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Abstract 

Gesture recognition has become an important focus in human-machine interaction (HMI). Static hand gesture recognition 
is particularly useful for detecting the intuitive intentions of individuals who are deaf or mute. In recent years, various data 
gloves have been developed to capture static hand gestures. These gloves, worn like regular gloves, serve as input devices 
for HMI systems. A low-cost data glove can be built using flex sensors to detect finger bending, enabling the collection of 
data on finger positions for different static gestures. This data can then be interpreted by a computer program. While many 
commercial data gloves are bundled with software, they are often prohibitively expensive. This research develops a low-cost 
data glove using flex sensors and an Arduino Nano. For accurate static gesture recognition, a Bayesian neural network 
(BNN) is employed to classify different gestures. To optimize training, the scaled-conjugate gradient method, an efficient, 
automated algorithm, is used to update the network’s weights and biases. 
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1. Introduction 

In*the context of human–machine interface (HMI) 
systems for individuals who are deaf or mute, machine 
learning (ML) plays a critical role in enabling effective 
communication. One practical approach is the use of 
static or dynamic hand gestures, which provide a natural 
and intuitive medium for expressing a user’s intentions. 
Such gestures can be recognized by the system and 
translated into meaningful commands or messages, 
thereby facilitating communication with others or 
activating assistive devices [1-6]. By leveraging ML 
algorithms, these systems can achieve higher 
recognition accuracy, adapt to individual gesture 
variations, and maintain reliable performance under 
diverse operating conditions. 

Static hand gesture recognition methods can be 
broadly divided into data glove–based and vision-based 
approaches. The former relies on gloves equipped with 
sensors to capture finger-bending data [7–11], while the 
latter uses cameras to acquire images of gestures [12–
14]. Although vision-based methods are popular, they 
can be affected by poor lighting conditions, a limitation 
not present in data glove-based methods. 

Data gloves enable direct and straightforward 
collection of gesture data through a dedicated device and 
computer program. While many commercial data gloves 
exist, they are often prohibitively expensive. In ML 
applications, artificial neural networks (ANNs) are 
widely used for solving nonlinear regression and 
classification problems [15, 16]. The development of 
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ANN-based gesture recognition requires a labeled 
dataset, in which different gesture patterns are tagged 
with corresponding target outputs during the data 
collection phase. 

The primary contribution of this work is the detailed, 
step-by-step development of a low-cost data glove 
suitable for recognizing static gestures based on a 
Bayesian neural network (BNN). The motivation for 
using a BNN to recognize static hand gestures lies in its 
inherent ability to quantify prediction uncertainty 
alongside classification accuracy. In real-world human–
machine interaction scenarios, sensor noise, variations 
in hand posture, and environmental factors such as 
lighting can introduce ambiguity in gesture recognition. 
A BNN not only learns the mapping between gesture 
features and their corresponding classes but also 
provides probabilistic confidence estimates, enabling 
the system to identify uncertain predictions and handle 
them appropriately. This capability is crucial for safety-
critical or assistive applications, where incorrect gesture 
interpretation could lead to undesirable outcomes. 
Additionally, BNNs offer improved generalization in 
limited-data settings by incorporating prior knowledge 
into the learning process, which is particularly beneficial 
for static gesture datasets with small sample sizes.  

The remainder of this paper is organized as follows. 
Section 2 introduces the Bayesian neural network 
(BNN) model designed for multi-class classification 
tasks. In this section, the fundamental concepts of the 
Bayesian framework are presented, with particular 

 
 
 



  
Journal of Science and Technology - Smart Systems and Devices 

Volume 36, Issue 1, January 2026, 018-024 

19 

emphasis on its role in neural network regularization. 
The approach enables the automatic and efficient 
determination of optimal regularization parameters 
through Bayesian inference, thereby reducing the need 
for manual tuning and mitigating overfitting. Section 3 
describes in detail the design and development of the 
proposed low-cost data glove, including its hardware 
architecture, data acquisition process, and the 
implementation of static hand gesture recognition using 
the proposed BNN. Section 4 concludes the paper by 
summarizing the main findings, highlighting the 
practical implications of the work, and suggesting 
potential directions for future research. 

2. Bayesian Neural Network for Classification 

2.1. Multi-Layer Perceptron Neural Networks 

As BNNs are an extended version of conventional 
MLP neural networks, this part provides the theory of 
MLP neural networks [15,16]. An MLP neural network 
takes in a vector of real inputs, ix , and from them 
compute one or more values of the output layer, 

( )wxzk , . With a one hidden layer network, as shown in 
Fig. 1, the value of the k -th output is computed as 
follows: 
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where, jiw  is the weight on the connection from input 
unit i  to hidden unit j ; similarly, kjw  is the weight on 
the connection from hidden unit j  to output unit k . 

jb  and kb  are the biases of the hidden and output units; 

0f  is the output layer activation function.  

 
Fig. 1.  MLP neural network 

MLP neural networks can be used to define 
probabilistic models for regression and classification 
tasks by using the network outputs to define the 
conditional distribution for one or more targets. In c - 
class classification problems, the target variables are 

discrete class labels indicating one of c  possible classes. 
The “softmax” model can be used to define the 
conditional probabilities of the various classes of a 
network with c  output units as follows: 
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For multi-class classification problem, the “entropy” 
error function with N  sample patterns should be used 
and have the following form: 
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where n
kz  is the k-th output corresponding to the n-th 

pattern. n
kt  is the k-th target corresponding to the n-th 

pattern.  

2.2. Network Regularization 

In MLP neural networks, appropriate regularization 
should be used to prevent any weights and biases from 
becoming too large because large weights and biases 
may give poor generalization for new cases. Therefore, 
a weight decay term is added to the data error function, 

DE , to penalize large weights and biases. Specifically, 
for classification problems, a cost function is defined as 
follows:  
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where ( )wS  is known as a cost function, gξ  is a non-
negative parameter for the distribution of network 
parameters such as weights and biases. gξ  is also 
known as weight decay parameters, also known as 
hyperparameters. Finally, 

gWE  is the weight error for the 
g-th group of weights and biases, and G  is the number 
of groups of weights and biases in the neural network. 

gWE has the following form: 
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2.3. Bayesian Inference  

Adaptive parameters of an MLP neural network, 
including weights and biases, can be conveniently 
grouped into a single W-dimensional weight vector, w  
According to the Bayesian inference, the posterior 
distribution of the vector of weights and biases given a 
data set D  can be expressed as follows: 
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where { }Gξξψ ,...,1=  and (6) is the first level of the 
inference. ( )ψ|wp  is the weight prior determined using 
the theory of prior. The prior distribution of the weights 
is given by:  
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where ( )ψWZ  is the normalization constant and gW  is 
the number of weights and biases in the g-th group. 
( )ψ,| wDp  is the dataset likelihood and ( )ψ|Dp  is the 

evidence for ψ  or the normalization factor. If the dataset 
is identically independently distributed, the dataset 
likelihood is: 

( ) ( )DEwDp −= exp,| ψ                       (9) 

Assuming that the cost function ( )wS  has a single 
minimum at the most probable weight vector MPw  and 
( )wS  can locally be approximated as a quadratic form 

obtained by the second-order Taylor series expansion of 
( )wS  as follows: 
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In (10), A  is the Hessian matrix of the cost function 
at MPw  and is given by: 
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where ( )MPD wEH ∇∇=  is the Hessian matrix of the 
data error function at MPw  and gI  is the diagonal 
matrix having ones along the diagonal that picks off 
weights in the g-th group. After the training phase, the 
posterior distribution of weights can be derived as: 

( ) ( ) ( )( )wS
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where ( )ψSZ  is the normalization constant for the 
approximating Gaussian, and is therefore given by: 

( ) ( )( )( ) ( ) 2/12/ det2exp −−≈ AwSZ W
MPS πψ     (13) 

Again, using the Bayes’ theorem, the posterior 
distribution of the weight decay parameters can be 
expressed as follows: 

( ) ( ) ( )
( ) ( ) ( )ψψψψψ pDp
Dp

pDpDp ||| ≡=   (14) 

where ( )ψp  is the prior distribution of the weight decay 
parameters, and we simply assume that this distribution 
is uniform. However, this will be ignored subsequently, 
because to infer the value of the weight decay 
parameters, we only need to find the values of the weight 
decay parameters to maximize ( )ψ|Dp . Rearranging 
(6) gives: 
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Since all the terms on the right side of (15) are 
determined from (7), (9), and (12), (15) yields: 
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Taking the derivative of  ( )ψ|ln Dp  with respect to 

gξ  gives:  
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Let this derivative be zero, we can determine gξ  as 
follows: 

  ( ) ggggWg IAtrWE 12 −−= ξξ                  (18) 

The right-hand side of (18) is equal to a value gγ  

defined as follows: 

( ) gggg IAtrW 1−−= ξγ                   (19) 

gγ  is called the number of “well-determined” 
parameters in weight group g . Substituting (19) into 
(18) and rearranging (18) give: 

gW

g
g E2

γ
ξ =                           (20) 

The terms gξ  and gγ  can be later used with several 
formulas to compute the logarithm of the evidence in 
Bayesian model comparison. The optimal model is 
selected corresponding to the highest logarithm of the 
evidence.  

2.4. Scaled Conjugate Gradient Algorithm  

The main problem when training MLP neural 
networks using the conventional gradient descent 
method is that values for the learning rate and 
momentum must be chosen appropriately. As this 
procedure is inefficient, this section focuses on the 
conjugate gradient algorithm, which is a fast-training 
algorithm automatically determining the search 
direction and step size. 

The conjugate gradient algorithm starts by searching 
in the negative gradient on the first iteration. At the  
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m -th step, a line search is performed to find the step size 
mα as below: 

T
m m

m T
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g d
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α =                              (21) 

where mg  and md  are the gradient and search direction 
at the m -th step.  

The new search direction is then given by: 

mmmm dgd β+−= ++ 11                  (22) 

where mβ  can be determined using the Polak-Rebiere 
formula as follows: 
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In the conjugate gradient algorithm, as the cost 
function ( )wS  is not a quadratic form, then the Hessian 
matrix A  may not be positive definite and in this case, 
the parameter update formula (21) may increase the 
function value. This can be overcome by adding a non-
negative multiple mλ  of the unit matrix to the Hessian 
A  to obtain IA mλ+ . The expression (21) becomes: 
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The denominator of (24) can be written as:  
2

mmm
T
mm dAdd λδ +=                      (25) 

If mδ  is negative, we can increase the value of mλ  to 
make mδ  is positive. Let the raised value of mλ  be mλ , 
then the corresponding raised value of mδ  is given by: 

( ) 2
mmmmm dλλδδ −+=                   (26) 

To mδ  is greater than zero, mλ  can be chosen as 
follows [14]: 
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Substituting (27) into (26) gives: 

m
T
mmmmm Addd −=+−= 2λδδ           (28) 

This value is positive and used as the denominator in 
(24) to compute the step-size mα . To find 1+mλ , a 
comparison parameter is first defined as: 
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Then the value of 1+mλ  can be adjusted using the 

following prescriptions: 

• If 75.0>m∆ , then 2/1 mm λλ =+  

• If 75.025.0 << m∆ , then mm λλ =+1  

• If 25.0<m∆ , then mm λλ 41 =+  

• If 0<m∆ , then mm λλ 41 =+  and take no step    

3. Static Hand Gesture Recognition Using A Low-
Cost Data Glove 

This section provides a comprehensive explanation 
of the methodology used for recognizing static hand 
gestures through the integration of a low-cost data glove 
and a BNN. The data glove functions as the primary 
sensing interface, equipped with multiple flex sensors 
strategically positioned along the fingers. These sensors 
continuously measure the degree of finger bending and 
hand configuration, thereby capturing the spatial 
characteristics of each static gesture. The analog signals 
produced by the flex sensors are converted into digital 
data and preprocessed to eliminate noise, normalize 
variations, and extract relevant features representing the 
user’s hand posture. 

The processed sensor data are then supplied as input 
vectors to BNN, which serves as the classification 
engine of the system. The BNN utilizes probabilistic 
inference to evaluate the likelihood of each gesture class 
given the input data, effectively modeling uncertainties 
that may arise from sensor inaccuracies, user 
differences, or environmental disturbances. Through this 
probabilistic learning framework, the BNN can 
distinguish subtle differences among hand postures and 
assign each input pattern to its corresponding predefined 
gesture category. 

3.1. The Data Glove 

Static hand gestures can be captured using a low-cost 
data glove, as depicted in Fig. 2.  

 
Fig 2. A low-cost data glove using five flex sensors and 
the Arduino Nano. 
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This glove is constructed from readily available 
components, making it an economical and practical tool 
for gesture recognition. It consists of the following main 
elements: 

• A standard glove acts as the foundation for 
attaching electronic components while ensuring 
user comfort and hand flexibility. 

• Five flex (bend) sensors are used in the system, 
each functioning as a variable resistor whose 
resistance increases in proportion to the degree of 
bending. These sensors are strategically positioned 
along the length of each finger to accurately 
capture the extent of finger flexion. When the user 
performs static hand gestures, bending at the finger 
joints causes the corresponding sensor’s 
conductive layer to stretch, thereby increasing its 
electrical resistance. This resistance change is 
converted into a varying voltage through a voltage 
divider circuit, producing an analog signal that 
reflects the finger’s bending angle. The collection 
of these signals from all five sensors forms a 
gesture-specific signature, which can then be 
processed and classified by the recognition 
algorithm. 

• Five voltage divider circuits are implemented, one 
for each flex sensor, to convert the sensors’ 
resistance changes into measurable voltage signals 
that can be read by the processing unit. In each 
voltage divider, the flex sensor is connected in 
series with a fixed resistor, and the output is taken 
from the junction between them. As a finger bends, 
the corresponding flex sensor’s resistance 
increases, altering the voltage ratio across the 
divider. This change results in a rise in the output 
voltage, which is directly proportional to the 
degree of bending within the sensor’s operating 
range. By continuously monitoring the voltages 
from all five dividers, the system can capture a real-
time electrical profile of the user’s hand posture. 
These voltage signals are then digitized by an 
analog-to-digital converter (ADC) and sent to the 
gesture recognition algorithm, forming the basis 
for accurate classification of static hand gestures. 

• An Arduino Nano board is a compact and 
breadboard-friendly microcontroller platform 
based on the ATmega328 chip, serving as the core 
data acquisition and communication unit in the 
system. Its role is to continuously collect analog 
voltage signals from the five flex sensors via its 
built-in analog-to-digital converter, converting 
them into digital values for further processing. The 
board’s small physical footprint, low power 
consumption, and affordability make it particularly 
well-suited for integration into wearable devices 
such as data gloves, where space and weight are 
critical design considerations. In this application, 
the Arduino Nano not only reads and organizes 

sensor data but can also perform basic 
preprocessing as signal filtering or scaling-before 
transmitting the information to a computer or 
external processor via USB or serial 
communication. This efficient combination of 
sensing, digitization, and transmission capabilities 
enables seamless real-time hand gesture capture in 
a portable and cost-effective form factor. 

The Arduino Nano board is programmed via the 
Arduino IO Package for Simulink, enabling direct 
communication between the hardware and the Simulink 
environment. In this setup, a Simulink model acquires 
five analog voltage signals from the voltage divider 
circuits, each corresponding to the bending level of a 
flex sensor. Arduino Nano’s 10-bit analog-to-digital 
converters read these inputs from pins A0 through A4, 
producing raw integer values in the range of 0 to 1023. 
These values are then normalized by dividing by 1023, 
converting them into a range between 0 and 1 for 
consistent processing by the BNN. During data 
collection, each session runs for 5 seconds with a 
sampling interval of 0.1 seconds, generating 
approximately 51 samples per gesture. Each sample 
represents a snapshot of a static hand gesture’s flex 
sensor reading. The complete set of samples forms a 
labeled training dataset, which is essential for training 
the BNN to accurately recognize and classify various 
static hand gestures based on the captured sensor data. 

Figure 3 illustrates six distinct static hand gestures 
employed in the gesture recognition process. These 
gestures are systematically grouped into five separate 
classes according to the specific configurations and 
positions of the fingers and palm. In this classification 
scheme, Gestures 1 and 2 are categorized under Class 1, 
while Gestures 3, 4, 5, and 6 correspond to Classes 2, 3, 
4, and 5, respectively. This structured classification 
enables the recognition system to accurately distinguish 
different hand postures, ensuring that each gesture is 
uniquely associated with a predefined category.  

 
Fig 3. Six static hand gestures. 
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Table 1. Number of collected static hand gestures. 

Gestures 
Number of 

patterns 
Class 

Gestures 1 and 2 102 1 

Gesture 3 51 2 

Gesture 4 51 3 

Gesture 5 51 4 

Gesture 6 51 5 

 

Table 1 shows the distribution of data patterns 
collected for each gesture class. Each data pattern 
corresponds to a single measurement recorded by the 
flex sensors while a specific hand gesture is being 
performed. These data patterns reflect the distinctive 
sensor output profiles that represent the degree of finger 
flexion and the overall hand posture characteristic of 
each gesture. 

3.2. Network Architecture 

The BNN used for classifying static hand gestures is 
designed with a specific architecture to effectively 
process data collected from flex sensors. This 
architecture consists of the following components. 

• Input layer: It contains six nodes, of which five 
correspond to the analog signals obtained from the 
five flex sensors embedded in the data glove. Each 
flex sensor measures the degree of finger flexion, 
providing continuous data related to the curvature 
of each finger. The sixth node is an augmented bias 
input with a constant value of 1, which enhances 
the model’s learning capacity by allowing the 
network to adjust the decision boundary more 
flexibly. 

• Hidden layer: The network includes a hidden layer 
with six neurons, which process the incoming data 
from the input layer by first computing a weighted 
sum of the inputs and then applying a nonlinear 
activation function. This combination allows the 
model to capture and represent complex, non-linear 
relationships between the flex sensor signals and 
the corresponding hand gestures. The choice of six 
neurons strikes a balance between model 
complexity and computational efficiency, ensuring 
that the network has sufficient capacity to learn 
gesture-specific patterns while still generalizing 
well across different gesture classes without 
overfitting. 

• Output layer: The BNN has five output nodes, each 
corresponding to a specific gesture class. The 
outputs represent a probability distribution over the 
five gesture classes, allowing the network to 
account for uncertainty in its predictions.  

• Output layer: The BNN’s output layer consists of 
five nodes, each representing one of the predefined 
gesture classes. The outputs form a probability 

distribution across these classes, indicating the 
likelihood of each gesture given the input data. 
This probabilistic representation enables the 
network to account for uncertainty in its 
predictions, providing not only the most likely 
gesture but also a measure of confidence for each 
classification. 

3.3. Network Training Procedure 

There are four weight decay parameters , , 3ξ  
and 4ξ  corresponding distributions from the weights 
between the input nodes to the hidden nodes, the bias 
input node to the hidden nodes, the hidden nodes to the 
output nodes, and the bias hidden node to the output 
nodes. The training procedure was then implemented as 
follows [15, 16]: 

1) The weights and biases were initialized randomly 
and choosing initial values for the 
hyperparameters, 

2) The network was trained to minimize the cost 
function ( )wS  using the SCG algorithm, 

3) When the network training reached a local 
minimum, the values of the hyperparameters were 
re-estimated as follows: 

gW

old
gnew

g E2
γ

ξ =                         (30) 

4) Steps 2 and 3 were repeated until convergence was 
achieved (the total error term was smaller than a 
pre-determined value and did not change 
significantly in subsequent iterations). 

The final values of the weights and biases obtained 
from training the BNN were subsequently stored to 
deploy a standalone embedded system for static hand 
gesture recognition. This deployment was implemented 
using an Arduino Nano board, allowing the system to 
function independently without relying on an external 
computer. By transferring the trained parameters to the 
Arduino Nano, the neural network's decision-making 
capabilities were embedded directly into the 
microcontroller. This enabled real-time processing and 
classification of static hand gestures, making the system 
portable and efficient. The optimized weights and biases 
allowed the Arduino Nano to perform accurate gesture 
recognition while maintaining low power consumption 
and a compact form factor, suitable for practical 
applications in wearable devices, human-computer 
interaction, and assistive technologies. 

4. Conclusion 

The study demonstrates the feasibility and 
effectiveness of integrating low-cost hardware with 
advanced machine-learning techniques for static hand 
gesture recognition. The affordability and simplicity of 
the data glove, combined with the flexibility and power 
of the BNN, present a scalable and adaptable solution 

1ξ 2ξ
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suitable for both research and real-world applications. 
This approach provides a cost-effective alternative to 
more expensive commercial gesture recognition systems 
while maintaining robust performance. Practical 
applications for this system extend to various fields, 
including sign language interpretation, where it could 
assist individuals with speech or hearing impairments by 
translating hand gestures into text or speech in real-time. 
The system could facilitate intuitive, gesture-based 
command inputs for operating machinery or robotic arms 
in robotic control. Furthermore, human-computer 
interaction could be enhanced by enabling hands-free 
operation of devices through natural hand gestures. 
Future research may focus on several key areas to further 
optimize the system. Enhancing the BNN’s architecture, 
such as refining the number of hidden units or exploring 
alternative activation functions, may improve accuracy 
and computational efficiency. Additionally, real-time 
processing capabilities could be enhanced by optimizing 
the system’s code and hardware setup, allowing for faster 
gesture recognition with minimal latency. Another 
valuable direction would be to expand the gesture 
vocabulary, enabling the recognition of a wider array of 
static and dynamic gestures to accommodate diverse 
applications. Overall, this study highlights a promising 
approach to static hand gesture recognition using 
affordable and accessible technology combined with 
advanced probabilistic machine learning. With further 
development and refinement, this system could play a 
pivotal role in advancing gesture-based interfaces, 
improving accessibility, and enabling more natural HMI 
systems. 
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