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Abstract 

LoRa technology was developed over 10 years ago, with many communication protocols optimized for 
LoRaWAN. However, in the protocols, all data from the end devices are sent directly or forwarded through a 
gateway to the LoRaWAN server and processed centrally there. Accordingly, the gateway only acts as a 
forwarder. This mechanism increases the processing load on the server, increases latency, and is not suitable 
for applications with a large number of end devices or that require real-time applications. In this paper, we 
design and develop a new LoRa communication protocol that supports edge computing at the gateway. At the 
same time, the authors design and manufacture a Smart Multiplatform IoT Gateway (SMGW) and LoRa nodes 
that allow the implementation and evaluation of the proposed protocol in practice. The test results on a system 
of 50 LoRa nodes and the SMGW show that the proposed protocol works well when evaluating its performance 
in terms of reliability, latency, and power consumption. This proposed system is suitable for applications that 
require edge computing and is easily extendable to other IoT applications. 

Keywords: LoRa protocol, edge computing, multiplatform gateway, IoT system. 

 
1. Introduction 

In*the past 10 years, the 4.0 industry and the 
Internet of Things (IoT) have become more popular 
than ever. The advantages of IoT applications are 
changing the way we live and work day by day. As a 
forecast shown recently, the number of IoT devices 
will almost triple from 8.74 billion in 2020 to more 
than 25.4 billion in 2030 [1]. The essential difference 
in requirements between "the Internet" and "the 
Internet of Things" [2] is that in IoT devices, there are 
fewer things available, i.e., less memory, less power of 
processing, less bandwidth and less available energy. 
One reason for these requirements is to optimize the 
energy consumed since maximizing the device lifetime 
is our priority. Furthermore, when the number of 
devices is colossal, we need to share bandwidth for 
each device. It seems that the devices in the IoT system 
need to "do more with less", and traditional wireless 
devices, such as Wi-Fi or cellular networks, are 
obviously not suitable for IoT devices. The rapid 
growth of IoT devices has generated a need for suitable 
low-power wide-area (LPWA) technologies that are 
long-ranged and consume ultralow power to substitute 
traditional wireless technologies [3-5]. To date, many 
LPWAs have been invented, such as ZigBee [6], which 
consumes low power but is limited in distance, and 
BLE [7], which consumes ultralow power and works 
over a very short distance. Each technology has 
outstanding advantages and is suitable for a special 
application. LoRa technology [8] was invented to 
satisfy IoT requirements as much as possible. LoRa 
can transmit data within 3 km in urban environments 
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and 10-20 km in suburban environments [9]. The 
longest range recorded for LoRa to transmit data was 
766 km [10]. LoRa devices also consume power at low 
levels, ranging from 10 to 15 mA in the receiving 
process and varying from 20 to 120 mA in the 
transmission process [11]. While patented LoRa 
wireless radio frequency technology stands for the 
physical layer protocol, LoRaWAN [12], which was 
developed by the LoRa Alliance, stands for the media 
access control layer protocol. In the LoRaWAN 
architecture, there are three fundamental components: 
the LoRa node, LoRa gateway and LoRa server. The 
LoRa server in a LoRa network system needs to process 
all packets sent by LoRa nodes (end devices). It is not a 
problem if our IoT system is on a small scale. However, 
once the number of end devices is enormous, the 
traditional LoRa system will not only have a large 
latency of message transmission but will also overload 
the LoRa server because it must process a huge number 
of messages, reducing system performance 
significantly. LoRa gateways, which are now only 
responsible for transparent forwarding messages 
between end devices and LoRa servers, have a good 
ability for processing data, and we do not need to be 
concerned with their power consumption.  

To exploit LoRa gateway resources that 
traditional systems are wasting, this paper will propose 
and implement a new improved protocol that is easy to 
deploy and allows us to parse, store packets from end 
devices for additional purposes such as edge 
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computing and still ensure all functions as LoRaWAN 
does.  

The goal of this research is to build a complete 
IoT system, including designing and manufacturing 
hardware devices, designing communication protocols 
and data processing algorithms, and embedding these 
proposals on the devices. The rest of this paper is 
organized as follows. Section 2 presents the overall 
architecture of the Lora communication system, flow 
of activity between end devices, gateway, and server. 
Section 3 and 4 present the implementation of the 
proposals in both end device and the gateway. The 
tests are conducted in Section 5. Finally, Section 6 is 
the conclusion of the paper. 

2. LoRa Communication System Architecture 

2.1. System Architecture and Components 

The overall architecture of the proposed LoRa 
system is illustrated in Fig. 1. It still maintains the 
architecture of a traditional system based on 
LoRaWAN consisting of 4 component layers that 
include end devices, LoRa gateways, servers, and 
applications. The functions of each component are 
described below: 

- End device (LoRa node): The end devices with 
integrated sensors that measure the parameters of the 
environment in agriculture (i.e., humidity, 
temperature, pressure) or the parameters of the human 
body (i.e., blood pressure, pulse heart, weight). These 
parameters are processed by the central processor, 
usually a microcontroller, and then packaged with 
standard formatted data packets to be sent to the LoRa 
gateway by its LoRa module using our proposed LoRa 
communication protocol. 

- Smart multiplatform IoT gateway (SMGW): data 
packets sent by end devices are received by an SMGW. 
The SMGW plays an important role in this proposed 
system since it performs many processing functions 
rather than simply forwards data to servers as do 
traditional LoRa systems. It will parse packets to 
obtain needed data for edge computing purposes, send 
acknowledgments, send commands from server to end 
devices if available and transmit data to server. 

- Server: The server receives data from the SMGW 
via back-haul transport, for example, over Wi-Fi, 
Ethernet, or 4G/LTE. Servers store and process data 
and provide services to applications. 

- Application: This layer interacts directly with the 
user, provides interfaces that allow the user to monitor 
the measured parameters online and allows the user to 
manage and control the end devices by sending control 
commands directly to the end devices over LTE or 
through the SMGW. 

 
Fig. 1. LoRa communications system architecture and 
components. 

 
Fig. 2. Layout and a prototype of the LoRa node 

2.2. End Device (LoRa Node) 

We designed and manufactured a LoRa node 
prototype that uses STM32L072 as a microcontroller, 
an RFM95 module for the LoRa communication 
module, and MAX7Q for the GPS receiver module. 
Fig. 2 shows the LoRa node device after designing, 
manufacturing, assembling all components, firmware 
loading, and testing. 

2.3. Smart Multi-Platform IoT Gateway (SMGW) 

We propose and develop a smart and 
multicommunication IoT platform gateway that can 
provide multiple radio interfaces to allow connection to 
different IoT end devices using different radio 
communication technologies, such as LoRa, ZigBee, 
V2X, or Wi-Fi. The SMGW receives data from sensor 
nodes (the sensor nodes in this paper are the LoRa nodes 
that are integrated sensors), processes the data and then 
forwards it to the server; and receives control commands 

Database

Edge 
Computing

Controller

Server 
Connector

Transmitter
Receiver

Forwarder

Network server

Join server

Application server

Server Database

Sensor Controller LoRa

End Device
Other 

components

Server

SMGW

Web Mobile Desktop App

Applications



 
JST: Smart Systems and Devices 

Volume 31, Issue 2, September 2021, 010-018 
 

12 

from the server and forwards them to sensor nodes. In 
particular, the SMGW has the ability to perform edge 
computing or machine learning on data received from 
sensor nodes, which is scalable for many different IoT 
systems. With such requirements, the SMGW is 
designed with a functional block diagram architecture, 
as shown in Fig. 3. Fig. 4 is a SMGW prototype. Given 
the limited scope of this paper, we do not present in 
detail the design and assembly process of the LoRa node 
and the SMGW devices. 

2.4. Messages Flow and LoRa Components Activity 

In this system, end devices (LoRa node), the 
SMGW and the server are the three main components 
that interact with each other in a flow of activity, as 
described in Fig. 5. 

First, LoRa node packages sensed data (step 1) 
and then sent them to the SMGW (step 2). Then, a 
receive window will be opened to receive the 
corresponding acknowledgement (ACK) message 
(step 5). The ACK message may contain a control 
command (CMD) from the server. If so, the node 
executes the control command and responds with an 
ACK to notify the server if the CMD command was 
successfully executed by the node or not (step 4). If the 
gateway does not receive any ACK message 
corresponding to the command, a message containing 
that command is retransmitted in the next receive 
window.  

At the SMGW, after receiving the data packet 
from the nodes, the SMGW conducts data processing 
(step 3), for example, combining data, performing data 
aggregation, running edge computing algorithms or AI 
algorithms and then sending the processed data to the 
server (step 6). More details about the processing flow 
at the SMGW will be presented in Section 4. 

2.5. Data Packet Format  

The data format and message structure used in 
this proposed LoRa communication system are defined 
and described as shown in Fig. 6. There are 4 fields in 
the physical layer, namely, Preamble, Phy Header, Phy 
Header CRC, and CRC, which are preserved as in 
LoRaWAN [12]. These fields are added automatically 
when data are processed at the LoRa module's physical 
layer. This format is applied to both uplink and 
downlink messages. 

As we can observe from Fig. 6, a Phy Payload 
starts with a MAC Header (MHDR) field of 1 byte in 
size. This is the MAC layer header field containing 
information that defines the purpose of the message, 
which includes the MType, RFU, and major fields. 
The MType field (3 bits) identifies the type of message 
that will be handled on the corresponding handler. 
Details of the message types are shown in Table 1. The 
RFU field (3 bits) is reserved for future usage. The 
major field (2 bits) contains the implemented protocol 
version. 

 
Fig. 3. Function block diagram of the Smart 
Multiplatform IoT Gateway (SMGW). 

 
Fig. 4. A SMGW prototype. 

 
Fig. 5. Message flow and activities among the main 
LoRa components. 

 
Fig. 6. Data format and message structure for the 
proposed LoRa communication protocol. 
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Table 1. MType classification 

Mtype Type of message 
000 Join-request message, sent from node 
001 Join-accept message, sent from gateway 

to notify that node has joined successfully 
010 Unconfirmed data message, sent by node, 

no ACK 
011 Confirmed data message, sent by node, 

ACK requirement 
100 Unconfirmed command message, sent by 

gateway, no ACK requirement 
101 Confirm command message, sent by 

gateway, ACK requirement 
110 Reserved for future usage 
111 Reserved for future usage 

 

 
Fig. 7. Flowchart of the LoRa communication protocol 
implemented on the end device. 

 
Fig. 8. Receiving time slot on the end device. 

The MAC Payload, next to the MAC header field, 
up to 19 bytes in size, contains MAC layer data. This 
field is preceded by a frame header of 7 bytes in size 
containing subfields for control purposes. Next is a 1-
byte frame port field, which is designed for future use. 
Finally, the frame payload field with a maximum size 
of 11 bytes contains the frame data, which are the data 
the user needs to send. The frame header field is 7 
bytes in size divided into 4 subfields and used for 

control purposes. The device address subfields have a 
size of 4 bytes, where the first 2 bytes are the gateway 
address, and the last 2 bytes are the address of the node. 
The frame control subfields (1 byte) contain protocol 
control information. In the proposed protocol, the first 
7 bits are reserved, and the last bit is the ACK bit, 
which enables the acknowledgment of the ACK 
message. The frame counter subfields (2 bytes) contain 
the sequence number of the packet. The frame length 
subfields (1 byte) represent the payload length. 

3. LoRa Protocol Implementation on End Devices 

3.1. LoRa Communications Protocol 

After the end device (sensor node) starts 
activating, the node is in sleep mode to save as much 
power as possible. If there is an event (the event here 
is triggered when data from the sensor is transmitted to 
the processor), the node will wake up, take data from 
the sensor, pack data in the format presented in 
Section 2, and start data transmission. When the 
transmission finishes, the node will open a receive 
window in a certain timeout duration. If the receive 
window time expires and the node does not receive any 
ACK message from the gateway, it will retransmit the 
current packet in a certain time. If the transmission 
fails, the node will discard the current packet and start 
waiting for another event from the sensor. If a node 
receives a packet in timeout duration, it starts 
processing the packet. First, the data fields are parsed. 
After that, we check if the address of the devices is as 
expected, whether the message is an ACK or not and 
what the ordinal number of the message is. If these 
conditions are satisfied, the node keeps checking 
whether the packet has commanded or not. If there is a 
command in the packet, the node will execute this 
command and send a command ACK to the gateway. 
A flowchart of the LoRa communication protocol 
implemented on the end device is shown in Fig. 7. 

The communication process, which is designed 
based on class A of LoRaWAN, is revised to make the 
process as simple as possible. Fig. 8 illustrates the 
process of transmission and reception of the proposed 
protocol on the end devices. 

3.2. Firmware Structure 

Based on the LoRa communication protocol 
proposed above, we develop the source code and 
deploy it on our end device. The firmware on the 
device is developed in Keil C IDE, which supports 
various microcontrollers, and compiled by the ARM 
GCC compiler, which is for microcontrollers using the 
ARM architecture. The firmware structure on the end 
device is divided into 6 layers, as shown in Fig. 9. 

The application layer is the highest layer that is 
responsible for deploying and implementing the 
proposed communication protocol. The application 
layer consists of services such as LoRa service, GPS 
service, GSM/4G service and other services. The 
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midware layer is responsible for controlling and 
scheduling tasks of each service so that each can work 
independently and is easy to maintain if one of them 
has problems in the future. In this layer, we use Free-
RTOS, a real-time operating system that is compatible 
with the ARM architecture. The abstraction layer is 
developed with additional tools, e.g., debugging tools 
and diagnostic tools. The component driver layer 
contains libraries for developing drivers for LoRa, 
GPS, or GSM modules. The peripheral driver layer 
consists of driver libraries for users to use peripheral 
modules in microcontrollers, i.e., UART, SPI, TIMER, 
and GPIO. Finally, the hardware layer is the physical 
part in the end device. This lowest layer receives data 
from a higher layer, performs modulation or 
demodulation of the received data, and passes it on to 
the higher layer. 

 
Fig. 9. Firmware structure developed and deployed on 
the end device LoRa node. 

4. LoRa Protocol Implementation on SMGW 

4.1. SMGW Components and Communication Flow  

In a traditional LoRaWAN network, the gateway 
only acts as an intermediary device to forward data 
from the end devices to the server. In the proposed 
system, the gateway plays an important role; it allows 
us to receive raw data from end devices, perform 
functions of data aggregation, edge computation, etc., 
to reduce the amount of raw data from many end 
devices that need to be sent to the server. This is also 
the reason for the research team to design and 
manufacture the Smart Multiplatform IoT Gateway 
(SMGW) device and to develop and deploy the new 
LoRa communication protocol on this device. 

The SMGW components, functions, and flow of 
communication among them are illustrated in Fig. 10. 
The gateway controller is the main part and central 
processor in the SMGW. All messages transmitted and 
received will be parsed and packed here. The Gateway 
Forwarder takes responsibility for communicating 
with end devices and the Gateway Controller. This is 
a gate of LoRa communication. It sends the uplink 
formatted message which is received via a receiver 
module to the Gateway Controller and sends downlink 
formatted messages to the end devices. The gateway-
server connector is responsible for communicating 
with the server via back-haul transport, i.e., Wi-Fi, 
Ethernet, or 4G/LTE. The message processed by the 
Gateway Controller or computed by the Edge 
Computing module is moved to the Gateway-Server 
Connector for encryption and then sent to the server. If 
the server sends a command, this module decrypts it 
and moves the command to the gateway controller for 
handling. The gateway database is responsible for 
storing and saving parsed and processed data. Edge 
Computing: This module takes data saved in the 
Gateway database to compute and send to the 
Gateway-Server Connector. 

 

 
Fig. 10. The SMGW components' functions and communication flow. 
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4.2. Flow of Activity on Gateway Controller 

Messages received from nodes are pushed into a 
FIFO buffer, and the Gateway Controller fetches data 
from this buffer continuously. These data packets are 
parsed, and their type is identified via its MAC header. 
Each message will be handled differently depending 
on  its type. There are 2 types of messages we need to 
focus on: if the type of message is a data message, it is 
processed as the flowchart in Fig. 11, and if the type of 
message is an ACK message, it is processed as the 
flowchart in Fig. 14. 

4.2.1. Data Message Processing 

The data messages are validated by their gateway 
address (GWAddr) and packet number (PktNumb). If 
these conditions are not satisfied, these data messages 
will be discarded. After checking the conditions, data 
messages will be parsed and divided into fields in 
format in Section 3. Needed fields and related 
information will be stored in the Gateway Database so 
that the applications can take these data and apply 
algorithm models for edge computing purposes. 

After successfully processing and storing the 
received data message, the gateway controller 
generates an ACK message and sends it to the 
corresponding node in its receiving window. To save 
power, the node's LoRa communication module is 
configured to always stay idle until an event occurs. 
Therefore, the CMD command that the gateway wants 
to send to the node will be sent with an ACK message. 
This integration will save node power, but it will also 
delay command execution as a trade-off. All the CMD 
commands from the server are pushed in a table whose 
header is presented in Fig.12 (a), and we call it the 
configuration and control table. When the gateway 
generates an ACK message, it must check the device 
address and command in this table to verify that there 
is a control command to send to this node. The 
DevAddr column contains addresses of the nodes to 
which we need to send the control command, and the 
CMD column is the CMD code of the command. These 
codes are designed to follow the preconventional 
syntax between the gateway and the nodes. The CMD 
code in the table is encapsulated into an ACK message 
and sent to the corresponding node. To ensure that the 
node has received the control command, an ACK 
message from the receiving node is sent to the SMGW 
for confirmation. Therefore, we need a table to manage 
the sent commands. This is the In-Progress-Command 
(IPC) table with its header shown in Fig. 12 (b). 

The IPC table contains commands that wait for 
an ACK from the node. DevAddr is the address of the 
node that must be sent the ACK. The CMD field 
contains a list of waiting ACK commands. The start 
time field is the time when the command started 
waiting for ACK. The timeout field is the ACK 
timeout. If that duration exceeds timeout, that 
command will be moved and posted in the first row of 

the command table. Those commands that have 
received ACK will be deleted from the IPC table. 
These processes are illustrated by the flowchart in 
Fig. 13. If there are no commands left in the command 
table, the SMGW will send ACK messages only. 

 
Fig. 11. Flowchart of LoRa communication 
implemented on the SMGW. 

 
Fig. 12. The commands header table (a) and the IPC 
header table (b). 

  
Fig. 13. The flowchart of IPC processing. 
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Fig. 14. Flowchart of ACK message processing. 

  
Fig. 15. Firmware structure on the SMGW. 

4.2.2. ACK Message Processing 

If the message sent to the SMGW is an ACK 
message, the SMGW will trigger a process to handle the 
ACK message. This process is performed as shown in 
the flowchart presented in Fig. 14. Following this 
procedure, the SMGW compares the GWAddr in the 
received ACK message with its own address. After 
validating the received ACK message, which means that 
the CMD has been sent successfully, it will discard the 
command code in the IPC table and start a new period. 

4.3. Firmware Structure on the SMGW 

Based on the proposed LoRa communication 
protocol and the process of handling data messages 
and control messages on the SMGW as described 
above, we develop the source code and deploy it on our 
SMGW. The firmware is developed and embedded in 
the Linux operating system with the structure divided 
into 4 layers, as presented in Fig. 15. 

Applications Layer: This layer is designed 
similar to the application layer on the Node. It includes 
source code to run necessary services such as Lora 
service, PF service, GPS service, and 4G/LTE service. 

 Root File System Layer: This layer is designed 
with libraries to control operations of communication 
modules, including LoRa-SX1301, 4G/LTE, Wi-Fi, 
GPS MAX7Q, and Ethernet modules. All the functions 
that communicate with the Linux operating system are 
also implemented in this layer. 

 Linux Kernel and Peripheral Drivers: This layer 
includes the Linux kernel and drivers for peripheral 
interfaces such as SPI, UART, GPIO, USB (for mouse, 
keyboard), HDMI (LCD), PCIe, and RJ45 (Ethernet). 

Boot-loader Layer: This layer is responsible for 
setting the configurations on the microprocessor (CPU 
AM5728) and controlling the hardware layer in 
response to higher layer tasks and requirements. 

Hardware Layer: This is the physical layer of the 
SMGW that is responsible for processing electrical 
signals, performing modulation, demodulation of radio 
signals, and so on. 

5. Test Results and Analysis 

In this section, we present the results of 
comprehensive tests to evaluate the performance of the 
proposed system. The field test consists of 50 LoRa 
devices installed with the proposed LoRa 
communications protocol as described in Section 3 and 
the SMGW device installed with the LoRa 
communication protocol as described in Section 4. The 
evaluation parameters include reliability (packet loss), 
latency, and power consumption. 

5.1. Packet Loss 

To evaluate communications reliability over 
distance of transmission and packet loss rate, we set up 
the following configurations and scenarios. The 
SMGW is in a fixed place, and three LoRa nodes are 
deployed around it, as shown in Fig. 16. The distance 
from gateway to nodes ranges from 500 m to 3500 m 
in the urban environment around West Lake, Hanoi, 
Vietnam. The spreading factor, bandwidth, coding 
rate, transmit power and size of the payload of the 
nodes are 10, 125 kHz, 4/5, 17 dBm and 100 bytes, 
respectively. In the test, we sent 200 messages every 
30 sec. 

As shown in Fig. 17, all the nodes have the same 
shape of the graph, showing the relationship between 
transmission distance and packet loss rate. This means 
that all the test nodes have good communication 
reliability if the distance is less than 2.5 km and the 
packet loss ratio starts increasing dramatically if the 
distance is more than 2.5 km. In theory, the transmission 
distance of LoRa ranges from 2 km to 3 km in urban 
environments, and the results of this test have proven 
that our proposed system, in practice, still ensures the 
transmission distance, consistent with the theory. 
Although there is a high packet loss ratio when the 
distance is over 3 km, we can reduce this ratio by using 
a higher gain antenna or by placing the gateway at a 
higher position to ensure line-of-sight propagation. 
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Fig. 16. Transmission range testing scenario 

 

 
Fig. 18. Calculation of ToA in the LoRa Modem 
Calculator Tool. 

 

 
Fig. 17. Average packet loss ratio as a function of 

distance. 

 
Fig. 19. Latency and processing delay as a function of 
the number of nodes. 

 
5.1. Latency and Processing Delay 

In the next test, we will measure and evaluate two 
parameters: the round trip time (RTT) and the 
processing time on the SMGW. The RTT is the 
duration, measured in milliseconds, calculated from 
when a node sends a message to the time it receives a 
response from a server. The formulation for 
calculating 𝑅𝑅𝑅𝑅𝑅𝑅 is as shown in Equation (1), in which 
𝑅𝑅𝑝𝑝 is the propagation time, which is equal to the time 
on air (𝑅𝑅𝑇𝑇𝑇𝑇) in this test, and 𝑅𝑅𝑠𝑠 is the processing time 
on the SMGW. 

𝑅𝑅𝑅𝑅𝑅𝑅 = 2 × 𝑅𝑅𝑝𝑝 + 𝑅𝑅𝑠𝑠 = 2 × 𝑅𝑅𝑇𝑇𝑇𝑇 + 𝑅𝑅𝑠𝑠 (1) 

To measure processing time 𝑅𝑅𝑠𝑠, we use the same 
configuration for the SMGW and nodes as in the 
distance and reliability test scenario above. In this test, 
each node randomly transfers 100 bytes to the SMGW. 
The distance between nodes and gateway is fixed at 
1 km. The number of nodes ranges from 5 to 50. We 
capture the time when a node starts sending a message 
and the time when the node receives an ACK message 
from the SMGW to calculate RTTs. We also capture 
the time the SMGW received messages from the nodes 
and the time the SMGW sent ACK messages to 
calculate the processing time on the SMGW. The 𝑅𝑅𝑇𝑇𝑇𝑇 

parameters are calculated as the formulation shown in 
the SX127x data sheet [11]. In this test, we use the 
LoRa Modem Calculator Tool [11] to calculate the 
exact value of the ToA parameter corresponding to the 
configuration in this test scenario. As shown in Fig. 18, 
𝑅𝑅𝑇𝑇𝑇𝑇 in this test scenario is 985.09 ms. 

The results analyzed in Fig. 19 show that as the 
number of nodes connecting and sending data to the 
gateway increases, the processing time on the SMGW 
increases, and therefore the RTT increases. This is 
obvious because as the number of nodes increases, the 
amount of data sent to the gateway increases, leading 
to an increase in processing time and resources on the 
gateway. However, in the proposed system, the 
processing time on the SMGW ranges from 20 ms for 
10 nodes to 250 ms for 50 nodes. This result is 
acceptable and absolutely satisfies the requirement of 
latency (the latency is less than 300 ms in a common 
LoRa system with the same configuration). 

5.2. Power Consumption 

The power consumption of a node depends on 
two main components: the operation of the processor 
and the transceiver operation of the LoRa module. In 
the proposed system, the node uses an 
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STM32L072RBT6 as the processor unit (MCU), and 
the LoRa module uses the RFM95 chip for the radio 
transceiver. The results of theoretical calculations 
(based on the data sheet of STM32L072RBT6 and 
RFM95) and the results of practice tests show that in a 
normal operating mode, the node (only the MCU 
works) consumes approximately 1.8 𝜇𝜇𝑇𝑇. In sleep 
mode, current consumption is 350 𝑛𝑛𝑇𝑇. For the Lora 
module, at short transmission distances, the current 
consumed when transmitting is 23 mA, and the current 
consumed when receiving is 11 mA. Fig. 20 is an 
image of the LoRa node performance test and power 
consumption measurement. Table 2 summarizes the 
measurement results. 

Table 2. Power consumption of the Lora Node. 

Mode Power consumption 
Sleep mode 350 (𝑛𝑛𝑇𝑇)  

Listening mode 1.8 (𝜇𝜇𝑇𝑇) 
Transmission (Tx) 34 (mA) 

Reception (Rx) 11 (mA) 
 

 
Fig. 20. Lora node performance test and power 
consumption measurement. 

6. Conclusion 

In this paper, we have introduced and proposed a 
complete IoT system including LoRa nodes and smart 
multiplatform IoT gateway (SMGW) devices. We also 
developed and proposed the LoRa communication 
protocol and implemented it on the proposed system. 
In the proposed IoT system, different communication 
technologies, such as WiFi/LTE and LoRa, can be 
supported by the SMGW, thanks to its ability to 
decode and process messages right at the SMGW. The 
functions allow the implementation of complex data 
processing algorithms such as performing edge 
computing or supporting artificial intelligence-based 
data processing models at the SMGW. 

The test results with the prototypes of the SMGW 
and LoRa nodes show that the LoRa communications 
protocol works well based on the evaluation of 
reliability, packet loss rate, delay, and power 
consumption. The proposed system is also scalable to 
meet the requirements of different IoT applications. In 
the future, we will integrate other radio 

communication technologies, such as ZigBee and            
NB-IoT, into the SMGW, improve the system 
performance, and apply the proposed system in real 
IoT applications. 
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