Journal of Science and Technology — Smart Systems and Devices
Volume ..... , Issue ... , Month 2026, 000-000

Determination of the Energized State Operating Point
of an AC Contactor Coil Using a Bayesian Neural Network

Son T. Nguyen®, Tu M. Pham, Anh Hoang, Tu A. Nguyen
Hanoi University of Science and Technology, Ha Noi, Vietnam
*Corresponding author email: son.nguyenthanh@hust.edu.vn

Abstract

The paper presents a method for determining the energized operating point of an AC contactor coil using the finite element
method (FEM) combined with a Bayesian neural network (BNN) model. Under actual operating conditions, the magnetic
flux density and air-gap length of the electromagnet directly influence the electromagnetic force within the contactor and,
consequently, the overall device performance. However, these quantities are difficult to measure accurately in practice. The
objective of this study is to propose a computational approach for estimating the magnetic flux density and air-gap length of
the conmtactor by integrating machine learning techniques with FEM simulations. The proposed method establishes an
electromagnetic model of the contactor coil, in which the magnetic flux density varies from 1.0 T to 1.5 T and the air-gap
length ranges from 0.05 mm to 0.30 mm, generating the corresponding voltage drops across the coil. The simulated dataset
is then used to train a BNN in an inverse inference direction, enabling prediction of the magnetic flux density and air-gap
length from a known operating voltage. Based on these estimated quantities, the electromagnetic attraction force is calculated
using FEM, facilitating analysis of the contactor’s operating characteristics and providing a foundation for design

optimization in industrial applications.
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1. Introduction

In modern industrial electrical systems, switching
devices are essential components responsible for the
reliable connection and disconnection of electrical
circuits, as well as for ensuring protection against
abnormal operating conditions or electrical faults. These
devices enable safe control of power flow, automation
of processes, and protection of equipment from damage
caused by overloads or short circuits. Among the various
types of switching devices, the AC contactor stands out
as a fundamental electromagnetic switch that is
extensively employed in industrial and commercial
applications. It is primarily used for controlling,
protecting, and switching high-power electrical loads,
such as motors, heating systems, and lighting circuits.
By providing remote and automatic control of power
circuits, AC contactors enhance both the efficiency and
safety of modern electrical installations.

During continuous operation, mechanical wear and
electrical stresses-such as arcing, contact erosion, and
material degradation-gradually accumulate in AC
contactors, leading to increased contact resistance,
reduced switching performance, and potential loss of
contact integrity. As deterioration progresses, the device
may exhibit delayed response, incomplete closure, or
even total failure. Consequently, numerous studies have
focused on accurately assessing and predicting the
reliability and remaining electrical life of AC contactors.
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These efforts aim to clarify degradation mechanisms,
model aging behaviour, and develop predictive
maintenance strategies to detect potential failures in
advance, thereby improving system reliability, safety,
and operational continuity while minimizing downtime
and maintenance costs [1-3].

Over the past decades, the finite element method
(FEM) has been widely employed to simulate
the electromagnetic and mechanical characteristics
of wvarious electromagnetic devices. In [4], a
two-dimensional (2D) FEM model was developed that
integrates electromagnetic field analysis, transient
electrical circuit modelling, and the mechanical motion
of the armature, enabling the simulation of the dynamic
behaviour of AC contactors during coil excitation. The
FEM approach provides a reliable means of accurately
predicting the operating performance of the contactor
coil, with simulation results showing strong agreement
with experimental measurements.

The operating characteristics of an AC contactor coil
are strongly influenced by key -electromagnetic
parameters, particularly the magnetic flux density and
the length of the air gap within the magnetic circuit.
These quantities directly determine the magnitude of the
electromagnetic attraction force generated by the
contactor’s electromagnet, which governs the closing
dynamics, response time, and stability of the armature
movement. Accurate estimation of these parameters is
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therefore essential for ensuring high operating
efficiency, reliable switching performance, and

extended service life of the device. However, under real
operating conditions, direct measurement of magnetic
flux density and air-gap variations is extremely difficult.
The installation of sensors within the confined structure
of the electromagnetic mechanism is limited by space
constraints, harsh electromagnetic interference, and the
risk of altering the device's behavior. Additionally, the
fast transient nature of switching events further
complicates measurement. These practical challenges
motivate the development of advanced modeling,
estimation, and signal-based diagnostic techniques
capable of capturing these internal parameters without
intrusive access to the system.

Full-scale finite element method (FEM) simulations
often demand substantial computation time, particularly
when performing parameter sweeps or multi-condition
analyses. In modern industrial systems, where
computational efficiency and real-time responsiveness
are crucial, the integration of FEM with machine
learning techniques has emerged as a promising solution
[5, 6]. Among these approaches, artificial neural
networks (ANNs) have demonstrated strong potential, as
they can learn the complex nonlinear relationships
between electrical signals (e.g., voltage and current) and
mechanical quantities (e.g., armature displacement and
electromagnetic force) in AC contactors. This capability
enables accurate prediction of device behaviour without
relying on time-intensive FEM simulations.

Bayesian neural networks (BNNs) are an advanced
extension of traditional artificial neural networks.
Unlike conventional models that treat network weights
and biases as fixed parameters, BNNs represent them as
probability distributions, enabling the model to naturally
capture prediction uncertainty [7]. Through Bayesian
inference, these distributions are updated based on
observed data, resulting in a posterior distribution over
the network parameters. Predictions are then obtained by
averaging over this posterior, providing both output
values and associated confidence estimates. BNNs offer
key advantages such as uncertainty quantification,
improved generalization on small or noisy datasets,
robustness in the presence of incomplete data, and the
ability to incorporate prior knowledge into the learning
process. These features make BNNs particularly useful
in safety-critical or data-limited applications.

In this study, the dataset for BNN training was
generated using the electromagnetic model of a
commercial AC contactor, simulated with Finite
Element Method Magnetics (FEMM) [8], an open
source 2D FEM tool for magnetostatic and
electromagnetic analysis. In the simulations, the
magnetic flux density in the air gap was varied from
1.0 T to 1.5 T, while the air-gap length was swept from
0.05 mm to 0.30 mm. The coil current was measured
experimentally and used as the input to the FEM-based
model, from which the corresponding coil voltage was

obtained. The resulting dataset was then used to train a
BNN capable of mapping coil voltage to flux density and
air-gap length, thereby enabling the estimation of the
contactor’s operating condition directly from voltage
measurements.

The main innovation of this study is its ability to
estimate key internal parameters of AC contactors,
including magnetic flux density and air-gap length,
without the need for intrusive sensors or
computationally expensive full FEM simulations.

By combining experimentally measured coil current
with FEM-generated data to train a BNN, the proposed
approach enables fast, accurate, and uncertainty-aware
estimation directly from coil voltage measurements.
This non-invasive method simplifies measurement,
enhances reliability, and supports real-time monitoring
and predictive maintenance of industrial switching
devices.

The remainder of this paper is structured as follows.
Section 2 briefly describes the construction and
operation of AC contactors. Section 3 introduces Finite
Element Method Magnetics (FEMM) as an effective 2D
FEM tool for analysing their electromagnetic behaviour.
Section 4 presents the concept of BNNs for regression
applications. Section 5 explains the determination of the
operating point of the energized AC contactor coil.
Section 6 outlines the experimental setup for measuring
electrical parameters and the procedure used to estimate
the operating point. Finally, Section 7 concludes the
study.

2. Construction and Operation of AC Contactors

An AC contactor, as shown in Fig. 1, consists of
several key components that work together to control the
switching of electrical circuits. The coil (solenoid
winding) generates a magnetic field when energized by
an AC supply, which produces the force needed to move
the armature. The magnetic core (fixed iron core),
usually made of laminated soft iron, provides a low-
reluctance path for the magnetic flux and directs it
toward the movable part. The armature (moving iron
core) is attracted to the fixed iron core when the coil is
energized, causing the contacts to close and complete the
electrical circuit.

Contact spring Movi/ng Contact

. \\ -
Fixed Contact——\\\ leeg Contact

e e
Return Spring
~ Moving Iron Core
Shading Coil

o Shading Coil

Coil -

)Fixed Iron Core

Fig. 1. Key components of an AC contactor
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Two shading coils, small copper rings placed on two
pole faces, are used to create a phase-shifted magnetic
flux that prevents armature vibration. The contacts,
divided into main and auxiliary types, are responsible for
carrying the large current and performing control or
signaling functions, respectively. A spring returns the
armature to its original position when the coil is
de-energized, ensuring the contacts open quickly and
safely. Finally, the frame and housing provide structural
support, electrical insulation, and protection for all
internal components, ensuring reliable and durable
operation.

When the AC supply is applied to the coil, an
alternating magnetic field is produced in the magnetic
core. The magnetic flux induces an electromagnetic
force that attracts the armature. The magnitude of this
force depends on the coil current, the number of turns of
the coil, the magnetic permeability of the core material,
and the air gap between the armature and the core. The
electromagnetic force can be computed as follows:

B*A NI) 4
F= _H it 2) (1)
24y 2g
where
e r: Electromagnetic force (N ),

e B :Magnetic flux density (7),

e 4: Cross-sectional area of the core (m?),
e 4, : Permeability of free space (47107 H /' m),

e N : Number of turns of the coil,
e 7 : Current through the coil,

e g: Air-gap distance between armature and core
(m).
Number of turns can be determined as follows:

N—ﬁ @)
where
e V:Root-mean-square (RMS) voltage of the coil,
e f:Frequency (Hz),
e B :Maximum flux density (T),

e 4: Core cross-sectional area (m?).

3. Electromagnetic Analysis of AC Contactors Using
Finite Element Method Magnetics

The FEM is a powerful numerical technique used to
solve complex electromagnetic field problems that are
difficult or impossible to address analytically. In FEM,
the geometry of a device is divided into many small,

discrete regions called elements, over which the
governing field equations are approximated. By
assembling the solutions of all elements, FEM provides
an accurate approximation of the overall
electromagnetic behavior of the system. This method is
widely employed in the design, analysis, and
optimization of electrical machines, transformers,
actuators, sensors, and other electromagnetic devices,
enabling engineers to predict performance, identify
potential issues, and improve efficiency before physical

prototyping.

In this study, electromagnetic analyses of an AC
contactor were performed using FEMM, which allows
accurate computation of the magnetic flux density, field
distribution, and electromagnetic force as functions of
coil excitation and air-gap length. FEMM can solve
simplified forms of Maxwell’s equations, depending on
the type of problem-magnetostatic, harmonic, or
electrostatic.

FEMM provides multiple advantages over
commercial platforms such as ANSYS, particularly in
academic and research settings. Unlike ANSYS, FEMM
is completely free, lightweight, and does not require
expensive licenses or high-end computing hardware,
which makes it highly accessible for researchers and
educators. Its interface is straightforward and well-
suited for 2D planar and axisymmetric problems,
enabling fast model creation and efficient numerical
computation. In addition, FEMM offers built-in Lua
scripting capabilities that support automated parametric
simulations, batch processing, and seamless interaction
with external tools such as MATLAB, Octave, and
machine-learning frameworks. These features allow
flexible customization and efficient data generation,
which are essential for developing and training
predictive models. As a result, FEMM serves as a
practical, user-friendly platform for electromagnetic
device modeling when rapid simulation, low
computational cost, and integration with external
algorithms are required.

The core Maxwell’s equations implemented in
FEMM are as follows:

V-D=p 3)

V-B=0 4)
OB

VXxE=—— 5

x 5 (%)

VxH =7+ (6)
ot

where

e £ : Electric field intensity (V /m ),

e D =gE: Electric flux density (C/m®),

e A : Magnetic field intensity ( 4/ m ),
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e B = uH : Magnetic flux density (7),
e J: Current density (A/m”),

e (: Charge density (C/m’).

The FEM-based analysis model of the AC contactor
is primarily based on the equations governing time-
harmonic (AC) magnetic problems, as follows:

Vx[leAJ:ja)O'A—JS @)
U

where

e : Angular frequency (rad/s),
e o : Conductivity (S/m),

e J,:Source current density ( 4/ m’).

By using FEMM, it is possible to analyze the
influence of parameters such as coil current, air-gap
variation, and core geometry on the electromagnetic
characteristics of the AC contactor. The following
parameters of the AC contactor coil can be determined:
the resistance, reactance, and electromagnetic force.

4. Bayesian Neural Networks

BNNs are a type of artificial neural networks
(ANNSs) that incorporate Bayesian inference to handle
uncertainty in network parameters (weights and biases).
Instead of assigning fixed values to the weights, BNNs
treat them as probability distributions, enabling the
network to make probabilistic predictions.

According to Bayes’ theorem, the inference equation
can be expressed as follows:

_p(DIw)p(w)

p(w|D)= (D) (8)

where

° p(w | D) : The posterior distribution of weights

and biases in the network,
e p(D|w): The data likelihood (how likely the

data is given the weights and biases),
e p(w): The prior distribution of weights and

biases in the network,
* p(D): The evidence.

In Bayesian inference for neural networks, the
hyperparameters of the cost function, such as prior
variances, regularization terms, or noise levels, are not
set arbitrarily but are determined according to the
principle of maximum evidence. This principle, also
known as type-Il maximum likelihood, involves
selecting hyperparameters that maximize the marginal
likelihood of the observed data, integrating over all
possible network weights. By doing so, the network
automatically balances model complexity and data fit,

leading to more robust learning, improved
generalization, and principled handling of uncertainty in
predictions.

BNNs usually consist of three layers as follows:
e The input layer receives the input data (features),

e The hidden layer performs computations and
extracts relationships or patterns,

e The output layer produces the result or decision.
4.1. Forward Propagation
First, the input values to the network are denoted by

x, where i =1,...,d . The activation of the hidden layer
is as follows:

a" =Y whe +6\ j=n M 9)

d
=]

where

.« Wl

input to the j -th hidden node,

: Weight on the connection from the i-th

» b":Biasof the j-th hidden node,

° aﬁl) : Activation of the j -th hidden node,
e d: Number of inputs,

e M : Number of hidden nodes.

The activation of the hidden layers is then used to
compute the outputs of hidden nodes as follows:

=1 (af»”)

where f;(-) is the activation function of the hidden

j=L..M (10)

layer, which is a ‘tanh’ function as follows:
W = tanh(af)) (11)

The activation function of the hidden layer has the
following properties:

oy,
o1y (12)
aaj

The activations of output nodes are computed as
follows:

M
o =Sy, 6 k=te (1)
Jj=1

where

. W,(;): Weight on the connection from the ;-th
hidden node to the & -th output node,
o ") Bias of the  -th output node,
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e 4! Activation of the & -th output node,

e ¢: Number of output nodes.

For regression problems, the linear function is used
for the activation of output nodes, which is as follows:

z, =a”) (14)
4.2. Cost Function

The BNN training requires the definition of a cost
function, which has the following form:

S=pBE,+ak, (15)
where E, is the sum-of-square error function as
follows:

1 & 2

ED:EZ {zk (xn;w)—tnk} (16)
n=1 k=1
where

e N : Number of patterns in the training data,
e x,:The n-th input data,

e ¢ :The n-th target data corresponding to the & -
th output,

e 1 : Vector of weights and biases in the network.

In (15), B represents the constant inverse variance

and « denotes the regularization constant that penalizes
large weights and biases, thereby mitigating the
overfitting phenomenon in the network after training.

E, is also called the data error function. f# and « are
also called ‘hyperparameters’. E,, is called the weight

function, which is given by:
1 2 i 2
£, =2 =3 a)
i=1

where W is the number of weights and biases in the
network. f and « can be automatically determined

using the Bayesian inference. At the most probable
vector of weights and biases, w,,, the relationship

between E;" and « is as follows:

MP SR
2E, =W - 18
" ; A +a (18)
where /, (i =1,.., W) are the eigenvalues of the Hessian

matrix of the data error, E,,. The right-hand side of (18)
is equal to a value y defined as follows:

r=y-~ (19

oA +a

From (18) and (19), the value of « can be computed
as follows:

o= Q,ELMP (20)

w

At the most probable vector of weights and biases,
w,» » the relationship between E,” and g is as follows:

w ﬂ
2BE = N-Y —

=N- 21
2 v a 4 €2y

From (21), the value of B can be calculated as
follows:
N-y

= 22
2E;" @2)

B

Equations (19), (20) and (22) are used to update the
values of ¢ and f during the network training process.

4.3. Update of Weights and Biases

The vector of the network weights and biases can be
updated via an iterative process as follows:

wlk+1]=wlk]|+n[k]d[k] (23)
where

e w[k]: Vector of weights and biases at the & -th

iteration,

. w[k+1]: Vector of weights and biases at the

k -th iteration,

* d[k]: Search direction at the  -th iteration,
e n[k]: Learning rate at the k -th iteration.

The vector of weights and biases are updated to
minimize the difference between the predicted and
actual outputs. This is done through training algorithms,
typically using a method called backpropagation,
combined with an optimization algorithm such as the
scaled conjugate gradient method [9].

The BNN training procedure includes the following
steps.
e Step 1: Initialize the values for ¢ and f. The

network weights and biases are initialized from
the prior distribution defined for « .

e Step 2: Update the vector of the network weights
and biases to minimize the cost function, S .

e Step 3: When the cost function has reached a
local minimum, the values of ¢ and S can be

re-estimated as follows:

Y otd
a = 24
new 2EW ( )
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w

e Step 4: Repeat Steps 2 and 3 until convergence
is reached.

5. Determination of the Energized State Operating
Point of the AC Contactor Coil

FEMM is used to simulate the electromagnetic
behavior of the AC contactor coil under different
excitation conditions, illustrating how the magnetic flux
density and air-gap length vary with the applied voltage.
A BNN is then employed to estimate the magnetic flux
density and air-gap length at the energized-state
operating point of the AC contactor coil. Let B, in the

range of 1 to 1.5T represent the vector of magnetic flux
density values and g in the range of 0.05 to 0.5 mm

represent the vector of corresponding air-gap lengths.
These vectors form the dataset used for BNN training.
The magnetic flux density values were discretized with
an increment of 0.05 (T), covering the full range from
the minimum to the maximum observed limits.
Similarly, the air-gap length values were sampled at
steps of 0.05 (mm) across their entire operating range.
Based on these step resolutions and limits, a total of 110
distinct data patterns were generated for the dataset.

The input and target variables used for training the
BNN are organized as follows.

e Input: the applied coil voltage of the AC
contactor,

e Targets: the corresponding magnetic flux density
and air-gap length.

Based on this configuration, the BNN architecture
consists of one input node, ten hidden nodes (which may
be adjusted depending on the training performance), and
two output nodes representing the predicted magnetic
flux density and air-gap length.

Once trained, the BNN establishes a direct mapping
from the measured applied voltage to the estimated
electromagnetic parameters of the AC contactor. By
predicting the magnetic flux density and air-gap length
and using the experimentally measured coil current,
several key parameters of the energized coil can be
determined:

Voltage drops across the coil,

Coil resistance,

Coil reactance,

Instantaneous electromagnetic force.

This approach eliminates the need for direct
measurement of these internal parameters, enabling
efficient and non-intrusive evaluation of the contactor’s
operating condition.

6. Experiment

This section describes the procedure used to set up
the experimental system for measuring the electrical
parameters of an AC contactor coil. The complete
arrangement is shown in Fig. 2, which illustrates the
method used to acquire both the voltage applied to the
coil and the current flowing through it. The experimental
system is designed to accurately capture real-time
electrical signals while ensuring safe and reliable
operation. The setup consists of the following
components:

e Voltage and current sensors, used to measure the
instantaneous  coil  voltage and current
waveforms,

e A National Instruments USB-6009 data
acquisition (DAQ) device, which converts the
analog sensor outputs into digital signals suitable
for processing,

e A laptop running a graphical user interface
(GUI)-based DAQ software, used for real-time
signal monitoring, data recording, and export of
measurement results for further analysis.

Together, these components form an integrated
measurement system capable of capturing coil behavior
under energized operating conditions, providing the
necessary data for subsequent parameter estimation and
BNN-based prediction.

Voltage and Current G GUI of the

DAQ Software

Sensors

AC Contactor Coil

Fig. 2. The experimental system

Fig. 3 shows the graphical user interface (GUI) of the
DAQ software, which provides real-time monitoring and
visualization of the electrical quantities measured from
the AC contactor coil. The software displays the
following parameters:

e Waveform of the applied voltage,

o Waveform and fast Fourier transform (FFT) of
the coil current,

RMS value of the voltage,

RMS value of the current,

Total harmonic distortion (THD) of the voltage,
THD of the current.
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In addition, Fig. 4 illustrates typical examples of the
voltage waveform, current waveform, and their
corresponding FFT analyses obtained from the
measurement system. The DAQ software also enables
the user to record these waveforms for offline evaluation
and post-processing. From the recorded voltage and
current data, RMS values of the voltage and current can
be computed as follows:

1 N
Viws = «WZ v? (26)
i=1

& 7)

® Vs o RMS value of the voltage,
e [, RMS value of the current,
e V. : Value of the voltage at the i-th sampling

instant,
e [: Value of the current at the i-th sampling
1nstant,
e N: Number of samples of the voltage and
current.
B 7| Voltage and Current Analysis System of Electrical Equipment
¢ Depastment of Electrical Equipment
[ odei cuon |
380~
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Fig. 3. GUI of the DAQ software

400

AN A o
o & 20
200 . 100
0% 0.0 ol 0

) [
4 anz 04 [ 100 200 300 400 500
Time ) Frequenes (1140

e (V)
lage (V)

Vol
v

i ol

o

Z 006

ER i

g 5w

: 3

o ]
a

o [

Fig. 4. Waveforms and FFT analyses of the coil voltage
and current with an applied voltage of 220 V
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The real power of the coil is computed as follows:

1 N
P=—> VI 28
2 09)
The appearance power of the coil is given by:
S = Veus russ (29)

The resistance of the coil is calculated as follows:

R= f (30)
I RMS
The impedance of the coil is given by:
Z = Vs 31
IRMS

The reactance of the coil is computed as follows:
X =+vZ*-R? (32)

The electromagnetic force that attracts the armature
can be accurately computed using finite element analysis
(FEA). It directly depends on the following parameters:

e Number of turns of the coil,
o Air-gap length,
e Current flowing through the coil.

Fig. 5 illustrates the implementation of FEMM to
perform a 2D finite element analysis of the AC contactor
coil and its magnetic structure. In this simulation, the
magnetic field distribution and magnetic flux density are
computed based on the applied coil excitation, the
material properties, and the geometry of the magnetic
circuit. By examining these results, the influence of coil
current, air-gap length, and material saturation on the
overall magnetic behavior can be clearly evaluated. This
provides a reliable basis for modeling the pull-in force,
estimating performance under different operating
conditions, and supporting design optimization of the
contactor.

Fig. 6 demonstrates the learning principle of BNN,
showing how weights and biases are iteratively updated
during training. This probabilistic update process
enables the network to learn the mapping between inputs
and outputs while quantifying the uncertainty associated
with each prediction.

Fig. 7 presents the methodology for generating the
BNN training dataset using FEMM simulations. The
electromagnetic analysis results are systematically
extracted to create input—output samples, which serve as
the training data for the BNN. This establishes a direct
link between finite element modeling and data-driven
prediction, ensuring that the neural network reflects
realistic electromagnetic behavior of the AC contactor.
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Fig. 5. 2D FEM analysis of the AC contactor
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The BNN, which provides a mapping from the
voltage applied to the coil to the corresponding flux
density and air-gap length, has the following
architecture:

¢ One input corresponding to the voltage applied to
the coil,

e Ten hidden units in the hidden layer,

e Two outputs, corresponding to the flux density
and air-gap length.

The network training procedure was then
implemented as follows:

e Step 1:
hyperparameters,

Choosing initial values for the
p and «. Initializing the

values for weights and biases.

e Step 2: Training the network using scaled
conjugate gradient optimization algorithm to
minimize the cost function, S .

e Step 3: When the cost function has reached a
local minimum, re-estimating the values of f

and a using (24) and (25).

e Step 4: Repeating Step 2 and 3 until convergence
(the cost function will not change significantly in
subsequent iterations).

Table 1 presents the evolution of the
hyperparameters across five consecutive re-estimation
periods during the BNN training process. These updates
demonstrate how the model parameters are iteratively
adjusted as additional information from the training data
is incorporated. By continuously refining the
hyperparameters, the BNN updates the posterior
distributions of its weights and biases, allowing the
model to more accurately represent the underlying
uncertainty in the data. This adaptive optimization
process leads to improved prediction accuracy, better
generalization to unseen samples, and more credible
uncertainty estimates for the predicted electromagnetic
quantities of the AC contactor system.

Based on the trained BNN model, the magnetic flux
density and air-gap length can be estimated as functions
of the voltage applied to the coil, as summarized in
Table 2. This enables direct mapping from measurable
electrical inputs to key electromagnetic parameters,
facilitating real-time assessment of the contactor’s
behavior. Furthermore, by combining the FEM-based
model with the applied voltage values, the operational
parameters of the coil in the energized states, such as coil
current, magnetic force, and flux distribution, can be
accurately determined, as presented in Table 3. This
integrated approach allows for a comprehensive
understanding of the AC contactor’s performance under
different operating conditions, supporting both analysis
and design optimization.

Table 1. Changes in hyperparameters across
re-estimation periods
Re-estimation period i) a
1 0.992 85.045
2 2.620 98.624
3 3.875 94.789
4 4.570 92.401
5 4.783 91.644
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Table 2. Flux density and air-gap length corresponding
to the voltage applied to the coil

Table 4. Electromagnetic force values in the energized
state computed by the analytical method and FEM

Vs Vi) B, (T) g(mm)
160 1.4141 0.2527
170 1.3914 0.2436
180 1.3692 0.2360
190 1.3477 0.2295
200 1.3273 0.2239
210 1.3083 0.2187
207 1.2909 0.2138

Table 3. Operational parameters of the coil in the
energized state

I/Coil (VRMS ) Icoil (ARMS )
0.048

B, (T)
1.2373

g(mm)
0.2575

227.1312

ha
ey

Fig. 8. Contour (red lines) used for computing the force
acting on the armature core

—
| -

Fig. 8 illustrates the contour lines (highlighted in red)
that define the integration path used to compute the
electromagnetic force acting on the armature core. These
contours are applied in the FEM analysis to evaluate the
magnetic field distribution around the core and
determine the resulting force through the Maxwell stress
tensor.

Table 4 presents the calculated electromagnetic force
values in the energized state of the AC contactor coil,
including the minimum, maximum, and mean force
obtained from both analytical and FEM methods. These
values illustrate the magnitude and range of the force
acting on the armature under steady conditions,
providing a quantitative basis for evaluating the
contactor’s pull-in capability, mechanical stability, and
operational reliability.

Force (N)  Analytical FEM Error (%)
_ 2.2107 3.3288 33
F 47.8992 46.7812 2.39
25.1119 25.0550 0.23
50

FMN)

A
Y

0
0 0.01

0.02 0.03
Time (s)

0.04

Fig. 9. Instantaneous electromagnetic force in the
energized state

Fig. 9 shows the waveform of the instantaneous
electromagnetic force during coil energization. The plot
highlights how the force evolves over time, capturing
transient fluctuations before the system reaches steady
operation. This time-domain representation enables
further analysis of the influence of the voltage
waveform, transient dynamics, and possible force
variations that may affect the contactor’s mechanical
response.

Determining the energized state operating point of an
AC contactor coil using a BNN provides a powerful tool
for optimal electromagnet design. The energized
operating point, characterized by flux density, air-gap
length, and electromagnetic force, is essential for sizing
the magnetic core, selecting coil parameters, and
ensuring sufficient pull-in force without excessive losses
or saturation. By learning the relationship between coil
excitation and magnetic response, the BNN offers fast
and accurate predictions that eliminate repeated FEM
simulations and reduce reliance on physical prototypes.
Moreover, by quantifying prediction uncertainty, the
BNN helps designers evaluate safety margins, consider
manufacturing tolerances, and avoid overdesign. Since
the model relies on easily measured electrical signals
rather than intrusive magnetic sensing, it supports cost-
effective design validation and can be extended to real-
time evaluation during prototyping. As a result, this
approach enables more reliable, efficient, and optimized
electromagnet designs with shorter development cycles
and lower implementation costs.
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7. Conclusion

This study has presented a computational approach
for determining the energized operating point of an AC
contactor coil by integrating FEM with a BNN model.
The proposed method effectively estimates the magnetic
flux density and air-gap length, which are key
parameters significantly influencing the electromagnetic
force and overall performance of the contactor. The
results demonstrate that the BNN can accurately predict
the internal electromagnetic quantities of the contactor,
enabling precise computation of the electromagnetic
attraction force through FEM analysis. This integrated
FEM-BNN framework provides an efficient and reliable
tool for analyzing and optimizing the operating
characteristics of AC contactors, offering valuable
insights for improved design and performance
evaluation in industrial applications.
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