost function, S . 

• Step 3: When the cost function has reached a 
local minimum, re-estimating the values of  β  
and α  using (24) and (25). 

• Step 4: Repeating Step 2 and 3 until convergence 
(the cost function will not change significantly in 
subsequent iterations). 

Table 1 presents the evolution of the 
hyperparameters across five consecutive re-estimation 
periods during the BNN training process. These updates 
demonstrate how the model parameters are iteratively 
adjusted as additional information from the training data 
is incorporated. By continuously refining the 
hyperparameters, the BNN updates the posterior 
distributions of its weights and biases, allowing the 
model to more accurately represent the underlying 
uncertainty in the data. This adaptive optimization 
process leads to improved prediction accuracy, better 
generalization to unseen samples, and more credible 
uncertainty estimates for the predicted electromagnetic 
quantities of the AC contactor system. 

Based on the trained BNN model, the magnetic flux 
density and air-gap length can be estimated as functions 
of the voltage applied to the coil, as summarized in 
Table  2. This enables direct mapping from measurable 
electrical inputs to key electromagnetic parameters, 
facilitating real-time assessment of the contactor’s 
behavior. Furthermore, by combining the FEM-based 
model with the applied voltage values, the operational 
parameters of the coil in the energized states, such as coil 
current, magnetic force, and flux distribution, can be 
accurately determined, as presented in Table 3. This 
integrated approach allows for a comprehensive 
understanding of the AC contactor’s performance under 
different operating conditions, supporting both analysis 
and design optimization. 

Table 1. Changes in hyperparameters across  
re-estimation periods 

Re-estimation period β  α  

1 0.992 85.045 

2 2.620 98.624 

3 3.875 94.789 

4 4.570 92.401 

5 4.783 91.644 
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Table 2. Flux density and air-gap length corresponding 
to the voltage applied to the coil 

( )coil RMSV V  ( )mB T  ( )g mm  

160 1.4141 0.2527 

170 1.3914 0.2436 

180 1.3692 0.2360 

190 1.3477 0.2295 

200 1.3273 0.2239 

210 1.3083 0.2187 

227 1.2909 0.2138 

 

Table 3. Operational parameters of the coil in the 
energized state 

( )coil RMSV V  ( )coil RMSI A  ( )mB T  ( )g mm  

227.1312 0.048 1.2373 0.2575 
 

 
Fig. 8. Contour (red lines) used for computing the force 
acting on the armature core 

 

Fig. 8 illustrates the contour lines (highlighted in red) 
that define the integration path used to compute the 
electromagnetic force acting on the armature core. These 
contours are applied in the FEM analysis to evaluate the 
magnetic field distribution around the core and 
determine the resulting force through the Maxwell stress 
tensor. 

Table 4 presents the calculated electromagnetic force 
values in the energized state of the AC contactor coil, 
including the minimum, maximum, and mean force 
obtained from both analytical and FEM methods. These 
values illustrate the magnitude and range of the force 
acting on the armature under steady conditions, 
providing a quantitative basis for evaluating the 
contactor’s pull-in capability, mechanical stability, and 
operational reliability. 

Table 4. Electromagnetic force values in the energized 
state computed by the analytical method and FEM 

Force (N) Analytical FEM Error (%) 

minF  2.2107 3.3288 33 

maxF  47.8992 46.7812 2.39 

meanF  25.1119 25.0550 0.23 

 

 
Fig. 9. Instantaneous electromagnetic force in the 
energized state 

Fig. 9 shows the waveform of the instantaneous 
electromagnetic force during coil energization. The plot 
highlights how the force evolves over time, capturing 
transient fluctuations before the system reaches steady 
operation. This time-domain representation enables 
further analysis of the influence of the voltage 
waveform, transient dynamics, and possible force 
variations that may affect the contactor’s mechanical 
response. 

Determining the energized state operating point of an 
AC contactor coil using a BNN provides a powerful tool 
for optimal electromagnet design. The energized 
operating point, characterized by flux density, air-gap 
length, and electromagnetic force, is essential for sizing 
the magnetic core, selecting coil parameters, and 
ensuring sufficient pull-in force without excessive losses 
or saturation. By learning the relationship between coil 
excitation and magnetic response, the BNN offers fast 
and accurate predictions that eliminate repeated FEM 
simulations and reduce reliance on physical prototypes. 
Moreover, by quantifying prediction uncertainty, the 
BNN helps designers evaluate safety margins, consider 
manufacturing tolerances, and avoid overdesign. Since 
the model relies on easily measured electrical signals 
rather than intrusive magnetic sensing, it supports cost-
effective design validation and can be extended to real-
time evaluation during prototyping. As a result, this 
approach enables more reliable, efficient, and optimized 
electromagnet designs with shorter development cycles 
and lower implementation costs. 
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7. Conclusion 

This study has presented a computational approach 
for determining the energized operating point of an AC 
contactor coil by integrating FEM with a BNN model. 
The proposed method effectively estimates the magnetic 
flux density and air-gap length, which are key 
parameters significantly influencing the electromagnetic 
force and overall performance of the contactor. The 
results demonstrate that the BNN can accurately predict 
the internal electromagnetic quantities of the contactor, 
enabling precise computation of the electromagnetic 
attraction force through FEM analysis. This integrated 
FEM-BNN framework provides an efficient and reliable 
tool for analyzing and optimizing the operating 
characteristics of AC contactors, offering valuable 
insights for improved design and performance 
evaluation in industrial applications. 
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