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Abstract 

This work presents a comprehensive study of control problem for the rotary inverted pendulum (RIP), a 
challenging underactuated system with potential applications in robotics and aerospace. The paper develops 
effective swing-up energy-based control and stabilization task. It also presents two controllers, linear quadratic 
regulator (LQR) and hierarchical sliding mode control (HSMC), that effectively handle the stabilization problem. 
System modelling is based on Lagrangian mechanics, and the control strategies are evaluated using 
simulations and compared in terms of performance and robustness. The results demonstrate that energy-
based control is effective for swing-up, while linear quadratic regulator and hierarchical sliding mode control 
are effective for stabilization. The proposed controllers show promising results and contribute to the 
development of robust and efficient control strategies for the rotary inverted pendulum system. The study has 
implications for the development of control strategies for other underactuated systems and can potentially lead 
to advancements in the field of robotics and aerospace. 

Keywords: Rotary inverted pendulum, swing-up and stabilization control, energy-based control, hierarchical 
sliding mode control, linear quadratic regulator. 

 
1. Introduction1 

Underactuated systems are a type of nonlinear 
system that require advanced control techniques due to 
having fewer control inputs than degrees of freedom. 
A well-known instance of an underactuated system is 
the rotary inverted pendulum (RIP), which consists of 
a pendulum attached to a motorized arm. The 
challenge of controlling this object is to keep the 
pendulum balanced in the upright position while 
simultaneously controlling the rotation of the arm.  

The RIP has significant applications in the field 
of robotics, particularly in developing control 
strategies and motion planning algorithms for two-
wheeled robots like Segways [1, 2]. The dynamics 
models are similar, making it an ideal testbed for 
developing and testing control strategies for these 
types of robots. Researchers can use the rotary inverted 
pendulum to study the effects of different control 
inputs and algorithms on the system's stability and 
performance. This can lead to the development of 
more efficient and robust control strategies for two-
wheeled robots, which can be used in various 
applications, such as transportation, military 
operations, and aerospace.  

The rotary inverted pendulum is a complex and 
challenging system to control due to its nonlinear and 
underactuated dynamics. The control of the RIP 
system typically involves two main control tasks: 
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swing-up and stabilization [3-5]. Swing-up is the 
process of bringing the pendulum from the rest 
position to the upright position, while stabilization 
process keeps pendulum in equilibrium position. 
These two tasks require different control strategies due 
to the distinct nature of the control problem. 

A popular approach for swinging up this type of 
pendulum is the use of nonlinear control techniques 
such as energy-based control [6], feedback 
linearization control or sliding mode control [7] and so 
on. Energy-based control involves shaping the energy 
of the system such that it reaches a desired state, while 
feedback linearization control involves transforming 
the system dynamics into a linear form that can be 
more easily controlled using linear strategies. Another 
advanced control technique for swinging up the RIP is 
the implementation of model predictive control 
(MPC), as presented in [8]. 

Keeping the RIP stable is another important task 
in control theory. Several techniques for controlling 
the system have been developed, comprising both 
linear and nonlinear approaches. Linear control 
methods such as Linear Quadratic Regulator (LQR) 
control [9] and proportional-integral-derivative (PID) 
control can be used to keep the pendulum stable in the 
equilibrium point. Nonlinear control methods such as 
adaptive control [10], backstepping control [11], and 
advanced sliding mode control [12], are also effective 
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in stabilizing the rotary inverted pendulum. Adaptive 
control can adapt to uncertainties and disturbances, 
while backstepping control can recursively design 
control inputs to stabilize the system dynamics.  
Hierarchical sliding mode control (HSMC) is another 
nonlinear control technique that has been used to 
stabilize the rotary inverted pendulum. HSMC 
demonstrates superior performance compared to other 
control methods in dealing with external disturbances 
and uncertainties. 

This paper discusses research conducted on 
controlling the (RIP) system. Section 2 presents the 
system modelling, where the dynamic equations of the 
system are derived using Euler - Lagrange equations. 
Section 3 discusses various control methods for both 
swing-up and stabilization tasks, including energy-
based control, hierarchical sliding mode control 
techniques, and linear quadratic regulator. Section 4 
shows the simulations and results, where the 
performance of the different control strategies is 
evaluated and compared. Finally, Section 5 presents 
the conclusions of the study, summarizing the main 
findings and highlighting future research directions. 
The study contributes to the development of effective 
control strategies for the rotary inverted pendulum 
system, which has applications in various fields, 
including robotics and aerospace. 

2. System Modelling 

The inverted pendulum system consists of the 
main components such as a DC motor, a rotary arm 
and a pendulum rod. Initially, we built a mathematical 
model for the DC motor. 

Considering the voltage applied to the motor 
[13], we have: 

I m
m m m min m

dI
V R L K

dt
θ= + +            (1) 

where mI , mR , mL  are amperage, resistor, and 
inductance of coil, respectively. mK  is the back EMF 
constant. Assume that effect of the inductor is 
negligible, the torque of the motor can be calculated 
as: 

2
in m m m

m
m

V K K
T

R
θ−

=


         (2) 

Load moment converted to the motor shaft after 
the gearbox is: 

2
out m g g m g gT T k J kη η θ= −              (3) 

with the gearbox ratio gk , gearbox efficient gη and mJ  
is the moment of inertia of system after gearbox. 

From (2) and (3), the following equation can be 
derived: 

2
2in m m

out g
g

g m g g
m

V K K k
T k J k

R
θ

η η θ
−

= −


         (4) 

Having acquired the motor’s mathematical 
model, we proceeded with the RIP modeling. The 
comprehensive process of modeling the system can be 
found in [14]. 

 
Fig. 1. RIP model 

Fig. 1 shows the simple model of the RIP where 
m  (kg) and 2L (m) are the mass and length of the 
pendulum rod. The pendulum rotates around the shaft 
of the DC motor thanks to the pendulum arm with M
(kg) and r (m). The pendulum’s angle and the rotation 
angle of arm are α  and θ , respectively. The 
acceleration due to gravity is g (ms2). Consider the 
center of gravity of the pendulum placed in the middle. 

Potential energy of the pendulum system: 

cos( )V mgL α=              (5) 

Kinetic energy of the pendulum system: 

( )

( )

22

2 2 2

1 1 sin ( )
2 2
1 1cos ( )
2 6

eqT J m L

m r L mL

θ α α

θ α α α

= +

+ − +







 

           (6) 

Then the Lagrangian is obtained as below: 

2 2 2

2 2

1 2 cos( )
2 3
1 cos
2

eqL J mL mLr

mr mgL α

αθ α θ α

θ

= + −

+ −

 

 



            (7) 

Applying Euler – Lagrange equations for α  and 
θ , we have: 
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0

out eq

d L L
dt
d L L T B
dt

α α

θ
θθ

 ∂ ∂  − =  ∂ ∂  


∂ ∂  − = −  ∂∂ 







            (8) 

From (7) and (8), the dynamic equation can be 
calculated: 

2 2

2 2
2

2

( ( )

( )

4( ) 0
3

)eq m g g

g g m m g g
eq in

m m

J mr J mLrcos

mLrsin B V
R R

mLrcos mL mLg

k

k K K

sin

k

η θ α α

η η
α α θ

α θ α α

 + + +


 
+ + + =    

− + − =













                            (9) 

These equations can be written as: 
2

1 2 2 5 6

2 3 4

( ) ( )
( ) 0

inb b cos b sin b b V
b cos b b sin
θ α α α α θ

α θ α α
 + + + =

− + − =

 

 





   (10) 

with 
2 2

1 eq m g gb kJ mr J η= + + ; 

2b mLr= ; 

2
3

4
3

b mL= ; 

4b mLg= ; 

2 2

5
g g m

eq
m

k
R

K
b B

η
= + ; 

6
m g g

m

K k
R

b
η

= . 

Linearization model of the inverted pendulum is 
also obtained: 
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      (11) 

3. Control Problem 

The RIP's control issue can be categorized into 
two primary objectives: swing up and stabilization. 
The first task is to efficiently move the pendulum from 
its initial position to the vertical upright position. This 
task requires applying external energy to the system to 
increase the pendulum's energy until it is sufficient to 
reach the upright position. Besides, stabilization task 
involves maintaining the pendulum in the desired 
position and ensuring that it remains balanced despite 
any disturbances or external forces acting on it. This 
task requires controlling the pendulum's movements 
and applying corrective forces to keep it stable. 

3.1. Energy-Based Control and Linear Quadratic 
Regulator 

3.1.1. Energy-based control (EC) 

Pendulum motion equation with moment of 
inertia pJ  is written: 

cos sin 0pmL mgL Jθ α α α+− =



         (12) 

For handling swing up task, it is necessary to 
supply the pendulum with a sufficient amount of 
energy. The energy equation of the pendulum in the 
absence of a control signal can be given as follows: 

2 s1
2

copE J mgLα α+=         (13) 

sinp
dE J mgL
dt

αα α α⇒ = −          (14) 

Multiplying both sides of (12) with α  and 
substituting to the above equation yields: 

( cos )dE mL
dt

θα α= − 

       (15) 

The Lyapunov function and the control law can 
be chosen as: 

2
0( )

2
E E

V
−

=  (16) 

0( ) cosk E E α αθ = − 

       (17) 

From (16): 

0( )( ( cos ) )
dV

E E mL
dt

α θα= − − 

          (18) 

Then:   

2
0(( ) cos ) 0dV mkL E E

dt
α α= − − <          (19) 

And the system is proven to be stable. 

The control law can be provided where ξ  is the 
maximum acceleration of the motor: 
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( )0sign ( ) cosE Eξ α αθ −= 

           (20) 

However, when energy E  approaches 0E  or 

0E E−  approaches zero, control law (20) will cause 
chattering phenomenon. To solve this problem, the 
following control law with the saturation function is 
utilized instead of (20): 

0( ( )sign( cos ))sat k E Eξ α αθ −=           (21) 

The real control signal applied to the motor is 
voltage, then the relationship between θ and inV  is 
given as: 

2in g m
g g m

RML
k

V k k
k
θ θ

η
= +



 .          (22) 

As shown in Fig. 2 and 3, the swing up EC 
controller has successfully brought the pendulum to 
the desired position through continuously reversing the 
motor. 

 
Fig. 2. Pendulum’s angle with EC controller 

 

 

Fig. 3. Applied voltage with EC controller 

 

3.1.2. Linear quadratic regulator 

Once a swing up controller has been developed 
for the rotary inverted pendulum, the next step is to 
design a stabilization controller to maintain the 
pendulum in an upright position. Depending on the 
system's specific characteristics, the stabilization 
controller can be either nonlinear or linear. One 
commonly used linear controller for stabilization is the 
linear quadratic regulator (LQR). The LQR is a 

feedback control algorithm that aims to minimize a 
quadratic cost function: 

( )
0

( ) ( ) ( ) ( ) ( ) ( )ft

f fJ x t Qx t u t Ru t dt x t M x t= + +∫     
           (23) 
where R is a positive definite matrix; M and Q are 
positive semi-definite matrices. Define the value V  as: 

0( )
min ( ( ), ( ), , )
u t fV J x t u t t t=         (24) 

We have the Hamilton–Jacobi–Bellman 
equation:  

( )
min ( ( ) ( ) ( ) ( ))
u t

V V A xx Bu
t x

t Qx t u t Ru t
 ∂ ∂

− += + +∂ ∂ 


 



           (25) 
Consider the value function V : 

( , ) ( )V x t x S t x=           (26) 

with ( )S t  is a positive definite matrix 
( ) ( ) 0S t S t= > . 

LQR control signal is derived with the ( )S t  
matrix satisfying the Riccati differential in (28): 

1 ( )u R B S t x Kx−= − = −         (27) 
1( ) ( ) ( ) ( ) ( )S t Q S t A S t BR B S t A S t−= + − +

    

      (28) 
From the linearization model (11) and chosen 

matrices Q  and R as 

1 0 0 0
0 50 0 0

, 1
0 0 50 0
0 0 0 1

Q R

 
 
 = =
 
 
 

 

the feedback controller is obtained: 

[ ]-0.0200    7.1535   -0.2100    1.0258K = . 

 
Fig. 4. Pendulum’s angle with LQR controller 
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Fig. 5. Pendulum’s speed with LQR controller 

 
Fig. 6. Applied voltage with LQR controller 

Fig. 4, 5, and 6 demonstrate that the LQR linear 
controller was effective in stabilizing the pendulum 
with a small initial angle. 

3.2. Hierarchical Sliding Mode Control 

3.2.1. Control law 

Although the linear quadratic regulator is a 
popular controller for stabilizing the RIP, it has 
limitations due to its linear nature. LQR requires the 
linearization of the nonlinear system, which may not 
be accurate in practice. Therefore, in practice, it is 
better to use a nonlinear controller for stabilization, 
especially for the rotary inverted pendulum system. A 
possible alternative to LQR is the hierarchical sliding 
mode control (HSMC) technique, which is very 
effective for this kind of underactuated system. We 
first rewrite the inverted pendulum model in the form 
of: 

.

1 2
.

2 1 1
.

3 4
.

4 2 2

( ) ( ).

( ) ( ).

x

x

x

x

F x G x u

F x u

x

x G x

 =


= +

 =

 = +

        (29) 

with [ ]41 2 3x x x x α α θ θ =  


  and 

2
1 4 1 2 1 2 1 2 5 4

1 2 2
1 3 2 1

6 2 1
1 2 2

1 3 2 1

( ) ( )( ( ) )
;  

( )
( )

;(
(

)

)

(

)

b b
F x

b b
b

sin x b cos x b sin x x b x
s

b
b co x

cos x
G

b s
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b b co x

− +
=

−

=
−

 

3 1 4 1
2

2 1

6 3
2 2 2

1 3 2 1

(

( )

)

(
)

(
(

)
)

;  

( )

F x b sin x
F

b

b
x

b
b b

x
cb

cos x

G
ob s x

−
=

=
−

 

It can be seen that the rotary inverted pendulum 
system can be divided into two subsystems, 
respectively the arm attached to the motor shaft and the 
pendulum rod. We construct the sliding surfaces for 
each subsystem: 

12

2

1

2 4

1

3

s x x
s x x

λ
λ

= +
= +

         (30) 

Taking the derivatives of these sliding surfaces 
with respect to time gives: 

12 1 1

22 3 2

1

4 2

1 1

4 2

2x F G u
x F

s x x
s x x G u

λ λ
λ λ

= + ++
=

=
= + + +

  

  

       (31) 

Let 1 2 0s s= =  , the equivalent control signal for 
each subsystem can be inferred as: 

1

2

1

1 2 1

2

2 4 2

eq

eq

u

u

x F
G
x F
G

λ

λ

= −
+

+
= −

         (32) 

 
Fig. 7. Hierarchical structure of sliding surface 

Fig. 7 illustrates the hierarchical arrangement of 
the sliding surfaces where the first layer is the sliding 
manifold of the first subsystem, so we have 1 1S s= . 
The integration of the sliding surface from the second 
subsystem 2s  and the first subsystem yields the sliding 
surface for the entire system, denoted as 2S . With this 
representation, the total sliding surface of the whole 
system will carry the information of all the different 
sub-sliding surfaces and layers. We can represent the 
sliding surface 2S  as follows: 
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2 1 1 2S k S s= +          (33) 

where 1k is a chosen constant. Control signal of the 
whole system can be synthesized: 

1 2eq eq swu u u u= + + .         (34) 

The swu  component helps to bring the system to a 
specified sliding manifold. To determine the swu , the 
following Lyapunov function is considered: 

2
2

1( )
2

V t S=          (35) 

Take the derivative of the Lyapunov function and 
substitute values from (31) and (33), we have: 

[ ]
1 2

1 2

2 2 2 1 1 2

2 1 1 1

1 1 1 1
2

2 2 3 4

2

2 24 2

( )
( ) ( )

( ( ))

( ( ))
eq eq sw

eq eq sw

S S k S s
S k x x x x

k x F G u u u
S

S

x F G u

V

u u

λ λ

λ

λ

= +

= + + +

+ + + + 
=  

+ + + + + 

=



  



   
(36) 

Let 2 2 2 )sgn(SS kS η= − −  where k  and η  are 
positive scalar, the swu  can be calculated as: 

1 2

2 1 1

1 1 2 1 1 2

2 2

1 1 2

sgn( )

sw eq eq
G k Gu u u

k G G k G G
kS

k G G
Sη

= − −
+ +
+

−
+

       (37) 

The control signal of the whole system is: 

1 2

1 2

1 1 2 2 2

1 1 2 1 1 2 1 1 2

) .sgn(
sw eq eq

eq eq

u u u u

k G G kSu u
k G G k G G k G

S
G

η

= + +

+
= + −

+ + +
           (38) 

3.2.2. Stability Analysis 

From the Lyapunov function in (35), we have the 
time derivative of V : 

( )
2 2

2

2
2

2 2

2

sgn(

.

)
V S S

S kS S

SkS

η

η

=

= − −

= − −



        (39) 

Integrate both sides of (39): 

( )
0 20 2

2t t
SkV Sd dτ η τ− −=∫ ∫         (40) 

With ( ) 0V t > , we have: 

( )20 2
2l m (0i )

t

t
VkS dSη τ

→∞
≤ ∞+ <∫        (41) 

Based on the Barbalat’s lemma, the following 
equation is inferred: 

( )2 2
2lim 0

t
kS Sη

→∞
+ =         (42) 

Then 2 0S → when t →∞ . The sliding manifold 2S  
is proven to be asymptotically stable. 

 
Fig. 8. Pendulum’s angle with HSMC controller 

 
Fig. 9. Pendulum’s speed with HSMC controller 

 
Fig. 10. Applied voltage with HSMC controller 

Fig. 8, 9 and 10 are simulation results when using 
the HSMC controller to balance the pendulum. This 
nonlinear controller also gave a good response to the 
same initial conditions as when using LQR . 

4. Simulations and Results 

Table 1 displays the parameters of the simulated 
rotary inverted pendulum. 

In order to achieve both the swing up and balance 
control objectives for the inverted pendulum system 
simultaneously, a hybrid controller involving an 
energy-based controller and a stabilization controller 
which could be Linear Quadratic Regulator or 
Hierarchical Sliding Mode Control is utilized. Fig. 11 
is the control architecture diagram for the entire 
system. 
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Table 1. Parameters of RIP 

Parameter Notation Value 
Pendulum rod’s mass (kg) 𝑚𝑚 0.027 
Pendulum arm’s mass (kg) 𝑀𝑀 0.05 
Equivalent moment of inertia 
of the pendulum arm and 
gears (kgm2) 

𝐽𝐽𝑒𝑒𝑒𝑒 2.33×10-4 

Length of the pendulum rod 
to the center of mass (m) 𝐿𝐿 0.153 

Pendulum arm’s length (m) 𝑟𝑟 0.08260 
Vicious friction coefficient of 
the motor (Nms/rad) 𝐵𝐵𝑒𝑒𝑒𝑒  0.0005 

Gravitational acceleration 
(m/s2) 𝑔𝑔 9.81 

Motor armature resistance (Ω) 𝑅𝑅𝑚𝑚 3.3 
Gearbox efficiency 𝜂𝜂𝑔𝑔 0.9 
Gearbox ratio 𝑘𝑘𝑔𝑔 70 
Back EMF constant 𝐾𝐾𝑚𝑚 0.02797 
Rated voltage (V) 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟 12 
Rated current (A) 𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟 0.3 
Rated torque (kg.cm) 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟 0.1 
Rated power (W) 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟 3.6 

 

 
Fig. 11. Control structure 

 
Fig. 12. Pendulum’s angle with ELQR controller 

When the deflection angle of pendulum rod is 
small, the switch will be activated to continue taking 
control signals from the stabilization controller.  

The performance of the Energy-Linear Quadratic 
Regulator controller was evaluated by observing the 

deflection angle α  of the pendulum, as depicted in 
Fig. 12. After about one second, the pendulum bar has 
stabilized after undergoing the processes of oscillation 
and swing up. To evaluate the controller's 
effectiveness, a disturbance signal was applied to the 
pendulum at the 2nd second. Even though an external 
force has caused the pendulum to oscillate and deviate 
from its equilibrium position from 2nd to 4th second, the 
swing up controller has continued to operate and 
successfully returned the pendulum to the desired 
position at 6th second, where it stayed stable. The 
combination of the energy-based swing up control and 
LQR-based stabilization control has proven to be 
effective.  

The voltage signal applied to the motor in Fig. 13, 
shows a significant change when the pendulum is 
suddenly affected by disturbance. The voltage value is 
quickly pushed to its maximum value to provide the 
pendulum with enough energy to swing up again. 

However, when the pendulum reaches its 
equilibrium position, the voltage value becomes 
almost zero. This demonstrates the efficiency of the 
swing up controller in providing sufficient energy for 
swing up, and the stabilization controller in 
maintaining the pendulum's equilibrium position.  

 
Fig. 13. Applied voltage with ELQR controller 

 
Fig. 14. Pendulum’s angle with EHSMC controller 

The combined EC and HSMC controller in 
Fig.  14 has demonstrated its ability to meet the control 
requirements of the system. The swing up controller 
quickly brings the pendulum to the zero-angle 
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asymptote in the early stages, and the pendulum stays 
balanced in the desired position for one second before 
starting to oscillate due to the effect of disturbance in 
the 2nd second. However, the pendulum quickly swings 
up again in response to the external disturbance. At the 
fourth second, the deflection angle value of the 
pendulum returns to zero, indicating that the pendulum 
has been successfully stabilized once again. The 
outcomes indicate that the Energy-Hierarchical 
Sliding Mode Control (EHSMC) controller is efficient 
in stabilizing the RIP system, even when external 
disturbances are present. 

Similar to the ELQR controller, the voltage in 
Fig. 15 is relatively small and has a sudden increase 
when the pendulum is affected by noise. However, the 
maximum values of voltage when using the EHSMC 
controller are somewhat smaller and more rapidly 
decrease to zero. 

 
Fig. 15. Applied voltage with EHSMC controller 

 
Fig. 16. Comparison of ELQR and EHSMC 

In order to compare the effectiveness of EHSMC 
and ELQR, both controllers were subjected to the same 
initial angular conditions and disturbance. As depicted 
in Fig. 16, the blue line ( ELQRα ) represents the 
deflection angle of the pendulum when using ELQR, 
while the red line ( EHSMCα ) represents EHSMC. It is 
evident that the responses of the two controllers are 
relatively similar until the occurrence of disturbance in 
the second swing up and balance. At this point, 
EHSMC exhibits a superior response time as the 
pendulum stabilizes within approximately 2 seconds, 

while ELQR takes almost 4 seconds to arrive at this 
position. Therefore, the combination of EC for swing 
up and hierarchical sliding mode controller for 
stabilization was more effective than the combination 
of energy-based controller and LQR for stabilizing the 
RIP. 

The EHSMC technique, despite its advantages, 
also has some principal restrictions and disadvantages. 
One of the main restrictions is the complexity of design 
and implementation. EHSMC requires the 
determination of multiple sliding surfaces and 
corresponding control laws for each hierarchical level, 
which can increase the computational burden and the 
design effort. Furthermore, the effectiveness of 
EHSMC may heavily depend on the tuning of control 
gains and the selection of sliding surface parameters. 
Improper tuning or inappropriate selection can lead to 
suboptimal or unstable control performance. 

5. Conclusion 

In conclusion, the RIP has been a crucial research 
subject, not only in theory but also in practical 
applications. The study of control techniques for this 
type of pendulum has provided a foundation for the 
development of various other balancing systems. In 
this article, the efficiency of the swing up energy-
based controller and the stability controllers, including 
LQR and HSMC, have been demonstrated. The 
primary control objectives of the RIP system were 
successfully achieved by integrating the EC controller 
with both the LQR and HSMC controllers. This 
integration resulted in the development of the ELQR 
and EHSMC hybrid controllers. Despite the presence 
of external disturbances, they demonstrate remarkable 
performance. This study can serve as a reference for 
further research on the control of similar systems and 
can also be used in practical applications. 
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