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Abstract 

The study proposes a simple approach to design optimally a fuzzy controller in swing-up and position control for inverted 
pendulum-cart systems. First, the sub-fuzzy controllers to control the pendulum's swing up and the cart's position are 
designed separately. Each controller includes two state variables to calculate the component control forces. The combination 
of component control forces determines the final control force through a weight computed from a simple scheme. Parameters 
of sub-fuzzy controllers and those to determine the weight are optimized to minimize the system's equilibration time. The 
simulation results show that the proposed controller is simple to set up and optimize, has high control efficiency, is adaptable 
to the system's state, and is stable and robust for the system's different initial conditions and configurations. When using the 
proposed controller, the stabilization time of the system is reduced by 14.5%, the maximum control force is reduced by 32.6%, 
and the pendulum length is increased by 50% compared to fuzzy controllers in the published studies. The approach of the 
present work can be applied to control various underactuated systems as well as in the motion control of mobile robot models.  
Keywords: Design optimization, fuzzy control, inverted pendulum-cart, swing-up and position control, sub-controllers,. 

 

1. Introduction1 

Pendulum models have many applications in 
industry in general and in robotics in particular. These 
models can be inverted pendulum-cart, rotary-inverted 
pendulum, gantry crane, two-wheeled inverted 
pendulum, acrobot, pendubot, and so on. The above 
models are usually nonlinear and underactuated systems. 
Therefore, they are highly challenging research 
candidates in the field of process control [1]. Many 
modern and intelligent control algorithms have been 
applied to control the balance for pendulum systems, 
such as Lyapunov-based [2], asymptotic stabilization 
approach [3], proportional–integral–derivative (PID) 
[4], sliding mode [5], adaptive [6], robustness [7], the 
linear quadratic regulator (LQR) [8], fuzzy and hedge-
algebras-based [9], and neural network-based [10] 
controllers. 

The inverted pendulum models are also studied 
objects to validate the performance of controllers 
because of their complexity and nonlinearity. 
Controllers based on fuzzy set theory have many 
advantages, such as simplicity and flexibility in setup. 
They can be applied to complex problems where the 
modeling of the controlled object is difficult [11]. 
Hence, the control based on fuzzy set theory is one of 
the most popular methods for inverted pendulum 
models. The cart-pendulum-seesaw system's balancing 
and swing-up control problems were covered in [12] 
using the decomposed fuzzy coordination control. The 
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fuzzy control problem was studied in [13] for the third-
order inverted pendulum-cart model, which used three 
state variables, including the deflection angle and 
angular velocity of the pendulum and the cart's position, 
to calculate the driving force. The fuzzy controller to 
control the inverted pendulum-car system in [14] used 
the Takagi–Sugeno (TS) model with four state variables 
and sixteen control rules. The pendulum in the studies 
[15] is used as an axisymmetric actuator to control the 
motion of a spherical robot. The double inverted 
pendulum in [16] has been linearized based on the fuzzy 
state feedback technique to establish a fuzzy robustness 
controller for the stable control problem of the system. 
The type-2 fuzzy logic controller was optimized in [17] 
for an inverted pendulum-cart model based on the rule 
bases' continuity, monotonicity, and smoothness. Two 
TS fuzzy controllers were used in [18] to control the roll 
and pitch motions of an omnidirectional inverted 
pendulum. The swing-up control problem using the 
fuzzy controller for a twin-arm inverted pendulum cart 
was presented in [19]. The inverted pendulum-cart in 
[20] was controlled by type-2 fuzzy controllers with an 
opposition-based spiral dynamic algorithm. Two fuzzy 
systems with input as state variables of an inverted 
pendulum-cart system and output as control gains for a 
PID controller were proposed in [21] to swing up 
stabilization for the model. The optimal fuzzy fractional-
order adaptive robust controller in motion control of an 
inverted pendulum model was proposed in [22]. 
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The fuzzy controllers in the above publications are 
often quite complex. They may contain multiple control 
rules, which are decomposed into intermediate 
controllers with complex inference to determine the final 
control action. Furthermore, these controllers often 
require advanced control techniques such as type-2 
fuzzy logic or the Takagi-Sugeno model. The 
complexity is further increased by the need to integrate 
other control algorithms, such as PID, LQR, fractional-
order techniques, optimal state feedback control, sliding 
mode control, feedback linearization, or opposition-
based spiral dynamic algorithms. Sometimes, a 
switching algorithm is needed to coordinate the actions 
between these controllers, depending on the system 
state. Therefore, the design and optimization of these 
fuzzy controllers becomes quite complicated. This poses 
a necessary requirement: to develop a simple, 
independently operating fuzzy controller to solve the 
motion control problem for general underactuated 
systems, especially the position and swing-up motion 
control of inverted pendulum systems. 

This study presents a simple approach to design and 
optimize a Mamdani-type fuzzy controller. The 
controller aims to simultaneously control the swing 
motion and position of an inverted pendulum-cart 
model.  

The design consists of two sub-controllers that 
operate separately to maintain: (1) the swing motion of 
the pendulum and (2) the position of the cart. The overall 
driving force is determined by combining the outputs of 
these two sub-controllers through a weight calculated 
based on the current states of the pendulum and cart.  

The optimization problem is performed based on 
important design variables, including: (1) parameters of 
membership functions, (2) reference ranges of variables, 
and (3) parameters used to determine the mentioned 
combination weight. The simulation results have 
demonstrated that the performance of the proposed 
fuzzy controller is superior to that of the controllers in 
previous publications. This is the outstanding 
contribution and core value of this study.  

The content of the article consists of five sections. 
After this introduction, the investigation model is 
presented in Section 2. Section 3 offers the design steps 
of the fuzzy controller. The numerical simulation results 
are given in Section 4, and the conclusions are written in 
Section 5. 

2. Investigation Model  

Consider the inverted pendulum-cart model, as 
shown in Fig. 1. The masses of the pendulum and the 
cart are mp and mc, respectively. The pendulum's length 
is lp, and lc = OC = lp /2.  

Ignoring friction, let g be the gravitational 
acceleration; the equation of state for the system is as 
follows [23]: 
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Fig. 1.  Investigation model 

 
Here θ, θ , and θ  are the pendulum's deflection 

angle, angular velocity, and angular acceleration, 
respectively; and x, x , and x  are the cart's position, 
velocity, and acceleration, respectively. The control 
objective of the system is to bring the pendulum to the 
vertical equilibrium position (θ and θ  = 0) and the cart 
to its initial position (x and x  = 0) from the non-zero 
initial conditions of the state variables (θ, θ , x,  
and x ). The control force u is calculated from the 
proposed fuzzy controller in Section 3. Equations of the 
state (1) will be solved by the 4th-order Runge-Kutta 
method [24] in the simulations of this study. The above 
four state variables (θ, θ , x, and x ) are both the initial 
conditions to solve (1) and inputs of the proposed fuzzy 
controller. 

3. Fuzzy Control Design  

It can be seen that controllers based on fuzzy set 
theory are popular for mechanical underactuated 
systems in general and inverted pendulum systems in 
particular. One of the reasons for their popularity is that 
these controllers are mathematically simple, which 
makes them advantageous when applied to complex and 
nonlinear systems. In addition, building a fuzzy control 
rule system for inverted pendulum systems is not 
difficult based on the experts' experience and 
observations. Therefore, the fuzzy controller is selected 
in this study. This section presents the steps to set up and 
optimize it to control the balance for the inverted 
pendulum-cart system. 

 The system's control diagram is presented in Fig. 2, 
in which FC1 and FC2 are the sub-fuzzy controllers to 
control the deflection angle of the pendulum and the 
position of the vehicle, respectively. The state and 
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control variables of FC1 are (θ, θ ) and u1, and of FC2 
are (x, x ) and u2. Determining the weight w and the 
overall control force u will be explained below. The 
control force u will change the system's state  
(θ, θ , x, and x ). The system is stable when these 
variables reach zero, and the control process ends.  

The fuzzy controllers FC1 and FC2 workflow is 
plotted in Fig. 3. These controls include the 
Fuzzification, Rule Base, Inference, and  
De-Fuzzification function blocks. The overall control 
force u is a function that depends on u1, u2, θ, and w.

 
Fig. 2.  System's control diagram 

 

 
Fig. 3.  Workflow of fuzzy controllers 
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Hence, it can be seen from Fig. 2 and Fig. 3 that the 
calculated (or measured) values of the four state 
variables of the system (θ, θ , x, and x ) are used to 
calculate the control force u in the ith loop through the 
proposed controller. These four state variables and the 
control force u are also the initial conditions and 
parameters for solving (1) by the 4th-order Runge-Kutta 
method. As a result, the values of the four state variables 
in the (i + 1)th loop are determined. Subsequent iterations 
are performed until the system reaches the equilibrium 
state. 

Assume that the variables have their reference 
interval and linguistic values as arranged in Table 1, 
where N, Z, P, and V are the notations of Negative, Zero, 
Positive, and Very, respectively. 

Symmetrical fuzzification diagram for state 
variables (θ, θ , x, and x ) and control variables u1 and 
u2 using triangular membership functions are plotted in 
Fig. 4 and Fig. 5. The control rule bases of FC1 and FC2 
are arranged in Tables 2 and 3. These control rules are 
established based on observing the system's behavior 
when affecting the control force. For example, when the 
deflection angle and angular velocity of the pendulum 
are negative and large, the driving force u needs to be 
very large, and its direction of action is to the left. When 
the deflection angle of the pendulum is negative, and its 
angular velocity is positive, the driving force u only 
needs a very small value around 0. For the cart, when its 
position and velocity are negative and large, the driving 
force u needs to be very large, and its direction is to the 
right. When the cart's position is positive, and its 
velocity is approximately zero, the control force u needs 
to be positive. By similar analysis for each state of the 
pendulum and cart, the control rule bases for controllers 
FC1 and FC2 are selected, as shown in Tables 2 and 3.  

The FC1 and FC2 controllers use Mamdani and 
centroid methods for their Inference and Defuzzification 
steps. It can be seen that the number of linguistic values 
used for variables is minimal. In this sense, the number 
of control rules of FC1 and FC2 is also minimal. 

It can be seen that the controllers FC1 and FC2 
operate independently based on the states of the 
pendulum and the cart, respectively. However, this 
model is underactuated; only one actuator generates the 
control force u. Therefore, after obtaining the 
intermediate control forces (u1 and u2) from the 
controllers FC1 and FC2, the calculation of the overall 
control force u based on u1, u2, and the weight w ∈ [0, 1] 
is proposed as follows: 

u = wu1 + (1-w)u2   (2) 

in which the weight w is determined based on the 
importance of the state of the inverted pendulum and the 
cart. 

 

Table 1. The variables' reference interval and linguistic 
values 

Variable Reference 
interval Linguistic values 

θ [-θ*
 , θ*] N, Z, P 

θ  [-θd, θd] N, Z, P 

u1 [-u1* , u1*] VN, N, Z, P, VP 

x [-x*
 , x*] N, Z, P 

x  [-xd, xd] N, Z, P 

u2 [-u2* , u2*] VN, N, Z, P, VP 
 

Table 2. Control rule base of FC1 

θ  N Z P 

θ    

N N Z P 

Z Z P VP 

P VN N Z 
 
Table 3. Control rule base of FC2 

x  N Z P 

x    

N VP P Z 

Z P Z N 

P Z N VN 
 

 
Fig. 4.  Fuzzification of θ, x, θ , and x  

 

 
Fig. 5.  Fuzzification of u1 and u2 
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Fig. 6.  The weight w versus θ 

In this study, the proposed scheme to determine the 
weight w is plotted in Fig. 6. It can be seen that when the 
deflection angle θ is large (θu), the system is in a 
dangerous state. The overall control force u need to 
prioritize the swing-up control of the pendulum, and 
hence w can be up to 1. Conversely, when the deflection 
angle θ is small (θl), w can be approximately a given 
value wl, the pendulum and the cart can return to their 
equilibrium positions simultaneously. 

It should be noted that the fuzzy controller for 
controlling the inverted pendulum-cart model in  
Bui et. al. [25] (denoted by FC_B) consists of four 
intermediate controllers (for each state variable) with 
four combined weights. These weights are determined 
by the trial-and-error method. Hence, the parameters of 
this controller may not allow the system to operate most 
effectively. 

In this study, the optimization problem of controllers 
FC1 and FC2 and the scheme to determine w are 
performed to improve the system's performance. The 
objective of this problem is to minimize the system's 
equilibrium time (ts) from different initial conditions as 
follows: 

ts → min   (3) 

It can be seen that the adjustable parameters of the 
controllers include the reference range of variables, as 
shown by the circle dots on Fig. 4 and Fig. 5. Moreover, 
the parameters θl, θu, and wl to determine the weight w 
can also be optimized, as presented in Fig. 6. Therefore, 
the number of design variables of the optimization 
problem is 9 (θ*, θd, u1*, x*, xd, u2*, θl, θu, and wl). 

This study uses the balancing composite motion 
optimization (BCMO) [26] algorithm to perform the 
optimization problem. This algorithm is a meta-
heuristic, swarm-based, and recently published 
optimization technique. The idea of BCMO is to balance 
individuals' exploration and exploitation motions in the 
search for a better fitness function value at each iteration. 
BCMO has advantages such as no need for algorithm 
parameters, fast convergence, and high optimal 
performance. The effectiveness of BCMO has been 
verified through many simulations in different studies. 
The diagram of the optimal problem is represented in 
Fig. 7, in which maxGen is the number of generations or 
iterations in the optimization process. 

 
Fig. 7.  The diagram of the optimal problem 
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4. Numerical Simulation  

In this section, the numerical simulation results are 
presented. After performing the optimization problem to 
determine the suitable parameters for the fuzzy 
controllers FC1 and FC2 and the weighting scheme w, 
the numerical investigations include: (1)  Comparison of 
the obtained results in this study with those in published 
articles; (2) Effect of the pendulum length on the 
system's equilibrium time ts (s); and (3)  Determine the 
maximum values of the pendulum's mass and length and 
the cart's mass with the proposed controller. 

First, the optimization problem is performed using 
training data including (mp, lp, mc) equal (0.1, 1, 1),  
(0.1, 0.2, 1), and (0.1, 2.2, 1) with the initial condition 
θ(0) equal 30o (the initial condition of the remaining 
state variables is 0). Here, the mass is in kg, and the 
length is in m. The allowable control force is umax equal 
50 N. The system is considered stable when [23]: 

θ ≤ 0.1o;  θ ≤ 0.1o/s;   x ≤ 0.01m;  x ≤ 0.01m/s   (4) 

The optimal values of the design variables are 
arranged in Table 4. From the results in Table 4, it can 
be seen that the optimization problem is necessary to 
determine the appropriate parameters of the controller. 
Because of the large number of design variables (9), it is 
not feasible to determine their values using experience 
or trial-and-error steps. 

Second, several typical cases are simulated to verify 
the effectiveness of the proposed controller, as listed in 
Table 5. The simulation results of the fuzzy controller in 
Yi and Yubazaki [23] (denoted by FC_Y) and FC_B are 
also included for comparison. The results in Table 5 
show that the controller proposed in this paper (FC) has 
about 14.5% and 6.5% faster stabilization time (ts) and 
about 18.2% and 32.6% smaller maximum control force 
when compared with the controllers FC_Y and FC_B, 
respectively (according to the average value of four 
comparison cases). The time responses of the 
pendulum's deflection angle, cart's movement, and 
control force of the simulation cases in Table 5 are 
illustrated in Fig. 8. It can be seen from Fig. 8 that the 
vibration amplitude in the FC case is much smaller than 
that in the FC_B case. This phenomenon is because the 
slope of the control force of FC is larger than that of 
FC_B. However, this slope makes the cart's travel 
distance in the FC case larger than that in FC_B. In 
addition, investigations of the maximum initial 
deflection angle with the change of the pendulum's 
length are performed and presented in Fig. 9. 
Table 4. The optimal values of the design variables 

  θ*, o θd, o/s u1*, N x*, m xd, m/s 

106.08 326.79 538.62 15.79 8.20 

u2*, N θl, o θu, o wl  

269.43 5.86 70.00 0.48  

 
Table 5a. Typical simulation cases (ts, s) 

(mp, lp, mc) Initial      
condition 

ts, s   

FC_Y FC_B FC 

(0.1, 1, 1) θ(0) = 30o 8.24 6.30 6.01 

(0.1, 1, 1) x(0) = 2m 7.16 6.79 6.69 

(0.1, 0.2, 1) θ(0) = 30o 6.65 8.45 7.34 

(0.5, 1, 1) θ(0) = 30o 8.18 6.27 5.81 

Mean value 7.56 6.95 6.46 

Variation, % 0.00 -8.01 -14.49 

 
Table 5b. Typical simulation cases (Max. of u, N) 

(mp, lp, mc) Initial      
condition 

Max. of u, N 

FC_Y FC_B FC 

(0.1, 1, 1) θ(0) = 30o ~50 50.00 38.01 

(0.1, 1, 1) x(0) = 2m ~3 25.00 11.03 

(0.1, 0.2, 1) θ(0) = 30o ~50 50.00 38.05 

(0.5, 1, 1) θ(0) = 30o ~50 50.00 38.00 

Mean value 38.25 43.75 31.28 

Variation, % 0.00 14.38 -18.23 
 

 It can be seen from Fig. 9 that the pendulum's 
maximum initial deflection angles when using FC are 
much larger than those when using FC_Y and FC_B. 
The increase of this parameter when using FC compared 
to FC_Y and FC_B is up to 50% and 37.5% for the case 
of a pendulum length of 0.7m. The pendulum's 
maximum initial deflection angle when using FC is up 
to 77o. Hence, it can be seen that FC gives superior 
results compared to FC_Y and FC_B in the comparative 
cases regarding system equilibration time, maximum 
control force, and maximum initial deflection angle 
versus the pendulum length. 

Third, the system's equilibrium time ts (s) using FC 
with the change of the pendulum's length is shown in 
Fig. 10. Here the initial conditions in the simulations in 
Fig. 10 are the maximum initial deflection angle, as 
shown in Fig. 9. It is noted that the controllers FC_Y and 
FC_B do not have similar results for the simulations 
shown in Fig. 10 for comparison. It can be seen from 
these investigation cases that the equilibration time is 
less than 10s. The case lp = 1.5 m has the smallest 
equilibrium time ts = 7.25 s. On the contrary, the case  
lp = 1.9 m has the largest equilibrium time ts = 9.66 s. 
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Fig. 8.  Time responses of simulation cases in Table 5 

 

 
Fig. 9.  Max. of θ(0) vs. pendulum's length  
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Fig. 10.  Stability time (ts, s) vs. pendulum's length 

 
The time response of the case  

(mp, lp, mc) equal (0.1, 0.1, 1) with the initial condition  
θ(0) equal 77o is shown in Fig. 11. In this case, the 
equilibrium time ts is about 9.06s. With the basic 
configuration (mp, lp, mc) equal (0.1, 1, 1), the 
pendulum's initial deflection angle θ(0) can be up to 60o 
with the equilibrium time ts of approximately 9.41s. In 
this case, the system's time response is shown in Fig. 12. 

The simulation results in this part show the proposed 
controller's stability, robustness, and high control 
efficiency. 

Next, the determination of the maximum value of the 
pendulum's mass and length and the cart's mass with the 
pendulum's initial deflection angle θ(0) equal 30o is also 
carried out and shown in Fig. 13 – Fig. 15. 

The pendulum's mass can be up to 2.1 kg when the 
pendulum's length is 1 m, and the cart's mass is 1 kg. In 
this case, the stable time ts is about 10.97s, as plotted in 
Fig. 13. When the mass of the pendulum and the cart is 
0.1 kg and 1 kg, respectively, the pendulum's maximum 

length can be up to 2.1 m with the equilibrium time  
ts about 9.39 s, see Fig. 14. Similarly, Fig. 15 shows the 
case that the mass and length of the pendulum are 0.1 kg 
and 1 m, respectively, the cart's mass can be up to 2.6 kg 
with the balance time ts about 13.12 s. These results also 
confirm the advantages of FC, as commented in the 
above simulations. 

It can be seen from the design steps of FC in 
Section 3 and simulation results in Section 4 that the 
proposed controller in this study is simple in setup and 
optimization. The proposed controller optimized by the 
BCMO algorithm has a faster stabilization time (ts) and 
a lower maximum control force, on average, compared 
to FC_B and FC_Y with different initial conditions (see 
Table 5). In addition, the initial maximum deflection 
angle of the pendulum following its length in the FC case 
is also significantly higher than that in the FC_B and 
FC_Y cases. These results show that FC (with 
parameters optimized by the BCMO algorithm) is more 
efficient, stable, and robust than FC_B (with parameters 
determined by the trial-and-error method). 

 
Fig. 11.  Time response of the case (mp, lp, mc) = (0.1, 0.1, 1), θ(0) = 77o 

 

 
Fig. 12.  Time response of the case (mp, lp, mc) = (0.1, 1, 1), θ(0) = 60o 
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Fig. 13.  Time response of the case (mp, lp, mc) = (2.1, 1, 1), θ(0) = 30o 

 

 
Fig. 14.  Time response of the case (mp, lp, mc) = (0.1, 2.1, 1), θ(0) = 30o 

 

 
Fig. 15.  Time response of the case (mp, lp, mc) = (0.1, 1, 2.6), θ(0) = 30o 

 

Underactuated systems are pretty common in 
mechanics and robotics when the number of the system's 
degrees of freedom to be controlled is greater than the 
number of actuators [27]. Hence, the approach in the 
present work is useful and can be applied to control 
many different underactuated mechanical models. For 
models of the Furuta pendulum or rotary inverted 
pendulum, the inertia wheel pendulum, the translational 
oscillator with a rotational actuator, the Acrobot, the 
Pendubot, the ball and beam, and the convey-crane, this 
approach can be applied directly to each component 
controller for each degree of freedom of each model. The 
proposed method may have to be modified for robot 
models or autonomous guided vehicles because the 
number of component controllers can increase, and the 
number of inputs and outputs of each component 
controller can change. 

5. Conclusion  

This study proposed a simple approach for 
optimizing the fuzzy controller for the underactuated 
inverted pendulum-cart system. The control rule bases 
of component controllers can be easily established based 
on independent observation of the influence of the 
control force on the state of the pendulum and that of the 

cart. Thus, this approach is suitable for designing fuzzy 
controllers of underactuated mechanical systems and 
robot models. The method of combining component 
control forces to obtain the overall control force in the 
paper demonstrated the proposed controller's 
adaptability. Finally, the simulation results show that the 
fuzzy controller had high efficiency and was stable and 
robust for the initial conditions as well as for different 
configurations of the system. However, the limitation of 
this study was that determining the combination weight 
w of sub-fuzzy controllers was simple and contained few 
parameters to improve the effectiveness of the 
combination. 

Applying this proposed approach to control other 
underactuated mechanical systems, robot models, and 
autonomous guided vehicles is necessary for further 
investigations of this research direction. The 
combination weight needs to be improved to increase the 
efficiency and adaptability of the controller. 
Furthermore, comparison investigations with other 
widely used control techniques, such as PID, LQR, 
sliding mode, adaptive control, or neuro-fuzzy methods, 
and experimental studies for the investigated model are 
essential to verify the proposed controller's advantages 
thoroughly. 
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