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Abstract

The Two-wheeled Balancing Robot system is increasingly demonstrating its importance in both research and practical
applications. Ensuring stability and flexible mobility on complex terrains, particularly sloped surfaces, remains a significant
challenge. To address this issue, the research presented in this paper first establishes a precise mathematical model for the
robot system operating on a slope. Building upon this model, the paper proposes a novel control strategy based on an improved
Hierarchical Sliding Mode Control (HSMC) technique incorporating a terminal sliding surface. The primary objective of
this controller is to achieve extremely fast convergence speed, thereby simultaneously solving two key problems: maintaining
stability at a fixed position on the slope and safely navigating the robot across the sloped area to reach a target destination in
a 2D model. The research also provides an in-depth analysis of the system’s operating point on the sloped terrain and offers
a rigorous mathematical proof of the overall system’s stability using Lyapunov stability theory. To validate the effectiveness,
simulation results on the MATLAB/Simulink platform were conducted and directly compared with those of a conventional
HSMC. The obtained results demonstrate that the proposed controller not only ensures higher stability but also exhibits superior

responsiveness and performance in both assigned tasks.
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1. Introduction

The two-wheeled balancing robot has long been
an ideal research subject in the field of automatic
control, owing to its inherently nonlinear, unstable
dynamics and wide range of practical applications,
from personal mobility devices to service robots [1-3].
While most previous studies have successfully addressed
the problems of stability control and navigation for
robots on flat surfaces, real-world environments often
present non-ideal terrains. Among these, sloped surfaces
represent a typical challenge. Maintaining balance
and ensuring effective motion control on such terrain
requires more advanced control strategies. This is due
to the shift in the system’s equilibrium point under the
influence of gravity, which significantly complicates the
model and the system’s behavior.

Various control methods have been applied to this
system, ranging from classical controllers like PID
[4, 5] and LQR [5, 6] to more robust approaches
such as Sliding Mode Control (SMC) [7, 8]. Among
them, Hierarchical Sliding Mode Control (HSMC) has
been employed by Chen et al. [9], demonstrating
effectiveness in managing multivariate and unstable
systems by decomposing the complex problem into
sub-problems with subsidiary and main sliding surfaces.
However, conventional HSMC controllers can suffer
from limitations in the convergence speed to the
equilibrium state, particularly in scenarios demanding
high response speeds, such as operation on a slope.
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To overcome this limitation, integrating a Terminal
Sliding Surface (TSS) [10] into the traditional control
structure has emerged as a promising solution, offering
the potential for finite-time convergence due to its fast
convergence characteristics.

The current state of the art primarily addresses
controlling this model on horizontal planes or focuses
solely on stabilization at a desired position. For instance,
in [11], Muifioz-Hernandez and colleagues utilized
Active Disturbance Rejection Control (ADRC) on a
practical model and demonstrated the system’s ability
to balance the inverted pendulum, but did not address
other core issues such as traversal across flat surfaces or
slope climbing. Other studies [7, 12] have tackled the
aspect of navigation by controlling the robot to track
a predefined trajectory, but only in flat environments.
Therefore, building upon this research is crucial to
enhance the feasibility of controlling the model in classic
environments like ascending or descending slopes,
ensuring its operability in a wider range of scenarios.

It is important to emphasize that although this
research is based on a 2D model with a single
representative wheel and an inverted pendulum structure,
it accurately captures the core dynamic behavior of
a 3D robot in a slope scenario. In practice, for a
full two-wheeled robot to stably ascend a slope, both
wheels must maintain contact with the sloped surface
simultaneously. This implies that the cross-section along
the direction of travel for the 3D problem is precisely the
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2D model under consideration. Consequently, analysis
based on the 2D model not only simplifies the problem
but also maintains dynamical rigor, providing crucial
insights that can be applied to the 3D model.

To address the aforementioned challenges, this paper
focuses on developing a hybrid controller that combines
the structural management advantages of HSMC with
the superior convergence capabilities of the Terminal
Sliding Surface. The specific objectives of this research
are:

1) To establish a precise mathematical model using
the Lagrange method for the two-wheeled balancing
robot operating on a sloped surface, including an
analysis of the system’s new operating point.

2) To design a hierarchical sliding mode controller
utilizing a terminal sliding surface (HSMC-TSS) to
stabilize the robot at a fixed position on the slope
and safely navigate the robot across a sloped section
to reach a target destination within the 2D model
framework.

The remainder of this paper is organized as follows:
Section 2 presents the dynamic modeling of the
robot on a slope. Section 3 introduces the design of
the proposed HSMC-TSS controller and its stability
analysis. Section 4 presents and discusses simulation
results. Finally, Section 5 provides conclusions and
suggests future research directions.

2. Mathematical Model

The 2WBR model moving on a slope constructed
on a 2D plane is illustrated in Fig. 1. Let x denote
the translational motion state along the direction of
travel. The computational coordinate frame Oij is placed
at the base of the slope such that its horizontal axis
corresponds to the translational motion direction of the
model, while the slope has a constant inclination angle
¢@. The deviation between the inverted pendulum angle
and the vertical direction is defined as 8.

The parameters and symbols of the model are
presented in Table 1.

The coordinates based on the Oij frame of the
inverted pendulum are:

xp=x+1sin(0+ @)

1
yp=1lcos (6 + @) M

The vector representing the position of the inverted
pendulum 7p is:

p =[x+ 1sin (8 + Q)i +[lcos (0 + )] (2)

From the position vector in (2), by differentiating
with respect to time, the velocity of the inverted
pendulum is obtained as:

Vp =[x+ 0lcos (0 + )i — [0lsin (60 + )]/ (3)

Fig. 1. Uprise model in 2D

Table 1. Model parameters

Description Symbol  Unit
Mass of wheel my kg
Inertial of wheel Iy kg.m?
Mass of inverted pendulum mp kg
Inertial of inverted pendulum Ip kg.m?
Radius of wheel r m
Length of inverted pendulum / m
Gravitational acceleration g m/s>
Friction coefficient cf

The kinetic energy of the model consists of the
sum of translational and rotational kinetic energies. The
translational kinetic energy is calculated as:

1 T 1 )
Tirans = s vpmpvp + —myXx

2 2
1 .
— EmP[X—F Blcos (0 + )] @)
1 !
+ Emp[ﬂlsin(e +o)+ Emez

and the sum of rotational kinetic energy in the model is
defined as:

1., 1 (x\?
Tror = EIPGZ-F EIW (r) ®)

With the reference potential set at the base of the
slope, the potential energy of the model is:

V =mpg(lcos O +xsin Q) + my gxsin ¢ (6)

The Lagrangian is defined as the difference between
the kinetic energy and the potential energy.

L="Tyans+Tror =V (7)
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g(mp +my,)

Fig. 2. The external forces acting on the model when it is leaning on a slope

To model the system, the Euler-Lagrange equation is

formulated with two components g =[x 0] =[gx qg]:
d (oL dL .
dt(&c},)_&qi_Qi i={x0} (8)

where Q; are the generalized forces associated with
external forces (the friction between the drive shafts and
the friction between the wheels and the slope) and the
torque of the wheels acting on the model, given by:

1
Qx = ;(T+ Tms)

Q9 = =T Tns

)

After solving the Euler-Lagrange equations, the
system of equations is obtained as follows:

ax 4 b6 — mplsin (6 + ¢)6?
. 1
+g(mp+my)sing = ;(T—&—Tms) (10
bi+cO —mplgsin® = —T — Ty

where a :mw+mp+%, b =mplcos (6 + ¢), and
CZIP—I—WlplZ.

The above equations can be expressed in matrix form

as:
Mi+C4+Hj+G =Bt (11)
where
_|a b, [0 mplsin(6+¢)0].
M= [b c]’ €= [o 0 ’

H= [if”“}; B= [ ; }; (12)

G- [—g(mP +my ) sin ﬂ
o —mplgsin 0 ’

and ¢y denotes the coefficient of friction, so Ty is
X R

defined as T,y = ¢y ( — 9> .
r

In the model, when the system reaches an
equilibrium state, the acceleration and velocity states
satisfy ¥ =0, i =0, 6 =0, 6 = 0, and the external
disturbance 7,5 = 0. In this condition, the system is
described by:

g(mp—&—mw)sin(p:;‘r (13)

—mplgsinO; = —7

where 6; is the equilibrium angle when climbing the
slope. From the system of (13), the equilibrium angle
can be determined as:

r sin@(mp +my)

] (14)

6, = arcsin

This result is consistent with real-world behavior:
when the robot remains stationary on a slope, the
inverted pendulum must tilt by an angle 6; away from
the vertical position to generate a compensating wheel
torque that balances the gravitational component pulling
the system downhill. This phenomenon is illustrated
more clearly in Fig. 2.

Thus, for a typical model on a horizontal plane, the
desired tilt angle 6 is O (rad) relative to the vertical
direction. However, in the case of operation on a slope,
the desired angle 6, is determined by the expression
above.

3. Control Design

With the control structure described in Fig. 3, the
predefined reference states include the position and
the tilt angle, which is computed based on the slope.
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Fig. 3. Control structure

Normally, on a horizontal plane, the desired tilt angle 6
is always equal to 0. However, in the case of operation on
a slope, the desired tilt angle corresponds to a different
value, as presented in (14), in order to generate the
necessary moment that produces the appropriate 6 for
stabilizing the system at the specified position.

3.1. Terminal Sliding Surface
With a general system, to achieve fast convergence of
the system, the terminal sliding surface is designed as:
s=y+oy+By!” (15)

where y € Z is a state variable of the system, ¢« and 3
are positive constants, p and g (p > ¢) are positive odd
integers.

When the state of model reaches the sliding surface
(s =0), the dynamics are governed by:

y=—oy—By” (16)

To derive the finite convergence time from an initial
state y(0) #£ 0 to y = 0, we solve this differential equation
using separation of variables:

d
@ _ —Ocy—Byq/p

dt
@
ay+pByir

A7)

Rewriting the left side:

dy
ya/P(oy(P=9)/P + B)

=—dt (18)

Letz = y<p—q)/1’, then:

_r—4q

dz y~ 4P dy

19)

Substituting into the equation:

_r O
p—q oz+p

—dt (20)

Integrating both sides from the initial state to the
equilibrium:

0 ts
/ b e Yy @1
J:0yp—q az+P 0

where z(0) = y(0)(?~9)/P and t, is the finite convergence
time. Solving the integrals:

ﬁ[ln(az+ B0y = s (22)

After applying the integration limits:

ﬁ [ln(ﬁ) —In(ay(0)P~ 97+ [3)} =1, (23)

Finally, solving for #;:

(r—q)/p
P ay(0) +B

a(p—q) [ &Y

ty =

Equation 24 demonstrates that the system achieves
convergence to the equilibrium point in finite time, a
significant advantage over conventional linear sliding
surfaces, which only guarantee asymptotic convergence.
This property is particularly important for systems
requiring fast response and high precision.

3.2. Hierarchical Sliding Mode Control

Considering (11), the matrix M is the mass matrix
and therefore invertible. Accordingly, both sides of this
equation can be multiplied by the inverse of M. This
allows the system to be written in a form where the state
accelerations are isolated, making computations more
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straightforward.
X1 =x2
=fit+gT 25)
X3 = X4
X4 =fr+g7

where f;, g; (i = 1,2) are the nonlinear functions in the
model. Let X and u denote the overall state of the system
and the input signal, respectively. The HSMC controller
is designed to control the states including: position (x),
velocity (x), tilt angle (8), and angular velocity (). The
tracking errors of the output states relative to the desired
values are defined as:

€] =X—Xyg
e) =X—Xg 26)
6329—9d
6429—9d

The system sliding surfaces are constructed based on
the Terminal Sliding Surface, defined as:

_ (a1/p1)
{sl —€2+05161+ﬁle] @7

§2 = e4+ Ohes + ﬁzeg@/m)

where ay,a,B1,B, are positive constants, and
q1,p1,P2,q2 are positive odd integers. The hierarchical
sliding surface is constructed based on these two
surfaces:

S=kis1 +kyso (28)

To calculate the equivalent control signal 7,
consider the sliding surface s§; = 0:

; (q1/p1—1) , .
fi+aé +%ﬁ1€1 é1 — iy

Togy = — (29)
eq| 3
Similarly:
3 (q2/p2—1) A
frtonés+ L Be; é3— 6,
Togy = — P2 p 30)

The HSMC control signal to achieve the desired
states is given by:

T = Tog, + Teg, + Tow 31
where Ty, is expressed as:

_ k181Teqy +k282Teq, +1 sign(S) + &S
kig1 +k2g2

swWoT

(32)

For sliding mode controllers, a major drawback
is chattering, which is a phenomenon that causes the
control signal to switch continuously at high frequencies
due to the sign function, leading to wear and potential
damage to the motor. Therefore, the hyperbolic tangent

(tanh) function is often employed to mitigate this effect.
Accordingly, Ty, is rewritten as:

klglreqz + ngZTeql +n tanh(S) + &S
- (33)
kigi +kago

Tsw =

Here, 1 and &€ are positive control parameters.
To prove stability, the candidate Lyapunov function is
chosen as:

1
V=_§

2 (34)

Then, its derivative is:

V=55= S(kis1 +k2s2)
= Slki(éx+ aré; + %ﬁlegql/m—l)él)

+ko(éq+ apés+ %Bzeng/mfl)é})]
=Ski(fi+git+oé + %Blegm/prl)él )

+ha(fa + 82T+ 0né3 + %ﬁzeng/m-% — )]

= S[kl (fl + 81 (Teql 2 Teqr + Tsw) +aé
+hka(fo +g2(feq1 + Teq, + Tow) + Q€3

+ ﬂﬁle(f“/m*l)él —Xq) + 2326(3%/’7271)‘53 ~64)]

= S[k181(Teg, + Tow) +k282(Teq; + Tow)]
= S[(kig1 +k2g2) Tow + k181 Teq, +k2827Teq,]
= S[—ntanh(S) — &S]
= —ntanh(S)S — &8>
(35)

Because tanh(S)S > 0, it is clear that V < 0.
Therefore, the system is asymptotic stability in the sense
of Lyapunov. This implies that the large sliding surface S
converges to 0, which means that both s and s, converge
to 0. Consequently, the controlled states x, x, 8, and 6 are
regulated as desired.

4. Simulation Results

The parameters of the model are given as follows:
my = 1.551 kg,mp = 1.6 kg,Iy = 0.005 kg.m> ,Ip =
0.027 kg.m?,r=0.08m,l =0.13m,g=9.81m/s?, c; =
0.07.

The control parameters used for the simulation
are: o = 2.5, o = 6, [31 = 0.0ls,ﬁz =
0.0157 P = p2 = 9, q1 = q2 = 13, kl = 17,/(2 =
3;n=3,e=1.

4.1. Stability

To verify the feasibility of the proposed controller,
simulation in the case of stabilizing at a desired position
is essential. In this scenario, the simulation is compared
with HSMC but using a conventional sliding surface of
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the form s = y+ Ay, where y is a general state variable
of the system, A is positive constant. The initial states of
the model are: x =0 (m),x =0 (m/s),0 =0.2 (rad),0 =
0 (rad/s). The desired position is to move 1 m, meaning
that x; = 1 (m), remain stable at that location.

Figure 4 illustrates the responses of the position and
the tilt angle of the model. The response corresponding
to the proposed controller in this scenario is denoted
with the subscript T'SS, the response of the conventional
HSMC controller is denoted with SS, and the desired
state is marked with the subscript d. Since the friction
coefficient is not easy to measure accurately in practice,
the terms T, related to ¢y are treated as uncertainties in
the model. Furthermore, a pulse-type disturbance with
an amplitude of 2 Nm is applied to the system during
the time interval from 5.5s to 6s in order to evaluate the
robustness of the model.

The results show that the proposed controller with
the terminal sliding surface enables the system to
respond faster, achieving convergence in approximately
2s, compared to 3s for the conventional HSMC with
a standard sliding surface. Meanwhile, the nature of
this model involves coupled translational motion and
the tilt angle of the inverted pendulum. Therefore,
overshoot is intrinsic and cannot be avoided. Given
the initial conditions and the objective of achieving
rapid stabilization, there is an inherent trade-off between
overshoot and response time. As observed during the
transient phase from Os to 4s, the model exhibits a larger
overshoot under the proposed controller compared with
the conventional HSMC. However, when an external
disturbance is applied, the faster response enabled by the
terminal sliding surface becomes evident, as the settling
time required to return to the equilibrium position is
shorter than that of the conventional sliding surface.
Moreover, during this phase, not only is the recovery
time reduced, but the deviation is also smaller (—0.17rad
compared with —0.32rad in response of tilt state). These
results further demonstrate that, with the objective of
achieving a faster response, the disturbance rejection
capability is also improved by driving the system back
to the equilibrium position as quickly as possible.

The control torque is shown in Fig. 5. When the
system reaches stability, the tilt angle 0 is not positioned
at zero; therefore, the control signal always maintains a
nonzero value to sustain control.

4.2. Tracking Uprise

Using the same proposed controller and model as
above, this simulation scenario controls the model’s
position over time to examine the state responses. A
white-noise measurement noise is introduced into the
feedback signal of the controller for the tilt state and the
model still contains an unknown friction coefficient cy.
The model is required to move along flat, ascending, and
descending segments. The terrain profile is illustrated in
Fig. 6.
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The simulation scenario features a segmented terrain
profile designed to comprehensively evaluate the robot’s
performance. The path begins with a flat segment from
the starting point at Om to approximately 20m, allowing
for initial stabilization. It is followed by an ascending
slope that commences at around 20m and concludes
at roughly 50m, testing the robot’s climbing capability
and stability on an incline. Upon reaching the top, the
robot traverses a second flat section from about 50m
to 80m, validating its stability on a leveled surface
after a climb. The path then transitions to a descending
slope from approximately 80m to 100m, challenging
its control during downhill motion. Finally, the terrain
levels out into a concluding flat segment from 100m
onward, assessing the robot’s ability to regain and
maintain equilibrium after navigating the complete slope
sequence.
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The feasible trajectory is achieved through velocity-
based control. Fig. 7 illustrates the reference velocity and
the actual velocity response of the model. Observations
indicate that the velocity response exhibits sudden
increases and decreases, which occur as the model
approaches or leaves sloped segments during motion.
Furthermore, the measured velocity of the model
exhibits small high-frequency oscillations due to the
measurement noise that has been introduced. Therefore,
the variation in terrain slope over time is depicted in
Fig. 8 to further clarify this relationship.
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Fig. 9. State response

The state response of the model is illustrated in
Fig. 9. In terms of position tracking, the results
demonstrate accurate and satisfactory performance.
Meanwhile, the tilt angle 6 varies according to the
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terrain during movement. Specifically, on flat terrain,
the inverted pendulum’s deviation oscillates around a
value of Orad. On the other hand, when moving on
sloped terrain, this tilt angle adjusts to accommodate
the motion. When measurement noise is introduced into
the feedback loop of the controller, it also affects the
system response. The robustness of the sliding mode
controller is demonstrated by these results, although
this type of measurement noise cannot be completely
eliminated. Since the position tracking response is highly
accurate, Fig. 10 depicts the deviation between the actual
state response and the desired value. The results indicate
a maximum deviation of only 0.2m when traversing
slopes, with this error becoming more pronounced as the
slope steepness increases.

The control signal, presented in Fig. 11, exhibits
a similar pattern to the descriptions above during
operation. The proposed controller, fundamentally
derived from sliding mode control, inherently suffers
from the chattering phenomenon. However, the control
signal has been significantly mitigated by replacing the
sign function in the controller with another function that
captures the sign of the sliding surface, a hyperbolic
function. The phenomenon observed in the results shown
in the figure is mainly not caused by the chattering
associated with the hyperbolic function, but rather by
measurement noise, and the controller generates control
signals to counteract these variations.

5. Conclusion

In conclusion, this paper has successfully
developed and validated a hierarchical sliding
mode control strategy integrated with a terminal
sliding surface for two-wheeled balancing robots
navigating sloped terrains. The proposed HSMC-TSS
controller demonstrates superior performance in
achieving both precise position tracking and effective
balance maintenance across various terrain segments,
including ascending, descending, and flat surfaces,
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with significantly faster convergence compared to
conventional HSMC. While the controller shows
promising robustness in the tested scenarios,
its performance under more significant external
disturbances and model uncertainties requires
further investigation. Future research will focus on
implementing this control strategy on a physical robotic
platform to validate its practical efficacy, alongside
enhancing its robustness to handle broader operational
conditions and more challenging environmental factors.
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