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Abstract

Gesture recognition has become an important focus in human-machine interaction (HMI). Static hand gesture recognition
is particularly useful for detecting the intuitive intentions of individuals who are deaf or mute. In recent years, various data
gloves have been developed to capture static hand gestures. These gloves, worn like regular gloves, serve as input devices
for HMI systems. A low-cost data glove can be built using flex sensors to detect finger bending, enabling the collection of
data on finger positions for different static gestures. This data can then be interpreted by a computer program. While many
commercial data gloves are bundled with software, they are often prohibitively expensive. This research develops a low-cost
data glove using flex sensors and an Arduino Nano. For accurate static gesture recognition, a Bayesian neural network
(BNN) is employed to classify different gestures. To optimize training, the scaled-conjugate gradient method, an efficient,
automated algorithm, is used to update the network’s weights and biases.

Keywords: Data glove, static hand gesture recognition, Bayesian neural network.

1. Introduction

In the context of human—machine interface (HMI)
systems for individuals who are deaf or mute, machine
learning (ML) plays a critical role in enabling effective
communication. One practical approach is the use of
static or dynamic hand gestures, which provide a natural
and intuitive medium for expressing a user’s intentions.
Such gestures can be recognized by the system and
translated into meaningful commands or messages,
thereby facilitating communication with others or
activating assistive devices [1-6]. By leveraging ML
algorithms, these systems can achieve higher
recognition accuracy, adapt to individual gesture
variations, and maintain reliable performance under
diverse operating conditions.

Static hand gesture recognition methods can be
broadly divided into data glove—based and vision-based
approaches. The former relies on gloves equipped with
sensors to capture finger-bending data [7—11], while the
latter uses cameras to acquire images of gestures [12—
14]. Although vision-based methods are popular, they
can be affected by poor lighting conditions, a limitation
not present in data glove-based methods.

Data gloves enable direct and straightforward
collection of gesture data through a dedicated device and
computer program. While many commercial data gloves
exist, they are often prohibitively expensive. In ML
applications, artificial neural networks (ANNs) are
widely used for solving nonlinear regression and
classification problems [15, 16]. The development of
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ANN-based gesture recognition requires a labeled
dataset, in which different gesture patterns are tagged
with corresponding target outputs during the data
collection phase.

The primary contribution of this work is the detailed,
step-by-step development of a low-cost data glove
suitable for recognizing static gestures based on a
Bayesian neural network (BNN). The motivation for
using a BNN to recognize static hand gestures lies in its
inherent ability to quantify prediction uncertainty
alongside classification accuracy. In real-world human—
machine interaction scenarios, sensor noise, variations
in hand posture, and environmental factors such as
lighting can introduce ambiguity in gesture recognition.
A BNN not only learns the mapping between gesture
features and their corresponding classes but also
provides probabilistic confidence estimates, enabling
the system to identify uncertain predictions and handle
them appropriately. This capability is crucial for safety-
critical or assistive applications, where incorrect gesture
interpretation could lead to undesirable outcomes.
Additionally, BNNs offer improved generalization in
limited-data settings by incorporating prior knowledge
into the learning process, which is particularly beneficial
for static gesture datasets with small sample sizes.

The remainder of this paper is organized as follows.
Section 2 introduces the Bayesian neural network
(BNN) model designed for multi-class classification
tasks. In this section, the fundamental concepts of the
Bayesian framework are presented, with particular
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emphasis on its role in neural network regularization.
The approach enables the automatic and efficient
determination of optimal regularization parameters
through Bayesian inference, thereby reducing the need
for manual tuning and mitigating overfitting. Section 3
describes in detail the design and development of the
proposed low-cost data glove, including its hardware
architecture, data acquisition process, and the
implementation of static hand gesture recognition using
the proposed BNN. Section 4 concludes the paper by
summarizing the main findings, highlighting the
practical implications of the work, and suggesting
potential directions for future research.

2. Bayesian Neural Network for Classification
2.1. Multi-Layer Perceptron Neural Networks

As BNNs are an extended version of conventional
MLP neural networks, this part provides the theory of
MLP neural networks [15,16]. An MLP neural network

takes in a vector of real inputs,x;, and from them

compute one or more values of the output layer,
Zy (x, w) . With a one hidden layer network, as shown in

Fig. 1, the value of the % -th output is computed as
follows:

M d
Zp (x, w) = fol| by + Zwkj tanh E_j + Z\/_le‘xi (1)
j=1 i=1
where, wj; is the weight on the connection from input
unit i to hidden unit j ; similarly, wy; 1s the weight on
the connection from hidden unit j to output unit k& .
b ; and by are the biases of the hidden and output units;
fo 1s the output layer activation function.

Fig. 1. MLP neural network

MLP neural networks can be used to define
probabilistic models for regression and classification
tasks by using the network outputs to define the
conditional distribution for one or more targets. In c-
class classification problems, the target variables are
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discrete class labels indicating one of ¢ possible classes.
The “softmax” model can be used to define the
conditional probabilities of the various classes of a
network with ¢ output units as follows:

(= _SR@)

D expla ()

k=1

2

For multi-class classification problem, the “entropy”
error function with N sample patterns should be used
and have the following form:

N ¢
Ep=-)"Y iz}

n=l k=l

3)

where ZZ is the k-th output corresponding to the n-th

pattern. t/? is the k-th target corresponding to the n-th
pattern.

2.2. Network Regularization

In MLP neural networks, appropriate regularization
should be used to prevent any weights and biases from
becoming too large because large weights and biases
may give poor generalization for new cases. Therefore,
a weight decay term is added to the data error function,
Ep, to penalize large weights and biases. Specifically,

for classification problems, a cost function is defined as
follows:

G

E, +Z§gEWg

g=1

S(w)

“)

where S(w) is known as a cost function, & ¢ Is anon-

negative parameter for the distribution of network
parameters such as weights and biases. &, is also

known as weight decay parameters, also known as
hyperparameters. Finally, £, isthe weight error for the

We
g-th group of weights and biases, and G is the number
of groups of weights and biases in the neural network.
E,, has the following form:

g=1..,G

E, (5)

1
=5l
2.3. Bayesian Inference

Adaptive parameters of an MLP neural network,
including weights and biases, can be conveniently
grouped into a single W-dimensional weight vector, w
According to the Bayesian inference, the posterior
distribution of the vector of weights and biases given a
data set D can be expressed as follows:

_ pD]wy)p(w|y)

6
p(Dv) ©

p(w| D.y)




Journal of Science and Technology - Smart Systems and Devices
Volume 36, Issue 1, January 2026, 018-024

where v = {é‘l,...,fc} and (6) is the first level of the
inference. p(w | (//) is the weight prior determined using

the theory of prior. The prior distribution of the weights
is given by:

G
- NeE 7
plw|w) i ;cfg Wy (7)
G 5 Wg/2
Zy ()= H(—”J ®)
g=l S

where Zy, (l//) is the normalization constant and Wy is

the number of weights and biases in the g-th group.
p(D | W,l//) is the dataset likelihood and p(D | (//) is the
evidence for y or the normalization factor. If the dataset
is identically independently distributed, the dataset

likelihood is:
p(D|w,y)=exp(- Ep) 9)

Assuming that the cost function S (w) has a single
minimum at the most probable weight vector w,,p and
S (w) can locally be approximated as a quadratic form

obtained by the second-order Taylor series expansion of
S(w) as follows:

S(w)~ S(wyp )+ (10)

1
E(W_ wp ) Aw=wyp)

In (10), A4 is the Hessian matrix of the cost function
at wy,p and is given by:

A= VVS WMP

H+Z§g g

where H =VVE, (WMP) is the Hessian matrix of the

(1)

data error function at w,, and 7, is the diagonal

matrix having ones along the diagonal that picks off

weights in the g-th group. After the training phase, the

posterior distribution of weights can be derived as:
p(wD,y)= (12)

———~exp(=S(w))
Zs (‘/’ )

where Zg (l//) is the normalization constant for the
approximating Gaussian, and is therefore given by:

Zs(w)=exp(— S(wyp ))27)” ' ? (det )72 (13)

Again, using the Bayes’ theorem, the posterior
distribution of the weight decay parameters can be
expressed as follows:

p(Dy)ply)

p(D)

plw|D)= =p(D|w)ply) (14)
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where p(l//) is the prior distribution of the weight decay
parameters, and we simply assume that this distribution
is uniform. However, this will be ignored subsequently,
because to infer the value of the weight decay
parameters, we only need to find the values of the weight
decay parameters to maximize p(D | gy). Rearranging

(6) gives:

p(DIV/)=p(D|(V:V‘|/’l))’§(”W)Il//)

Since all the terms on the right side of (15) are
determined from (7), (9), and (12), (15) yields:

o01)= 23]

Zyly)

Taking the derivative of In p(D | 1//) with respect to

&, gives:

(15)

(16)

9 (D
52 np(D|y)=

Let this derivative be zero, we can determine &, as

, 1 (-
—£ By ——tr(A l)lg (17)
26, '8 2

follows:
-1
2oL, =Wy _ég”(A )’g

The right-hand side of (18) is equal to a value » <

(18)

defined as follows:
-1
Vg =Wg_‘/:g”("1 )’g (19)

7g s called the number of “well-determined”
parameters in weight group g . Substituting (19) into

(18) and rearranging (18) give:

Ve
2Ey,

&, = (20)

The terms &, and y, can be later used with several

formulas to compute the logarithm of the evidence in
Bayesian model comparison. The optimal model is
selected corresponding to the highest logarithm of the
evidence.

2.4. Scaled Conjugate Gradient Algorithm

The main problem when training MLP neural
networks using the conventional gradient descent
method is that values for the learning rate and
momentum must be chosen appropriately. As this
procedure is inefficient, this section focuses on the
conjugate gradient algorithm, which is a fast-training
algorithm automatically determining the search
direction and step size.

The conjugate gradient algorithm starts by searching
in the negative gradient on the first iteration. At the
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m -th step, a line search is performed to find the step size
a,, as below:

T
_ _Enl

U =7 1 €2y

where g, and d,, are the gradient and search direction

at the m -th step.
The new search direction is then given by:
i1 =—8mal + Budm (22)

where [, can be determined using the Polak-Rebiere
formula as follows:

T
(gma —gw) gmu
ﬂm - T
Em+18m

In the conjugate gradient algorithm, as the cost
function S (w) is not a quadratic form, then the Hessian

(23)

matrix 4 may not be positive definite and in this case,
the parameter update formula (21) may increase the
function value. This can be overcome by adding a non-
negative multiple A, of the unit matrix to the Hessian

A toobtain 4+ A,,1. The expression (21) becomes:

gnd
Uy = — (24)
dpAd yy + Ay ||
The denominator of (24) can be written as:
2
S = dm Ad,y + Ao || (25)

If 6, is negative, we can increase the value of 4, to
make &, is positive. Let the raised value of 4,, be A,

then the corresponding raised value of 6, is given by:
S =y + = Ay | (26)

To S, is greater than zero, An can be chosen as
follows [14]:

1)
m T @7)
]

Substituting (27) into (26) gives:

Sm =8y + Amldnl]* = -dly4d,, (28)

This value is positive and used as the denominator in
(24) to compute the step-size «,,. To find A4,,,, a

comparison parameter is first defined as:

2 2AS(w) = S0y + ed, )]

» - (29)

Then the value of 4,,,; can be adjusted using the
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following prescriptions:

o IfA,>0.75,then 4,4 =4,,/2

o If025<4, <0.75,then 4, =4,

o If A, <025,then 4, =44,

o IfA4,<0,then 4, =44, and take no step

3. Static Hand Gesture Recognition Using A Low-
Cost Data Glove

This section provides a comprehensive explanation
of the methodology used for recognizing static hand
gestures through the integration of a low-cost data glove
and a BNN. The data glove functions as the primary
sensing interface, equipped with multiple flex sensors
strategically positioned along the fingers. These sensors
continuously measure the degree of finger bending and
hand configuration, thereby capturing the spatial
characteristics of each static gesture. The analog signals
produced by the flex sensors are converted into digital
data and preprocessed to eliminate noise, normalize
variations, and extract relevant features representing the
user’s hand posture.

The processed sensor data are then supplied as input
vectors to BNN, which serves as the classification
engine of the system. The BNN utilizes probabilistic
inference to evaluate the likelihood of each gesture class
given the input data, effectively modeling uncertainties
that may arise from sensor inaccuracies, user
differences, or environmental disturbances. Through this
probabilistic learning framework, the BNN can
distinguish subtle differences among hand postures and
assign each input pattern to its corresponding predefined
gesture category.

3.1. The Data Glove

Static hand gestures can be captured using a low-cost
data glove, as depicted in Fig. 2.

Flex sensors

Voltage
dividers

Fig 2. A low-cost data glove using five flex sensors and
the Arduino Nano.
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This glove is constructed from readily available
components, making it an economical and practical tool
for gesture recognition. It consists of the following main
elements:

e A standard glove acts as the foundation for
attaching electronic components while ensuring
user comfort and hand flexibility.

e Five flex (bend) sensors are used in the system,
each functioning as a variable resistor whose
resistance increases in proportion to the degree of
bending. These sensors are strategically positioned
along the length of each finger to accurately
capture the extent of finger flexion. When the user
performs static hand gestures, bending at the finger
joints causes the corresponding sensor’s
conductive layer to stretch, thereby increasing its
electrical resistance. This resistance change is
converted into a varying voltage through a voltage
divider circuit, producing an analog signal that
reflects the finger’s bending angle. The collection
of these signals from all five sensors forms a
gesture-specific signature, which can then be
processed and classified by the recognition
algorithm.

e Five voltage divider circuits are implemented, one
for each flex sensor, to convert the sensors’
resistance changes into measurable voltage signals
that can be read by the processing unit. In each
voltage divider, the flex sensor is connected in
series with a fixed resistor, and the output is taken
from the junction between them. As a finger bends,
the corresponding flex sensor’s resistance
increases, altering the voltage ratio across the
divider. This change results in a rise in the output
voltage, which is directly proportional to the
degree of bending within the sensor’s operating
range. By continuously monitoring the voltages
from all five dividers, the system can capture a real-
time electrical profile of the user’s hand posture.
These voltage signals are then digitized by an
analog-to-digital converter (ADC) and sent to the
gesture recognition algorithm, forming the basis
for accurate classification of static hand gestures.

e An Arduino Nano board is a compact and
breadboard-friendly  microcontroller platform
based on the ATmega328 chip, serving as the core
data acquisition and communication unit in the
system. Its role is to continuously collect analog
voltage signals from the five flex sensors via its
built-in analog-to-digital converter, converting
them into digital values for further processing. The
board’s small physical footprint, low power
consumption, and affordability make it particularly
well-suited for integration into wearable devices
such as data gloves, where space and weight are
critical design considerations. In this application,
the Arduino Nano not only reads and organizes
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sensor data but can also perform Dbasic
preprocessing as signal filtering or scaling-before
transmitting the information to a computer or
external processor via USB or serial
communication. This efficient combination of
sensing, digitization, and transmission capabilities
enables seamless real-time hand gesture capture in
a portable and cost-effective form factor.

The Arduino Nano board is programmed via the
Arduino 10 Package for Simulink, enabling direct
communication between the hardware and the Simulink
environment. In this setup, a Simulink model acquires
five analog voltage signals from the voltage divider
circuits, each corresponding to the bending level of a
flex sensor. Arduino Nano’s 10-bit analog-to-digital
converters read these inputs from pins A0 through A4,
producing raw integer values in the range of 0 to 1023.
These values are then normalized by dividing by 1023,
converting them into a range between 0 and 1 for
consistent processing by the BNN. During data
collection, each session runs for 5 seconds with a
sampling interval of 0.1 seconds, generating
approximately 51 samples per gesture. Each sample
represents a snapshot of a static hand gesture’s flex
sensor reading. The complete set of samples forms a
labeled training dataset, which is essential for training
the BNN to accurately recognize and classify various
static hand gestures based on the captured sensor data.

Figure 3 illustrates six distinct static hand gestures
employed in the gesture recognition process. These
gestures are systematically grouped into five separate
classes according to the specific configurations and
positions of the fingers and palm. In this classification
scheme, Gestures 1 and 2 are categorized under Class 1,
while Gestures 3, 4, 5, and 6 correspond to Classes 2, 3,
4, and 5, respectively. This structured classification
enables the recognition system to accurately distinguish
different hand postures, ensuring that each gesture is
uniquely associated with a predefined category.

Gesture 1 Gesture 2 Gesture 3

Gesture 5 Gesture 6

Gesture 4

Fig 3. Six static hand gestures.



Journal of Science and Technology - Smart Systems and Devices
Volume 36, Issue 1, January 2026, 018-024

Table 1. Number of collected static hand gestures.

Number of Class
Gestures patterns
Gestures 1 and 2 102 1
Gesture 3 51 2
Gesture 4 51 3
Gesture 5 51 4
Gesture 6 51 5

Table 1 shows the distribution of data patterns
collected for each gesture class. Each data pattern
corresponds to a single measurement recorded by the
flex sensors while a specific hand gesture is being
performed. These data patterns reflect the distinctive
sensor output profiles that represent the degree of finger
flexion and the overall hand posture characteristic of
each gesture.

3.2. Network Architecture

The BNN used for classifying static hand gestures is
designed with a specific architecture to effectively
process data collected from flex sensors. This
architecture consists of the following components.

e Input layer: It contains six nodes, of which five
correspond to the analog signals obtained from the
five flex sensors embedded in the data glove. Each
flex sensor measures the degree of finger flexion,
providing continuous data related to the curvature
of each finger. The sixth node is an augmented bias
input with a constant value of 1, which enhances
the model’s learning capacity by allowing the
network to adjust the decision boundary more
flexibly.

e Hidden layer: The network includes a hidden layer
with six neurons, which process the incoming data
from the input layer by first computing a weighted
sum of the inputs and then applying a nonlinear
activation function. This combination allows the
model to capture and represent complex, non-linear
relationships between the flex sensor signals and
the corresponding hand gestures. The choice of six
neurons strikes a balance between model
complexity and computational efficiency, ensuring
that the network has sufficient capacity to learn
gesture-specific patterns while still generalizing
well across different gesture classes without
overfitting.

o  Output layer: The BNN has five output nodes, each
corresponding to a specific gesture class. The
outputs represent a probability distribution over the
five gesture classes, allowing the network to
account for uncertainty in its predictions.

e  QOutput layer: The BNN’s output layer consists of
five nodes, each representing one of the predefined
gesture classes. The outputs form a probability

23

distribution across these classes, indicating the
likelihood of each gesture given the input data.
This probabilistic representation enables the
network to account for uncertainty in its
predictions, providing not only the most likely
gesture but also a measure of confidence for each
classification.

3.3. Network Training Procedure

There are four weight decay parameters &, &, , &3
and £, corresponding distributions from the weights

between the input nodes to the hidden nodes, the bias
input node to the hidden nodes, the hidden nodes to the
output nodes, and the bias hidden node to the output
nodes. The training procedure was then implemented as
follows [15, 16]:

1) The weights and biases were initialized randomly

and  choosing  initial values for the
hyperparameters,

2) The network was trained to minimize the cost
function S(w) using the SCG algorithm,

3) When the network training reached a local
minimum, the values of the hyperparameters were
re-estimated as follows:

}/old
£ =2 (30)
ZEWg
4) Steps 2 and 3 were repeated until convergence was

achieved (the total error term was smaller than a
pre-determined value and did not change
significantly in subsequent iterations).

The final values of the weights and biases obtained
from training the BNN were subsequently stored to
deploy a standalone embedded system for static hand
gesture recognition. This deployment was implemented
using an Arduino Nano board, allowing the system to
function independently without relying on an external
computer. By transferring the trained parameters to the
Arduino Nano, the neural network's decision-making
capabilities were embedded directly into the
microcontroller. This enabled real-time processing and
classification of static hand gestures, making the system
portable and efficient. The optimized weights and biases
allowed the Arduino Nano to perform accurate gesture
recognition while maintaining low power consumption
and a compact form factor, suitable for practical
applications in wearable devices, human-computer
interaction, and assistive technologies.

4. Conclusion

The study demonstrates the feasibility and
effectiveness of integrating low-cost hardware with
advanced machine-learning techniques for static hand
gesture recognition. The affordability and simplicity of
the data glove, combined with the flexibility and power
of the BNN, present a scalable and adaptable solution
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suitable for both research and real-world applications.
This approach provides a cost-effective alternative to
more expensive commercial gesture recognition systems
while maintaining robust performance. Practical
applications for this system extend to various fields,
including sign language interpretation, where it could
assist individuals with speech or hearing impairments by
translating hand gestures into text or speech in real-time.
The system could facilitate intuitive, gesture-based
command inputs for operating machinery or robotic arms
in robotic control. Furthermore, human-computer
interaction could be enhanced by enabling hands-free
operation of devices through natural hand gestures.
Future research may focus on several key areas to further
optimize the system. Enhancing the BNN’s architecture,
such as refining the number of hidden units or exploring
alternative activation functions, may improve accuracy
and computational efficiency. Additionally, real-time
processing capabilities could be enhanced by optimizing
the system’s code and hardware setup, allowing for faster
gesture recognition with minimal latency. Another
valuable direction would be to expand the gesture
vocabulary, enabling the recognition of a wider array of
static and dynamic gestures to accommodate diverse
applications. Overall, this study highlights a promising
approach to static hand gesture recognition using
affordable and accessible technology combined with
advanced probabilistic machine learning. With further
development and refinement, this system could play a
pivotal role in advancing gesture-based interfaces,
improving accessibility, and enabling more natural HMI
systems.
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