
Journal of Science and Technology – Smart Systems and Devices
Volume 36, Issue 1, January 2026, 001-008

An IoT System to Measure and Detect Foreign Object Debris (FOD)
on Airport Runways Using AI and Computer Vision

Hiep Nguyen-Hoang, Quyen Nguyen-Van, Vinh Tran-Quang*

Hanoi University of Science and Technology, Ha Noi, Vietnam
*Corresponding author email: vinh.tranquang1@hust.edu.vn

Abstract
Air transportation is one of the fastest and safest modes of transport today. However, ensuring its safety and efficiency requires
effective management of various risk factors, particularly foreign object debris (FOD) on airport runways. FOD can cause
severe damage to aircraft engines and structures, disrupt operations, and even lead to fatal accidents. This study presents
a method for detecting, classifying, and estimating the size of FOD on airport runways. The system integrates YOLOv11,
a calibrated camera, Canny Edge Detection, and a LiDAR sensor and deploy on a Jetson Nano for efficient processing.
Experimental results demonstrate the ability of the system to accurately classify FOD and measure its size in real time. The
system achieves an accuracy ranging from 70% to 100% within a 0 to 3 metre distance between the FOD and the camera.
This contributes to more efficient FOD detection and collection using robots or rovers, thereby enhancing runway safety and
reducing risks in aviation operations.

Keywords: Camera calibration, Canny Edge Detection, FOD, Jetson Nano, LiDAR, YOLOv11.

1. Introduction

Air transportation plays a crucial role in economic
growth and in improving quality of life. It is a key
driver of global trade, international tourism, and the
interconnection of economies and cultures worldwide.
With millions of flights operating annually, ensuring
airport safety has become increasingly essential. One
significant threat to flight safety is foreign object debris
(FOD) found on airport runways. FOD refers to any
object that does not belong on a runway and poses a risk
to aircraft, including loose hardware, luggage fragment,
birds, or even small tools. In extreme cases, FOD can
lead to catastrophic incidents. The tragic crash of Air
France Flight 4590 in 2000 is often cited as a key
example that raised global awareness of the importance
of detecting FOD [1].

Therefore, FOD detection is crucial to maintaining
safety in critical areas, such as airport runways.
The traditional method of FOD detection is limited
by human factors such as visibility, distraction,
and fatigue, which reduce its reliability. Recent
advances have enabled automated FOD detection
using technologies such as cameras [2], radar [3, 4],
LiDAR [5]. Although these systems improve runway
safety and airport efficiency, they require substantial
investment and significant computational and hardware
resources. Despite advances in FOD detection and
alerting, most solutions still lack practical methods for
debris collection or removal, limiting their real-world
effectiveness.

Recent advances in computer vision and embedded
systems, particularly deep learning, have shown
great promise for automating object detection and
classification. Specifically, the You Only Look Once
(YOLO) architecture has gained popularity due to
its balance of high detection speed and accuracy. In
parallel, the Jetson Nano also shows strong performance
when running YOLO models. With its NVIDIA
GPU, it delivers significantly better real-time object
detection performance compared to other embedded
platforms such as the Raspberry Pi. Furthermore,
camera calibration techniques make it possible to
estimate real-world dimensions from 2D images [6], and
LiDAR sensors add depth information to improve spatial
awareness. By integrating these technologies, we can
build a compact real-time system to detect FOD, classify
its type, and estimate its size. This capability is crucial
for assessing threat levels and choosing appropriate
removal methods.

Therefore, in this study, we focus on developing
a comprehensive system that integrates YOLOv11,
Canny Edge Detection, camera calibration, and LiDAR
sensors. All components are implemented on the Jetson
Nano platform, leveraging its GPU for efficient edge
computing. The primary objective of our work is
not only to localize and classify FODs, but also to
estimate their physical dimensions (length and width).
These estimations remain accurate even when the
objects are tilted or positioned obliquely with respect
to the camera’s viewpoint. This additional information
is crucial for enabling a robotic arm to accurately,
efficiently grasp and remove the detected objects.

p-ISSN 3093-3285
e-ISSN 3093-3315
https://doi.org/10.51316/jst.187.ssad.2026.36.1.1
Received: Jun 11, 2025; Revised: Jun 27, 2025;
Accepted: Jun 27, 2025; Online: Dec 20, 2025

1

https://doi.org/10.51316/jst.187.ssad.2026.36.1.1

Journal of Science and Technology – Smart Systems and Devices
Volume 36, Issue 1, January 2026, 001-008

2. Related Works

Traditionally, FOD collection has been performed by
airport personnel through visual inspection and manual
removal. This process requires closing the runway, is
time consuming, expensive, and prone to error [7].
Preventive measures are also used, such as raising staff
awareness, using FOD bins and signs, organizing FOD
teams, and inspection walks [3]. Periodic sweeping
with specialized equipment, such as the FOD Boss
and FOD Sweep, is also carried out. However, despite
these preventive measures, maintaining consistent and
effective FOD control remains challenging [7]. To
improve efficiency and minimize runway closure time,
significant research has focused on automatic FOD
detection systems with various sensor technologies.

Millimeter-wave radar is a common technology for
FOD detection [3]. Radar signal processing methods
include Constant False Alarm Rate (CFAR) techniques
such as cell averaging CFAR (CA-CFAR), clutter map
CFAR, and ordered statistics CFAR (OS-CFAR). A
millimeter-wave radar-based FOD detection method has
been proposed using the Iterative Adaptive Approach
(IAA) [4], which combines interference suppression
with exploiting scene sparsity. The challenges for radars
include dealing with clutter and interference reflections.
Radar systems are also sensitive to leakage signals and
strong near-field reflections, which can reduce receiver
sensitivity [4]. Their performance may be degraded by
adverse weather conditions (e.g., rain or puddles), and
the equipment can be expensive.

LiDAR technology has also been applied to FOD
detection due to its ability to scan the environment,
detect FOD, and generate high resolution 3D point
clouds [5]. It performs well in various lighting
conditions, including at night. However, its performance
can degrade in adverse weather (e.g., rain, fog), and
it may struggle with highly reflective or absorptive
surfaces. LiDAR systems are also relatively expensive
and power-consuming.

Camera systems are widely adopted for FOD
detection due to their ability to capture detailed visual
information. Early methods, such as Local Binary
Patterns and Histogram of Oriented Gradients [2],
were proposed, but they struggled with background
variability.

Deep learning and computer vision advances
have significantly improved object detection accuracy
while reducing costs. Models such as Faster R-CNN,
YOLO, Xception, and Focal Loss have proven
effective in identifying small objects [2], whereas
deep convolutional neural networks combined with
transfer learning consistently outperform traditional
feature-based approaches in material recognition.
However, challenges remain, including the difficulty
of distinguishing objects from background materials

such as concrete and the limited availability of large,
diverse annotated FOD datasets, both of which hinder
classification accuracy and model reliability.

3. Proposed Solution

The proposed system is capable of localizing,
detecting, classifying, and estimating the size of
FOD. The modular and efficient design enables
straightforward integration into rovers or robotic
platforms. This system leverages computer vision and
sensor fusion techniques to ensure accurate recognition
and measurement of FOD on airport runways. Details of
the operation of the system are illustrated in Fig. 1.

Start End

Activate camera,
capture image

Pre-process image

Lidar detect ?

Detect FOD
bounding box

Detect FOD
rotate bounding box

Estimate FOD
dimensions

Send signal
to rover

FOD detect ?
YesNo

Yes

No

Fig. 1. System model for FOD detection, classification,
and size estimation

The LiDAR system remains continuously active
throughout the operation of the rover. Upon detecting a
potential object, the rover stops, activating the onboard
camera to capture an image. The image undergoes
preprocessing, including distortion correction, before
being fed into a YOLOv11 model fine-tuned on a custom
FOD dataset for detection. If no FOD is identified,
the system turns off the camera and resumes LiDAR
monitoring, allowing the rover to continue moving. If
FOD is detected, the system determines its bounding
box, computing both standard and rotated versions for
a more precise size estimation. Based on this rotated
representation, the object’s dimensions are calculated,
and a signal is sent to the rover’s control system to
initiate FOD retrieval, using methods like magnetic
extraction or robotic arm manipulation.

Before finalizing the system architecture, multiple
experiments and comparisons of different algorithmic
approaches were conducted, considering constraints
such as computational power, energy efficiency, and
compact design. Three concepts were evaluated: keeping
LiDAR always active while triggering the camera upon
detection, using only a continuously active camera
without LiDAR, and implementing periodic stops for the
rover to capture images.

2

Journal of Science and Technology – Smart Systems and Devices
Volume 36, Issue 1, January 2026, 001-008

Fig. 2. Example images from the 10-class FOD dataset

To compare the energy consumption between
different approaches, we used a power measurement
circuit to record the overall power consumption.
Specifically, the measurement was carried out by
monitoring the power drawn through the adapter
powering for Jetson Nano. The circuit includes a current
transformer rated at Imax 100A for current sensing and
is capable of measuring voltage in the range of AC
80–260V at 50/60Hz. The device measures the total
power consumption delivered to the load and includes
losses within the adapter. To further enhance the analysis
and provide a more detailed breakdown, we additionally
used the jtop command-line tool on the Jetson Nano
platform. This tool allowed us to directly monitor the
CPU power consumption and system load in real-time,
making the comparison between different approaches
more intuitive and transparent.

In the second approach, where the camera is
constantly active and responsible for tasks such as
AI-based object detection, rotation of the bounding box
estimation, and size computation, the system required a
significantly high power consumption. Specifically, the
experimental results showed a peak power consumption
of up to 10.21W when using the Jetson Nano platform.
In contrast, with the first approach, in which only LiDAR
is continuously active, the instantaneous peak power was
significantly lower, around 2.16W.

The third approach, which periodically activates the
camera, helps reduce power consumption but introduces
operational limitations for the rover. Without LiDAR,
distance estimation is based on alternative methods, such
as the pixel-to-millimeter ratio on a static background,
which produced low precision (40–60%) within a range
of 0–3 meters. Furthermore, since FOD is not always
aligned with the direction of the rover in the image,
precise navigation and object collection become more
challenging.

Incorporating a LiDAR sensor is crucial for
determining the distance between the rover and the
FOD. Improve navigation by detecting objects aligned

with the path of the rover, allowing simple left- or
right-turns followed by straight movement toward the
target. Furthermore, LiDAR’s high-accuracy distance
measurements (95-100%) improve the camera size
estimation precision, achieving 70–100% accuracy
within 0–3 meters, significantly boosting the reliability
and efficiency of the FOD collection process.

4. Implementation

4.1. FOD Data Collection, Training, and Evaluation

In deep learning, especially object detection, data
quality and quantity are critical for success. No model
performs effectively without sufficient high-quality data.
After defining the problem and selecting an appropriate
model, we collected relevant datasets for training and
evaluation.

Data Collection Methodology: Images of FOD
were self-collected in real-world settings using a
Raspberry Pi Camera Module 2. Additional data sets
were collected from online sources such as Roboflow,
Kaggle, Google Images, and GitHub. Previously
published scientific papers were also reviewed to
identify usable datasets.

Data Requirements: We focused on capturing
images of FOD on flat surfaces such as concrete
floors under varying distances and conditions. For
objects within 0–1 meters, images were sourced from
online datasets and previous research. For the 1 to 3
meter range, the images were self-captured using a
camera, including raw images, zoomed-in shots using
the camera’s zoom function, and augmented images
generated by cropping to improve diversity.

Outcome: As a result, a dataset was constructed
containing images of 10 different FOD classes, as shown
in Fig. 2. To enhance its robustness, the dataset was
expanded to a total of 23,284 images using various data
augmentation techniques. This dataset was used to train
YOLO-based deep learning models to detect FOD under
varied conditions.

3

Journal of Science and Technology – Smart Systems and Devices
Volume 36, Issue 1, January 2026, 001-008

After refining and augmenting the data, we trained
the object detection model using YOLOv11x with
pre-trained weights as the baseline, then fine-tuned it
on our custom dataset. The data was split into training
(70%), validation (20%), and testing (10%), ensuring
an unbiased final evaluation. The model achieved
96.8% mAP@0.5, 97.3% precision, and 94.3% recall,
demonstrating high detection accuracy and effective
localization in FOD classes.

4.2. Camera Calibration

Camera calibration is crucial to improving the
accuracy of computer vision systems. By determining
the intrinsic parameters and distortion coefficients and
evaluating them using the mean reprojection error, we
can effectively remove image distortions. This enhances
the reliability of subsequent tasks such as 2D-to-3D
coordinate transformation, measure object’s size in
real-world. The calibration results obtained from the
Raspberry Pi Camera Module V2 can be reused for all
future images captured by the same camera, ensuring
consistent accuracy across applications.

Start

Set up
stable camera

Capture checkerboard at
various angles

Detect checkerboard
(OpenCV)

Estimate intrinsics &
distortion Undistort images

Compute mean
reprojection error (MRE)

MRE < 1

Display camera matrix,
distortion, MRE

End

No

Yes

Fig. 3. Camera calibration workflow using OpenCV

The camera calibration process, presented in Fig. 3,
produces two key outputs:

Camera Matrix (Intrinsic Parameters): This 3×3
matrix contains intrinsic parameters unique to the
camera. It is used to map 3D points in the world to 2D
image coordinates [6].

K =

 fx 0 cx
0 fy cy
0 0 1

, (1)

where fx and fy represent the focal lengths in the x and
y directions, measured in pixels. Similarly, cx and cy
denote the optical center, which is typically located near
the center of the image.

Distortion Coefficients: These parameters
compensate for nonlinear distortions introduced by
the lens, addressing both radial and tangential distortion
effects. By applying these corrections, an undistorted
image can be obtained, better preserving real-world
geometry [6].

D = [k1,k2, p1, p2,k3], (2)

where k1,k2,k3 represents the radial distortion, which
accounts for the effects of barrel or pincushion
distortion. Similarly, p1 and p2 correspond to tangential
distortion, addressing any misalignment between the
lens and the sensor.

4.3. Rotate Bounding Box Detection

Edge detection is essential in computer vision to
extract structural details from images. Our system
employs Canny Edge Detection to suppress noise and
accurately identify object contours for size estimation.
Each detected FOD is first cropped using its bounding
box to minimize background interference. Then, Canny
Edge Detection is applied to refine the boundary of the
object. Finally, images are converted to grayscale (0–255
intensity) to reduce memory usage, improve processing
speed, and ensure compatibility with (3) [8].

Igray = 0.299 ·R+0.587 ·G+0.114 ·B. (3)

Before applying edge detection algorithms such as
Canny, image blurring serves as a crucial preprocessing
step to reduce unwanted noise and enhance contour
detection accuracy. To achieve this, a Gaussian blur is
applied, which smooths the image by convolving it with
a 2D Gaussian kernel [9].

G(x,y) =
1

2πσ2 exp
(
−x2 + y2

2σ2

)
, (4)

Iblur = Igray ∗G(x,y). (5)

Here, x and y represent the relative coordinates of
the pixel within the kernel. The standard deviation,
σ , regulates the level of smoothing applied within the
kernel region, with higher values of σ producing more
pronounced blurring effects. The kernel matrix, defined
as (2k+ 1)× (2k+ 1), determines the neighborhood of
pixels surrounding each target pixel that are taken into
account during convolution. Increasing the size of the
kernel expands the spatial influence of the blur.

After converting the image to grayscale and applying
Gaussian blur, pixels are categorized as strong edges,
weak edges, or non-edges based on their grayscale
intensity. This classification relies on the gradient, which
measures the rate of intensity change at each pixel. The
gradient is computed by convolving the image region I
with the Sobel filter, where I represents a neighborhood
around each pixel with a size defined by the kernel
matrix (2k+1)× (2k+1) [9].

4

Journal of Science and Technology – Smart Systems and Devices
Volume 36, Issue 1, January 2026, 001-008

Gx = I ∗Kx, Gy = I ∗Ky, (6)

|G|=
√

G2
x +G2

y , (7)

θ(x,y) = arctan
(

Gy

Gx

)
. (8)

After computing the magnitudes and directions of the
gradient, neighboring pixels often exhibit high gradient
values, forming thick edges. However, for precise
edge detection, the algorithm applies non-maximum
suppression, retaining only local maximum gradient
magnitudes along θ(x,y) while discarding others. This
is followed by double thresholding and edge tracking by
hysteresis. Pixels with gradients above the high threshold
are classified as strong edges (intensity 255), those
between low and high thresholds are weak edges (kept
only if connected to strong edges), and those below
the low threshold are considered non-edges (intensity
0). These multi-stage processes ensure accurate edge
detection while reducing noise and false positives.

To improve contour continuity, two fundamental
morphological operations are applied, dilation and
erosion [10]. Erosion eliminates isolated noise pixels
and smooths boundaries by turning edge pixels into
a background. In contrast, dilation reconnects broken
edges and strengthens the prominence of the object in
the image. For a precise object description, the contours
are extracted from the binary edge map. Our approach
focuses solely on external contours, disregarding nested
ones, and applies approximation to retain essential
shape-defining points. The extracted contours are sorted,
and the small-area contours are discarded to remove
noise. A rotated bounding box is then computed to better
enclose tilted objects without distortion. The method
considers each edge of the convex hull of an object as
a potential base for a bounding rectangle. Four calipers
are used, two parallel to the base and two orthogonal, to
form the enclosed rectangle. The algorithm selects the
rectangle of the smallest area in rotations, ensuring the
most compact bounding box for rotated objects. Fig. 4
illustrates the full process.

4.4. 2D-to-3D Coordinate Transformation

In computer vision, the camera model defines the
mathematical link between a 2D pixel coordinate and
its corresponding 3D point in the real world. This
transformation is essential for applications like 3D
reconstruction, object localization, and size estimation.
Given the common structure of commodity cameras, the
pinhole camera model [11] is widely used to describe
image formation. This section outlines the process of
projecting pixel coordinates into 3D space using camera
parameters and geometric constraints.

According to OpenCV conventions, the image
coordinate system is defined on the 2D image plane
with its origin at the top-left corner. The x-axis extends

(c) (d)

(a) (b)

Fig. 4. These experiments illustrate the FOD detection
process: (a) Bounding box detection, (b) Grayscale
image, (c) Canny Edge Detection, and (d) Final rotate
bounding box

Fig. 5. Pinhole camera model

to the right, while the y-axis points downward, aligned
with the pixel grid structure. The camera coordinate
system is centered at the optical center O, with the z-axis
extending forward into the scene, the x-axis directed to
the right, and the y-axis downward. The world coordinate
system represents global object positions and is typically
linked to the camera coordinate system via extrinsic
parameters (rotation and translation matrices). Due to
image inversion in optical systems, the y-axis in the
world coordinate system may appear flipped relative to
the camera’s y-axis. The components and their functions
are illustrated in Fig. 5 [12].

Let P =
[
X Y Z

]T be an arbitrary 3D point seen
by a camera situated at the origin O in camera coordinate
system, and p =

[
u v

]T be the image of P in the
image coordinate system, the point p corresponds to
the projection of a 3D point P onto the image plane.
This projection is formed by the intersection of the light
ray from P passing through the optical center O of the
camera with the image plane.

Suppose that the projective plane is perpendicular
to the z-axis of the camera coordinate system; its
intersection with the optical axis occurs at the principal
point, denoted as F =

[
0 0 f

]T in the camera

5

Journal of Science and Technology – Smart Systems and Devices
Volume 36, Issue 1, January 2026, 001-008

coordinate system or c =
[
cx cy

]T in the image
coordinate system. Therefore, the relationship between
ouv and cxy is given by [12]:

u = x+ cx, v = y+ cy. (9)

To convert to real-world units, we need the imager
scale factors su,sv, which define the number of pixels
per unit (e.g. DPI or PPI). The projected object size with
respect to the real size and distance from the camera
(focal length f) gives:

x = su
f X
Z

, y = sv
fY
Z

. (10)

From (10), we establish the relationship between
a 3D point in the camera coordinate system and
its corresponding projection in the image space.
This transformation defines how spatial information is
mapped onto the image plane, facilitating tasks such as
object localization and scene reconstruction.

u = su
f X
Z

+ cx, v = sv
fY
Z

+ cy, (11)

where fx = su f and fy = sv f . Together with cx and cy,
these parameters form the Camera Matrix K, as defined
in (1), which is derived through camera calibration.

In order to determine the actual size of the object, it
is essential to retrieve the 3D coordinates in the reverse
direction, which requires depth information, i.e., the Z
coordinate, of each pixel. Based on (11), we obtain:

X =
(u− cx)Z

fx
, Y =

(v− cy)Z
fy

. (12)

Using similar triangles in Fig. 5, we get the
following.

OP′

OF
=

OP
Op

⇔ Z
f
=

d√
f 2 +m2

, (13)

and

F p
PP′ =

OF
OP′ ⇔

m
n
=

f
Z
, (14)

where the size m of the projection F p relating to the size
n of the real segment PP′ is given by similar triangles.
From (13) and (14), we have:

Z =
d f√

f 2 + f 2n2/Z2
=

d√
1+ X2+Y 2

Z2

. (15)

Equation (12) gives:

X
Z
=

u− cx

fx
,

Y
Z
=

v− cy

fy
. (16)

Substituting (16) into (15) gives:

Z =
d√(

u−cx
fx

)2
+
(

v−cy
fy

)2
+1

, (17)

where d represents the distance from the point of
the object to the camera, obtained from the LiDAR
measurements. Using the coordinates of the four vertices
of the rotated bounding box, we transform these points
into 3D space based on the given equation. The object’s
actual dimensions (length × width) are then calculated
using Euclidean distances between the corresponding 3D
points.

4.5. Implement on Jetson Nano

In modern IoT projects, the selection of the
right hardware platform is crucial to efficiency,
deployability, and long-term stability. Among the
available options, the NVIDIA Jetson Nano stands out
for embedded computing because of its balance of
performance, power efficiency, and ease of integration.
Its 128-core NVIDIA Maxwell GPU onboard enables
parallel processing, benefiting deep learning, image
processing, and computer vision tasks. However,
deploying AI models with GPU acceleration using
PyTorch, Torchvision, and NumPy presents software
compatibility challenges. The Ultralytics YOLO library
requires Python 3.7+, while OpenCV depends on Python
3.6+, yet Jetson Nano’s official PyTorch wheel supports
only JetPack 4.6, limited to Python 3.6, causing version
conflicts.

To address compatibility issues, PyTorch must be
built from source (available on GitHub) using Python
3.8, allowing seamless integration with modern AI
libraries and GPU acceleration. The build process
employs CMake with the Ninja build system for
efficient compilation, while Clang is used as a
compiler to enhance performance and compatibility.
Furthermore, NumPy support is explicitly enabled
(USE NUMPY=ON) to ensure smooth numerical and
AI-related computations.

5. Test Results and Analysis

5.1. LiDAR Detection Capability Evaluation

To evaluate the LiDAR’s ability to detect FOD of
various sizes, we conducted tests using objects with
different dimensions, focusing on maximum detection
range, sensitivity to object size, measurement accuracy,
and performance under different lighting and surface
conditions. The tests included two environments: an
ideal setting with a concrete floor at night, minimizing
ambient light interference and improving signal-to-noise
ratio (SNR) for enhanced accuracy, and a challenging
setting with smooth ceramic tile or transparent surfaces
like acrylic or glass-like tiles, which could cause

6

Journal of Science and Technology – Smart Systems and Devices
Volume 36, Issue 1, January 2026, 001-008

Table 1. Measured object size and accuracy at different distances with camera field of view set at 60 cm height

Object Battery Lighter Cutter Piler

Length Width Length Width Length Width Length Width

Actual size (cm) 5.0 1.5 8.3 2.6 15.2 4.0 12.8 8.0

100 cm Measured size 5.1 1.3 8.3 2.3 15.2 4.0 12.9 6.1
Accuracy (%) 98.0 86.7 100 88.5 100 100 99. 2 76.3

160 cm Measured size 4.8 1.2 8.0 2.3 14.8 3.5 12.6 5.8
Accuracy (%) 96.0 80.0 96.4 88.5 97.4 87.5 98.4 72.5

220 cm Measured size 4.7 1.2 7.9 2.2 14.2 3.4 11.4 5.8
Accuracy (%) 94.0 80.0 95.1 84.6 93.4 85.0 89.1 72.5

280 cm Measured size 4.3 1.1 7.5 2.0 14.1 3.1 12.3 5.5
Accuracy (%) 86.0 73.3 90.4 76.9 92.8 77.5 96.1 68.8

LiDAR beams to scatter or pass through, leading
to weak or missing return signals. The performance
of LiDAR in detecting FOD under two different
conditions is illustrated in Fig. 6, highlighting the
variations between different object sizes. Under low light
conditions, the LiDAR exhibited significantly better
detection performance than on glossy surfaces. As
shown in Fig. 6b, for a 17×5 cm FOD, the maximum
detection range on the glossy floor was limited to
925 cm, while in low light conditions it reached up
to 1350 cm. Measurement accuracy decreased with
increasing distance, with noticeable errors occurring
beyond 10 m. In contrast, for objects within the range of
0-3 m, the LiDAR consistently maintained high accuracy
and stable detection rates between 95% and 100%.

5.2. Experimental Validation of FOD Size Estimation
To evaluate the precision of the estimation of the size

of the FOD, we conducted extensive field experiments
in a controlled environment that replicates real-world
airport conditions. Various FOD objects were placed at
different distances from the camera, and the tests also
considered variations in the camera’s field of view by
adjusting its height. A subset of randomly selected data,
captured with the camera positioned at a height of 60 cm,
is presented in Table 1.

The test results indicate that the accuracy of
the system decreases approximately linearly with
increasing distance between the camera and the object.
Regular, cubic-shaped objects (e.g., lighters, batteries,
cutters) are detected and measured more precisely than
irregular objects (e.g., pliers, stones). Furthermore, the
length estimation achieves higher accuracy (80–100%)
compared to the width (70–90%), largely influenced by
factors such as the field of view of the camera, the
position of the object, the quality of the boundary box,
and the distance from the camera.

5.3. Testing GPU Performance on Jetson Nano
To assess the Jetson Nano’s GPU efficiency, we

conducted tests under two scenarios: continuous video
processing and single-frame image inference. The

(a)

(b)

Fig. 6. LiDAR signal strength and distance under ideal
and challenging conditions: (a) FOD size of 2×5 cm and
(b) FOD size of 17×5 cm

Fig. 7. GPU usage evaluation on Jetson Nano during
single-frame processing

7

Journal of Science and Technology – Smart Systems and Devices
Volume 36, Issue 1, January 2026, 001-008

results indicate that continuous video processing fully
utilizes the GPU (close to 100%), while single-frame
image inference uses only 50 to 70% of the GPU,
depending on the complexity and resolution of the
model. Fig. 7 illustrates the usage of GPU during
single-image processing. The inference time for video
processing using the GPU averages 935 ms per frame,
which is 15–17 times faster than the CPU’s average of
16.028 ms. However, for single-image processing, the
GPU takes approximately 1 minute which offers little to
no performance gain compared to the CPU.

6. Conclusion
This paper presents a solution for detecting,

classifying and estimating the size of Foreign Object
Debris (FOD) on airport runways. The system can be
integrated with a robotic arm for automatic retrieval
based on estimated position and size. Experiments
confirm accurate classification and real-time size
measurement, with LiDAR achieving a precision of 95
to 100% in distance estimation and a size estimation
of 70 to 100% for objects within 0 to 3 meters. GPU
acceleration enhances the video processing speed by 15
to 17 times compared to CPU-only execution, ensuring
efficient real-time operation. The system is well-suited
for IoT applications, including smart airport systems,
and can be adapted for future developments.

The proposed system performs well in detecting,
classifying, and estimating FOD size, but has some
limitations. The camera field of view impacts the
accuracy, with length measurements being more precise
than width due to perspective. Although LiDAR
provides accurate distance measurements beyond 3
meters, the camera struggles with small distant objects,
leading to detection errors. Using higher-resolution
cameras, optical zoom lenses, or multicamera setups can
improve visibility and improve detection reliability.

References
[1] J. Shan, L. Miccinesi, A. Beni, L. Pagnini, A. Cioncolini,

and M. Pieraccini, A review of foreign object debris
detection on airport runways: sensors and algorithms,
Remote Sensing, vol. 17, no. 2, pp. 225, 2025.

[2] J. Almeida, G. Cruz, D. Silva, and T. Oliveira, Application
of deep learning to the detection of foreign object
debris at Aerodromes’ movement area. in VISIGRAPP (5:
VISAPP), 2023, pp. 814–821.

[3] G. Mehdi and J. Miao, Millimeter wave FMCW radar
for foreign object debris (FOD) detection at airport
runways, in Proceedings of 2012 9th International
Bhurban Conference on Applied Sciences & Technology
(IBCAST), 2012, pp. 407–412.

[4] Y. Wan, X. Liang, X. Bu, and Y. Liu, FOD detection
method based on iterative adaptive approach for
millimeter-wave radar, Sensors, vol. 21, no. 4, pp. 1241,
2021.

[5] C. A. Amadi, K. Mbanisi, and W. J. Smit, An Introduction
to the ros2 control framework using a low cost, Differential
Drive Robot, Sept. 2024.
https://doi.org/10.13140/RG.2.2.15748.54408.

[6] P. Todorov, Multi-camera Calibration, K. Ikeuchi,
Springer International Publishing, 2021, pp. 825–825.

[7] S. Öztürk and A. E. Kuzucuoğlu, A multi-robot
coordination approach for autonomous runway Foreign
Object Debris (FOD) clearance, Robotics and Autonomous
Systems, vol. 75, pp. 244–259, 2016.

[8] C. Saravanan, Color image to grayscale image conversion,
in 2010 Second International Conference on Computer
Engineering and Applications, 2010, pp. 196–199.

[9] S. A. Parah, J. A. Sheikh, J. A. Akhoon, N. A. Loan, and
G. M. Bhat, Information hiding in edges: A high capacity
information hiding technique using hybrid edge detection,
Multimedia Tools and Applications, vol. 77, pp. 185–207,
2018.

[10] P. Soille, Morphological Image Analysis: Principles and
Applications, 2nd ed., Springer-Verlag, 2003.

[11] P. Sturm, Pinhole camera model, Computer Vision: A
Reference Guide, pp. 983–986, 2021.

[12] L. Hoang-An, Camera model: intrinsic parameters,
July 30, 2018. [Online] Available: https://lhoangan.github.
io/camera-params/. Accessed on: Mar. 12025.

8

https://doi.org/10.13140/RG.2.2.15748.54408
https://lhoangan.github.io/camera-params/
https://lhoangan.github.io/camera-params/

	Introduction
	Related Works
	Proposed Solution
	Implementation
	FOD Data Collection, Training, and Evaluation
	Camera Calibration
	Rotate Bounding Box Detection
	2D-to-3D Coordinate Transformation
	Implement on Jetson Nano

	Test Results and Analysis
	LiDAR Detection Capability Evaluation
	Experimental Validation of FOD Size Estimation
	Testing GPU Performance on Jetson Nano

	Conclusion

