

JST: Smart Systems and Devices

Volume 31, Issue 2, September 2021, 010-018

10

Design and Implementation of a LoRa Communication System Supporting

Edge Computing on the Smart Multi-Platform IoT Gateway

Vinh Tran-Quang1*, Huy Dao Nguyen, Dat Tran Tien
Hanoi University of Science and Technology, Hanoi, Vietnam

*Email: vinh.tranquang1@hust.edu.vn

Abstract

LoRa technology was developed over 10 years ago, with many communication protocols optimized for
LoRaWAN. However, in the protocols, all data from the end devices are sent directly or forwarded through a
gateway to the LoRaWAN server and processed centrally there. Accordingly, the gateway only acts as a
forwarder. This mechanism increases the processing load on the server, increases latency, and is not suitable
for applications with a large number of end devices or that require real-time applications. In this paper, we
design and develop a new LoRa communication protocol that supports edge computing at the gateway. At the
same time, the authors design and manufacture a Smart Multiplatform IoT Gateway (SMGW) and LoRa nodes
that allow the implementation and evaluation of the proposed protocol in practice. The test results on a system
of 50 LoRa nodes and the SMGW show that the proposed protocol works well when evaluating its performance
in terms of reliability, latency, and power consumption. This proposed system is suitable for applications that
require edge computing and is easily extendable to other IoT applications.

Keywords: LoRa protocol, edge computing, multiplatform gateway, IoT system.

1. Introduction

In*the past 10 years, the 4.0 industry and the
Internet of Things (IoT) have become more popular
than ever. The advantages of IoT applications are
changing the way we live and work day by day. As a
forecast shown recently, the number of IoT devices
will almost triple from 8.74 billion in 2020 to more
than 25.4 billion in 2030 [1]. The essential difference
in requirements between "the Internet" and "the
Internet of Things" [2] is that in IoT devices, there are
fewer things available, i.e., less memory, less power of
processing, less bandwidth and less available energy.
One reason for these requirements is to optimize the
energy consumed since maximizing the device lifetime
is our priority. Furthermore, when the number of
devices is colossal, we need to share bandwidth for
each device. It seems that the devices in the IoT system
need to "do more with less", and traditional wireless
devices, such as Wi-Fi or cellular networks, are
obviously not suitable for IoT devices. The rapid
growth of IoT devices has generated a need for suitable
low-power wide-area (LPWA) technologies that are
long-ranged and consume ultralow power to substitute
traditional wireless technologies [3-5]. To date, many
LPWAs have been invented, such as ZigBee [6], which
consumes low power but is limited in distance, and
BLE [7], which consumes ultralow power and works
over a very short distance. Each technology has
outstanding advantages and is suitable for a special
application. LoRa technology [8] was invented to
satisfy IoT requirements as much as possible. LoRa
can transmit data within 3 km in urban environments

ISSN: 2734-9373
https://doi.org/10.51316/jst.152.ssad.2021.31.2.2
Received: May 20, 2021; accepted: June 30, 2021

and 10-20 km in suburban environments [9]. The
longest range recorded for LoRa to transmit data was
766 km [10]. LoRa devices also consume power at low
levels, ranging from 10 to 15 mA in the receiving
process and varying from 20 to 120 mA in the
transmission process [11]. While patented LoRa
wireless radio frequency technology stands for the
physical layer protocol, LoRaWAN [12], which was
developed by the LoRa Alliance, stands for the media
access control layer protocol. In the LoRaWAN
architecture, there are three fundamental components:
the LoRa node, LoRa gateway and LoRa server. The
LoRa server in a LoRa network system needs to process
all packets sent by LoRa nodes (end devices). It is not a
problem if our IoT system is on a small scale. However,
once the number of end devices is enormous, the
traditional LoRa system will not only have a large
latency of message transmission but will also overload
the LoRa server because it must process a huge number
of messages, reducing system performance
significantly. LoRa gateways, which are now only
responsible for transparent forwarding messages
between end devices and LoRa servers, have a good
ability for processing data, and we do not need to be
concerned with their power consumption.

To exploit LoRa gateway resources that
traditional systems are wasting, this paper will propose
and implement a new improved protocol that is easy to
deploy and allows us to parse, store packets from end
devices for additional purposes such as edge

JST: Smart Systems and Devices

Volume 31, Issue 2, September 2021, 010-018

11

computing and still ensure all functions as LoRaWAN
does.

The goal of this research is to build a complete
IoT system, including designing and manufacturing
hardware devices, designing communication protocols
and data processing algorithms, and embedding these
proposals on the devices. The rest of this paper is
organized as follows. Section 2 presents the overall
architecture of the Lora communication system, flow
of activity between end devices, gateway, and server.
Section 3 and 4 present the implementation of the
proposals in both end device and the gateway. The
tests are conducted in Section 5. Finally, Section 6 is
the conclusion of the paper.

2. LoRa Communication System Architecture

2.1. System Architecture and Components

The overall architecture of the proposed LoRa
system is illustrated in Fig. 1. It still maintains the
architecture of a traditional system based on
LoRaWAN consisting of 4 component layers that
include end devices, LoRa gateways, servers, and
applications. The functions of each component are
described below:

- End device (LoRa node): The end devices with
integrated sensors that measure the parameters of the
environment in agriculture (i.e., humidity,
temperature, pressure) or the parameters of the human
body (i.e., blood pressure, pulse heart, weight). These
parameters are processed by the central processor,
usually a microcontroller, and then packaged with
standard formatted data packets to be sent to the LoRa
gateway by its LoRa module using our proposed LoRa
communication protocol.

- Smart multiplatform IoT gateway (SMGW): data
packets sent by end devices are received by an SMGW.
The SMGW plays an important role in this proposed
system since it performs many processing functions
rather than simply forwards data to servers as do
traditional LoRa systems. It will parse packets to
obtain needed data for edge computing purposes, send
acknowledgments, send commands from server to end
devices if available and transmit data to server.

- Server: The server receives data from the SMGW
via back-haul transport, for example, over Wi-Fi,
Ethernet, or 4G/LTE. Servers store and process data
and provide services to applications.

- Application: This layer interacts directly with the
user, provides interfaces that allow the user to monitor
the measured parameters online and allows the user to
manage and control the end devices by sending control
commands directly to the end devices over LTE or
through the SMGW.

Fig. 1. LoRa communications system architecture and
components.

Fig. 2. Layout and a prototype of the LoRa node

2.2. End Device (LoRa Node)

We designed and manufactured a LoRa node
prototype that uses STM32L072 as a microcontroller,
an RFM95 module for the LoRa communication
module, and MAX7Q for the GPS receiver module.
Fig. 2 shows the LoRa node device after designing,
manufacturing, assembling all components, firmware
loading, and testing.

2.3. Smart Multi-Platform IoT Gateway (SMGW)

We propose and develop a smart and
multicommunication IoT platform gateway that can
provide multiple radio interfaces to allow connection to
different IoT end devices using different radio
communication technologies, such as LoRa, ZigBee,
V2X, or Wi-Fi. The SMGW receives data from sensor
nodes (the sensor nodes in this paper are the LoRa nodes
that are integrated sensors), processes the data and then
forwards it to the server; and receives control commands

Database

Edge
Computing

Controller

Server
Connector

Transmitter
Receiver

Forwarder

Network server

Join server

Application server

Server Database

Sensor Controller LoRa

End Device
Other

components

Server

SMGW

Web Mobile Desktop App

Applications

JST: Smart Systems and Devices

Volume 31, Issue 2, September 2021, 010-018

12

from the server and forwards them to sensor nodes. In
particular, the SMGW has the ability to perform edge
computing or machine learning on data received from
sensor nodes, which is scalable for many different IoT
systems. With such requirements, the SMGW is
designed with a functional block diagram architecture,
as shown in Fig. 3. Fig. 4 is a SMGW prototype. Given
the limited scope of this paper, we do not present in
detail the design and assembly process of the LoRa node
and the SMGW devices.

2.4. Messages Flow and LoRa Components Activity

In this system, end devices (LoRa node), the
SMGW and the server are the three main components
that interact with each other in a flow of activity, as
described in Fig. 5.

First, LoRa node packages sensed data (step 1)
and then sent them to the SMGW (step 2). Then, a
receive window will be opened to receive the
corresponding acknowledgement (ACK) message
(step 5). The ACK message may contain a control
command (CMD) from the server. If so, the node
executes the control command and responds with an
ACK to notify the server if the CMD command was
successfully executed by the node or not (step 4). If the
gateway does not receive any ACK message
corresponding to the command, a message containing
that command is retransmitted in the next receive
window.

At the SMGW, after receiving the data packet
from the nodes, the SMGW conducts data processing
(step 3), for example, combining data, performing data
aggregation, running edge computing algorithms or AI
algorithms and then sending the processed data to the
server (step 6). More details about the processing flow
at the SMGW will be presented in Section 4.

2.5. Data Packet Format

The data format and message structure used in
this proposed LoRa communication system are defined
and described as shown in Fig. 6. There are 4 fields in
the physical layer, namely, Preamble, Phy Header, Phy
Header CRC, and CRC, which are preserved as in
LoRaWAN [12]. These fields are added automatically
when data are processed at the LoRa module's physical
layer. This format is applied to both uplink and
downlink messages.

As we can observe from Fig. 6, a Phy Payload
starts with a MAC Header (MHDR) field of 1 byte in
size. This is the MAC layer header field containing
information that defines the purpose of the message,
which includes the MType, RFU, and major fields.
The MType field (3 bits) identifies the type of message
that will be handled on the corresponding handler.
Details of the message types are shown in Table 1. The
RFU field (3 bits) is reserved for future usage. The
major field (2 bits) contains the implemented protocol
version.

Fig. 3. Function block diagram of the Smart
Multiplatform IoT Gateway (SMGW).

Fig. 4. A SMGW prototype.

Fig. 5. Message flow and activities among the main
LoRa components.

Fig. 6. Data format and message structure for the
proposed LoRa communication protocol.

CPU
AM5728BABCXEA

USB DUAL PORT
GSB311231HR

INPUT
+12VDC

EEPROM

USB PORT
E8199-001-01

HDMI
Output

BUCK
CONVERTER

PCIe LoRa Mini Slot

PCIe V2X Mini Slot

WiFi Module
(Quectel EC25)

RJ45 Ethernet

PCIe ZigBee Mini
Slot

USB HUB
(4 ports)

LTE Module
(Quectel EC25)

ETHERNET
PHY

PS 3V3

5V

HDMI

USB1

V2X_UART

USB2

LORA_SPI

ZIG_UART

RGMN
Ethernet

PHY

UART

SDIO 3.0

PORT3

PORT1+2

PORT0

I2C1

SENSORS
I2C2

DDR3
4G/16bit
1600MHz

DDR3

LoRa Node SMGW Server

1 sensing and
packaging data

2

5

Processing
raw data

6

3

4

Open
receive
window

Preamble Phy Header Phy Header
CRC

Phy Payload
(max 20
bytes)

CRC

MHDR
(1 byte)

MAC Payload
(max 19 bytes)

Frame
Header

(7 bytes)

Frame Port
(1 byte)

Frame
PayLoad

(Max 11 bytes)

Device
Address
(4 bytes)

Frame
Control
(1 byte)

Frame
Counter
(2 byte)

Frame
Length
(1 byte)

Major
(2 bits)

RFU
(3 bits)

Mtype
(3 bits)

ACK
(1 bit)

RFU
(7 bits)

PHY
Layer

MAC
Layer

JST: Smart Systems and Devices

Volume 31, Issue 2, September 2021, 010-018

13

Table 1. MType classification

Mtype Type of message
000 Join-request message, sent from node
001 Join-accept message, sent from gateway

to notify that node has joined successfully
010 Unconfirmed data message, sent by node,

no ACK
011 Confirmed data message, sent by node,

ACK requirement
100 Unconfirmed command message, sent by

gateway, no ACK requirement
101 Confirm command message, sent by

gateway, ACK requirement
110 Reserved for future usage
111 Reserved for future usage

Fig. 7. Flowchart of the LoRa communication protocol
implemented on the end device.

Fig. 8. Receiving time slot on the end device.

The MAC Payload, next to the MAC header field,
up to 19 bytes in size, contains MAC layer data. This
field is preceded by a frame header of 7 bytes in size
containing subfields for control purposes. Next is a 1-
byte frame port field, which is designed for future use.
Finally, the frame payload field with a maximum size
of 11 bytes contains the frame data, which are the data
the user needs to send. The frame header field is 7
bytes in size divided into 4 subfields and used for

control purposes. The device address subfields have a
size of 4 bytes, where the first 2 bytes are the gateway
address, and the last 2 bytes are the address of the node.
The frame control subfields (1 byte) contain protocol
control information. In the proposed protocol, the first
7 bits are reserved, and the last bit is the ACK bit,
which enables the acknowledgment of the ACK
message. The frame counter subfields (2 bytes) contain
the sequence number of the packet. The frame length
subfields (1 byte) represent the payload length.

3. LoRa Protocol Implementation on End Devices

3.1. LoRa Communications Protocol

After the end device (sensor node) starts
activating, the node is in sleep mode to save as much
power as possible. If there is an event (the event here
is triggered when data from the sensor is transmitted to
the processor), the node will wake up, take data from
the sensor, pack data in the format presented in
Section 2, and start data transmission. When the
transmission finishes, the node will open a receive
window in a certain timeout duration. If the receive
window time expires and the node does not receive any
ACK message from the gateway, it will retransmit the
current packet in a certain time. If the transmission
fails, the node will discard the current packet and start
waiting for another event from the sensor. If a node
receives a packet in timeout duration, it starts
processing the packet. First, the data fields are parsed.
After that, we check if the address of the devices is as
expected, whether the message is an ACK or not and
what the ordinal number of the message is. If these
conditions are satisfied, the node keeps checking
whether the packet has commanded or not. If there is a
command in the packet, the node will execute this
command and send a command ACK to the gateway.
A flowchart of the LoRa communication protocol
implemented on the end device is shown in Fig. 7.

The communication process, which is designed
based on class A of LoRaWAN, is revised to make the
process as simple as possible. Fig. 8 illustrates the
process of transmission and reception of the proposed
protocol on the end devices.

3.2. Firmware Structure

Based on the LoRa communication protocol
proposed above, we develop the source code and
deploy it on our end device. The firmware on the
device is developed in Keil C IDE, which supports
various microcontrollers, and compiled by the ARM
GCC compiler, which is for microcontrollers using the
ARM architecture. The firmware structure on the end
device is divided into 6 layers, as shown in Fig. 9.

The application layer is the highest layer that is
responsible for deploying and implementing the
proposed communication protocol. The application
layer consists of services such as LoRa service, GPS
service, GSM/4G service and other services. The

Start

Sleep

Event ?

Start Tx

Time out ?

Yes

Start Rx & Wait ACK

DevAddr?

ACK ?

Msg ?

Validating ?

Pkt Numb?

No

No

CMD ?

End

Excute & Send ACK

No

No
Yes

Yes

Yes

Retry_cnt ++

Retry_cnt > MAX

Start other
communications

No

Yes

Yes

No

Yes

Tx
(uplink)

Rx
(downlink)

ToA
(Time on Air)

Time out duration
t

Receive Delay

JST: Smart Systems and Devices

Volume 31, Issue 2, September 2021, 010-018

14

midware layer is responsible for controlling and
scheduling tasks of each service so that each can work
independently and is easy to maintain if one of them
has problems in the future. In this layer, we use Free-
RTOS, a real-time operating system that is compatible
with the ARM architecture. The abstraction layer is
developed with additional tools, e.g., debugging tools
and diagnostic tools. The component driver layer
contains libraries for developing drivers for LoRa,
GPS, or GSM modules. The peripheral driver layer
consists of driver libraries for users to use peripheral
modules in microcontrollers, i.e., UART, SPI, TIMER,
and GPIO. Finally, the hardware layer is the physical
part in the end device. This lowest layer receives data
from a higher layer, performs modulation or
demodulation of the received data, and passes it on to
the higher layer.

Fig. 9. Firmware structure developed and deployed on
the end device LoRa node.

4. LoRa Protocol Implementation on SMGW

4.1. SMGW Components and Communication Flow

In a traditional LoRaWAN network, the gateway
only acts as an intermediary device to forward data
from the end devices to the server. In the proposed
system, the gateway plays an important role; it allows
us to receive raw data from end devices, perform
functions of data aggregation, edge computation, etc.,
to reduce the amount of raw data from many end
devices that need to be sent to the server. This is also
the reason for the research team to design and
manufacture the Smart Multiplatform IoT Gateway
(SMGW) device and to develop and deploy the new
LoRa communication protocol on this device.

The SMGW components, functions, and flow of
communication among them are illustrated in Fig. 10.
The gateway controller is the main part and central
processor in the SMGW. All messages transmitted and
received will be parsed and packed here. The Gateway
Forwarder takes responsibility for communicating
with end devices and the Gateway Controller. This is
a gate of LoRa communication. It sends the uplink
formatted message which is received via a receiver
module to the Gateway Controller and sends downlink
formatted messages to the end devices. The gateway-
server connector is responsible for communicating
with the server via back-haul transport, i.e., Wi-Fi,
Ethernet, or 4G/LTE. The message processed by the
Gateway Controller or computed by the Edge
Computing module is moved to the Gateway-Server
Connector for encryption and then sent to the server. If
the server sends a command, this module decrypts it
and moves the command to the gateway controller for
handling. The gateway database is responsible for
storing and saving parsed and processed data. Edge
Computing: This module takes data saved in the
Gateway database to compute and send to the
Gateway-Server Connector.

Fig. 10. The SMGW components' functions and communication flow.

LoRa Service GPS Service Other Service

Applications

SPI USART LPUSART

Peripheral Drivers

GPIO

SX127x

Component Drivers
MAX7QDEBUG

Abtraction Layers

CMSIS-RTOS

Middleware

Hardware

JST: Smart Systems and Devices

Volume 31, Issue 2, September 2021, 010-018

15

4.2. Flow of Activity on Gateway Controller

Messages received from nodes are pushed into a
FIFO buffer, and the Gateway Controller fetches data
from this buffer continuously. These data packets are
parsed, and their type is identified via its MAC header.
Each message will be handled differently depending
on its type. There are 2 types of messages we need to
focus on: if the type of message is a data message, it is
processed as the flowchart in Fig. 11, and if the type of
message is an ACK message, it is processed as the
flowchart in Fig. 14.

4.2.1. Data Message Processing

The data messages are validated by their gateway
address (GWAddr) and packet number (PktNumb). If
these conditions are not satisfied, these data messages
will be discarded. After checking the conditions, data
messages will be parsed and divided into fields in
format in Section 3. Needed fields and related
information will be stored in the Gateway Database so
that the applications can take these data and apply
algorithm models for edge computing purposes.

After successfully processing and storing the
received data message, the gateway controller
generates an ACK message and sends it to the
corresponding node in its receiving window. To save
power, the node's LoRa communication module is
configured to always stay idle until an event occurs.
Therefore, the CMD command that the gateway wants
to send to the node will be sent with an ACK message.
This integration will save node power, but it will also
delay command execution as a trade-off. All the CMD
commands from the server are pushed in a table whose
header is presented in Fig.12 (a), and we call it the
configuration and control table. When the gateway
generates an ACK message, it must check the device
address and command in this table to verify that there
is a control command to send to this node. The
DevAddr column contains addresses of the nodes to
which we need to send the control command, and the
CMD column is the CMD code of the command. These
codes are designed to follow the preconventional
syntax between the gateway and the nodes. The CMD
code in the table is encapsulated into an ACK message
and sent to the corresponding node. To ensure that the
node has received the control command, an ACK
message from the receiving node is sent to the SMGW
for confirmation. Therefore, we need a table to manage
the sent commands. This is the In-Progress-Command
(IPC) table with its header shown in Fig. 12 (b).

The IPC table contains commands that wait for
an ACK from the node. DevAddr is the address of the
node that must be sent the ACK. The CMD field
contains a list of waiting ACK commands. The start
time field is the time when the command started
waiting for ACK. The timeout field is the ACK
timeout. If that duration exceeds timeout, that
command will be moved and posted in the first row of

the command table. Those commands that have
received ACK will be deleted from the IPC table.
These processes are illustrated by the flowchart in
Fig. 13. If there are no commands left in the command
table, the SMGW will send ACK messages only.

Fig. 11. Flowchart of LoRa communication
implemented on the SMGW.

Fig. 12. The commands header table (a) and the IPC
header table (b).

Fig. 13. The flowchart of IPC processing.

New period has started

Start

Msg ?

Fetch Packet

Validation ?

Store for Data Process

Yes

Prepare ACK Msg

CMD ?

Add CMD to ACK Msg
Yes

Send ACK Msg Send ACK Msg

No

List CMD in IPC Table

ACK ?

End

ACK Checking Process

Data ?
No

Yes

Yes
No

Yes
No

No

New period has started

GWAddr?

PktNumb?

DevAddr
(4 bytes)

CMD Start Time Timeout

DevAddr
(4 bytes)

CMD(a)

(b)

Start

Expired ?

New period has started

Check TimeOut of CMD in
In-Progress-CMD Table

Remove and add to the top of
CMD Table

New period has started

Yes

End

No

JST: Smart Systems and Devices

Volume 31, Issue 2, September 2021, 010-018

16

Fig. 14. Flowchart of ACK message processing.

Fig. 15. Firmware structure on the SMGW.

4.2.2. ACK Message Processing

If the message sent to the SMGW is an ACK
message, the SMGW will trigger a process to handle the
ACK message. This process is performed as shown in
the flowchart presented in Fig. 14. Following this
procedure, the SMGW compares the GWAddr in the
received ACK message with its own address. After
validating the received ACK message, which means that
the CMD has been sent successfully, it will discard the
command code in the IPC table and start a new period.

4.3. Firmware Structure on the SMGW

Based on the proposed LoRa communication
protocol and the process of handling data messages
and control messages on the SMGW as described
above, we develop the source code and deploy it on our
SMGW. The firmware is developed and embedded in
the Linux operating system with the structure divided
into 4 layers, as presented in Fig. 15.

Applications Layer: This layer is designed
similar to the application layer on the Node. It includes
source code to run necessary services such as Lora
service, PF service, GPS service, and 4G/LTE service.

 Root File System Layer: This layer is designed
with libraries to control operations of communication
modules, including LoRa-SX1301, 4G/LTE, Wi-Fi,
GPS MAX7Q, and Ethernet modules. All the functions
that communicate with the Linux operating system are
also implemented in this layer.

 Linux Kernel and Peripheral Drivers: This layer
includes the Linux kernel and drivers for peripheral
interfaces such as SPI, UART, GPIO, USB (for mouse,
keyboard), HDMI (LCD), PCIe, and RJ45 (Ethernet).

Boot-loader Layer: This layer is responsible for
setting the configurations on the microprocessor (CPU
AM5728) and controlling the hardware layer in
response to higher layer tasks and requirements.

Hardware Layer: This is the physical layer of the
SMGW that is responsible for processing electrical
signals, performing modulation, demodulation of radio
signals, and so on.

5. Test Results and Analysis

In this section, we present the results of
comprehensive tests to evaluate the performance of the
proposed system. The field test consists of 50 LoRa
devices installed with the proposed LoRa
communications protocol as described in Section 3 and
the SMGW device installed with the LoRa
communication protocol as described in Section 4. The
evaluation parameters include reliability (packet loss),
latency, and power consumption.

5.1. Packet Loss

To evaluate communications reliability over
distance of transmission and packet loss rate, we set up
the following configurations and scenarios. The
SMGW is in a fixed place, and three LoRa nodes are
deployed around it, as shown in Fig. 16. The distance
from gateway to nodes ranges from 500 m to 3500 m
in the urban environment around West Lake, Hanoi,
Vietnam. The spreading factor, bandwidth, coding
rate, transmit power and size of the payload of the
nodes are 10, 125 kHz, 4/5, 17 dBm and 100 bytes,
respectively. In the test, we sent 200 messages every
30 sec.

As shown in Fig. 17, all the nodes have the same
shape of the graph, showing the relationship between
transmission distance and packet loss rate. This means
that all the test nodes have good communication
reliability if the distance is less than 2.5 km and the
packet loss ratio starts increasing dramatically if the
distance is more than 2.5 km. In theory, the transmission
distance of LoRa ranges from 2 km to 3 km in urban
environments, and the results of this test have proven
that our proposed system, in practice, still ensures the
transmission distance, consistent with the theory.
Although there is a high packet loss ratio when the
distance is over 3 km, we can reduce this ratio by using
a higher gain antenna or by placing the gateway at a
higher position to ensure line-of-sight propagation.

Start

New period has started

ACK ?

Wait for ACK

No

Exist ?

Check DevAddr & PktNumb
in in-progress-CMD-table

GW Addr?

Yes
No

Yes

No
Remove that CMD from table

New period has started

Yes

End

Boot Loader

Hardware

SPI Ethernet USART

Linux Kernel & Peripheral Drivers

GPIO

Linux
services/

commands

C
Libraries

Root File System

SX1301 MAX7
Q

4G/
LTE Wi-Fi

Component Drivers

LoRa Service PF Service Other Services

Applications

JST: Smart Systems and Devices

Volume 31, Issue 2, September 2021, 010-018

17

Fig. 16. Transmission range testing scenario

Fig. 18. Calculation of ToA in the LoRa Modem
Calculator Tool.

Fig. 17. Average packet loss ratio as a function of

distance.

Fig. 19. Latency and processing delay as a function of
the number of nodes.

5.1. Latency and Processing Delay

In the next test, we will measure and evaluate two
parameters: the round trip time (RTT) and the
processing time on the SMGW. The RTT is the
duration, measured in milliseconds, calculated from
when a node sends a message to the time it receives a
response from a server. The formulation for
calculating 𝑅𝑅𝑅𝑅𝑅𝑅 is as shown in Equation (1), in which
𝑅𝑅𝑝𝑝 is the propagation time, which is equal to the time
on air (𝑅𝑅𝑇𝑇𝑇𝑇) in this test, and 𝑅𝑅𝑠𝑠 is the processing time
on the SMGW.

𝑅𝑅𝑅𝑅𝑅𝑅 = 2 × 𝑅𝑅𝑝𝑝 + 𝑅𝑅𝑠𝑠 = 2 × 𝑅𝑅𝑇𝑇𝑇𝑇 + 𝑅𝑅𝑠𝑠 (1)

To measure processing time 𝑅𝑅𝑠𝑠, we use the same
configuration for the SMGW and nodes as in the
distance and reliability test scenario above. In this test,
each node randomly transfers 100 bytes to the SMGW.
The distance between nodes and gateway is fixed at
1 km. The number of nodes ranges from 5 to 50. We
capture the time when a node starts sending a message
and the time when the node receives an ACK message
from the SMGW to calculate RTTs. We also capture
the time the SMGW received messages from the nodes
and the time the SMGW sent ACK messages to
calculate the processing time on the SMGW. The 𝑅𝑅𝑇𝑇𝑇𝑇

parameters are calculated as the formulation shown in
the SX127x data sheet [11]. In this test, we use the
LoRa Modem Calculator Tool [11] to calculate the
exact value of the ToA parameter corresponding to the
configuration in this test scenario. As shown in Fig. 18,
𝑅𝑅𝑇𝑇𝑇𝑇 in this test scenario is 985.09 ms.

The results analyzed in Fig. 19 show that as the
number of nodes connecting and sending data to the
gateway increases, the processing time on the SMGW
increases, and therefore the RTT increases. This is
obvious because as the number of nodes increases, the
amount of data sent to the gateway increases, leading
to an increase in processing time and resources on the
gateway. However, in the proposed system, the
processing time on the SMGW ranges from 20 ms for
10 nodes to 250 ms for 50 nodes. This result is
acceptable and absolutely satisfies the requirement of
latency (the latency is less than 300 ms in a common
LoRa system with the same configuration).

5.2. Power Consumption

The power consumption of a node depends on
two main components: the operation of the processor
and the transceiver operation of the LoRa module. In
the proposed system, the node uses an

JST: Smart Systems and Devices

Volume 31, Issue 2, September 2021, 010-018

18

STM32L072RBT6 as the processor unit (MCU), and
the LoRa module uses the RFM95 chip for the radio
transceiver. The results of theoretical calculations
(based on the data sheet of STM32L072RBT6 and
RFM95) and the results of practice tests show that in a
normal operating mode, the node (only the MCU
works) consumes approximately 1.8 𝜇𝜇𝑇𝑇. In sleep
mode, current consumption is 350 𝑛𝑛𝑇𝑇. For the Lora
module, at short transmission distances, the current
consumed when transmitting is 23 mA, and the current
consumed when receiving is 11 mA. Fig. 20 is an
image of the LoRa node performance test and power
consumption measurement. Table 2 summarizes the
measurement results.

Table 2. Power consumption of the Lora Node.

Mode Power consumption
Sleep mode 350 (𝑛𝑛𝑇𝑇)

Listening mode 1.8 (𝜇𝜇𝑇𝑇)
Transmission (Tx) 34 (mA)

Reception (Rx) 11 (mA)

Fig. 20. Lora node performance test and power
consumption measurement.

6. Conclusion

In this paper, we have introduced and proposed a
complete IoT system including LoRa nodes and smart
multiplatform IoT gateway (SMGW) devices. We also
developed and proposed the LoRa communication
protocol and implemented it on the proposed system.
In the proposed IoT system, different communication
technologies, such as WiFi/LTE and LoRa, can be
supported by the SMGW, thanks to its ability to
decode and process messages right at the SMGW. The
functions allow the implementation of complex data
processing algorithms such as performing edge
computing or supporting artificial intelligence-based
data processing models at the SMGW.

The test results with the prototypes of the SMGW
and LoRa nodes show that the LoRa communications
protocol works well based on the evaluation of
reliability, packet loss rate, delay, and power
consumption. The proposed system is also scalable to
meet the requirements of different IoT applications. In
the future, we will integrate other radio

communication technologies, such as ZigBee and
NB-IoT, into the SMGW, improve the system
performance, and apply the proposed system in real
IoT applications.

References
[1]. Arne Holst, Number of IoT connected devices

worldwide 2019-2030, Jan 20, 2021 [Online].
https://www.statista.com/statistics/1183457/iot-
connected-devices-worldwide/

[2]. Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswamia, M.
Internet of Things (IoT): A vision, architectural
elements, and future directions. Future Gener.
Comput. Syst. 2013, 29, 1645–1660
https://doi.org/10.1016/j.future.2013.01.010

[3]. T.-Q. Vinh and T. MIYOSHI, Adaptive routing
protocol with energy efficiency and event clustering
for wireless sensor networks, IEICE Trans. Commun.
91 (9), 2795–2805, 2008.
https://doi.org/10.1093/ietcom/e91-b.9.2795

[4]. T.-Q. Vinh and T. MIYOSHI, A novel gossip-based
sensing coverage algorithm for dense wireless sensor
networks, Computer Networks 53 (13), 2275-2287.
https://doi.org/10.1016/j.comnet.2009.04.003

[5]. T.-Q. Vinh and T. MIYOSHI, Energy balance on
adaptive routing protocol considering the sensing
coverage problem for wireless sensor networks,
Commun. Electron. ICCE, 2008.

[6]. Noreen, U., Bounceur, A., & Clavier, L. (2017). A
study of LoRa low power and wide area network
technology. Proc. In 2017 International Conference on
Advanced Technologies for Signal and Image
Processing (ATSIP).
https://doi.org/10.1109/atsip.2017.8075570.

[7]. Want, R.; Schilit, B.; Laskowski, D. Bluetooth le finds
its niche. IEEE Pervasive Comput. 2013, 12, 12–16.
 https://doi.org/10.1109/MPRV.2013.60

[8]. LoRa Alliance, LoRa and LoRaWAN: A technical
overview, Tech. Paper, Semtech, 1-26, 2020. [Online].
Available at: https://lora-developers. Semtech-
.com/documentation/tech-papers-and-guides/.

[9]. Q. Zhou, K. Zheng, L. Hou, J. Xing, and R. Xu, Design
and implementation of open LoRa for IoT, IEEE
Access, vol. 7, pp. 100 649–100 657, July 2019.
https://doi.org/10.1109/ACCESS.2019.2930243

[10]. LoRa Alliance, LoRaWAN® distance world record
broken, twice. 766 km (476 miles) using 25mW
transmission power. Available: https://lora-
alliance.org/LoRaWAN-news/LoRaWANr-distance/

[11]. Semtech, Sx1276/77/78/79 -137 MHz to 1020 MHz
low power long range transceiver. Rev. 6 - January
2019. Tech. Rep. August 2016. [Online]. Available:
https://www.semtech.com/products/wireless-rf/lora-
transceivers/sx1276.

[12]. LoRa Alliance, LoRaWAN Specification (V1.1).
[Online]. Available: https://lora-alliance.org/resource-
hub/LoRaWANtm-specification-v11, accessed Oct.
10, 2020.

	1. Introduction
	2. LoRa Communication System Architecture
	2.1. System Architecture and Components
	2.2. End Device (LoRa Node)
	2.3. Smart Multi-Platform IoT Gateway (SMGW)
	2.4. Messages Flow and LoRa Components Activity
	2.5. Data Packet Format

	3. LoRa Protocol Implementation on End Devices
	3.1. LoRa Communications Protocol
	3.2. Firmware Structure

	4. LoRa Protocol Implementation on SMGW
	4.1. SMGW Components and Communication Flow
	4.2. Flow of Activity on Gateway Controller
	4.2.1. Data Message Processing
	4.2.2. ACK Message Processing

	4.3. Firmware Structure on the SMGW

	5. Test Results and Analysis
	5.1. Packet Loss
	5.1. Latency and Processing Delay
	5.2. Power Consumption

	6. Conclusion
	References

