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Abstract 

This paper presents a novel approach to hydro turbine speed control by integrating neural networks into the tuning 
process of digital governors, with the objective of meeting the stringent performance requirements set by the National 
Power System Control Center of Vietnam Electricity (EVN). The proposed control strategy employs a closed-loop 
configuration using turbine rotational speed as feedback to regulate water flow and maintain power balance under 
varying load conditions. A key innovation of the study is the use of an adaptive neural network - proportional integral 
derivative (NN-PID) Controller, which continuously updates control parameters in real-time through the Brandt-Lin 
learning algorithm. This allows the controller to respond effectively to nonlinearities and disturbances in the system. 
Simulation and hardware-in-the-loop experiments validate the effectiveness of the proposed method, demonstrating 
enhanced performance compared to traditional proportional integral derivative (PID) controllers including faster 
settling times, zero steady-state error, and suppression of oscillations during sudden load changes. The results suggest 
that the NN-PID controller offers a promising alternative for next-generation digital governor design in large 
hydropower plants. 
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1. Introduction 

Primary*Frequency Control in Vietnam refers to 
the automatic and immediate response of power plants 
to stabilize the power system's frequency, typically 
maintained at 50 ± 0.5 Hz, as mandated by Circular 
40/2014/TT-BCT (amended by Circular 31/2019/TT-
BCT) issued by the Ministry of Industry and Trade. It 
is a critical mechanism to balance electricity supply 
and demand in real-time when frequency deviations 
occur due to sudden changes in load or generation. 

 In practice, the generating unit of a power plant 
must be capable of participating in primary frequency 
control when the system frequency deviates beyond 
the deadband of the governor system. It must achieve 
at least 50% of the primary frequency control capacity 
of the unit within the first 15 seconds, 100% of the 
primary frequency control capacity within 30 seconds, 
and maintain this capacity for at least an additional 15 
seconds. 

The basic controller using in most of hydropower 
plants is the propotional intergral derivative (PID) 
controller, in which the tuning method is using 
Ziegler-Nichol’s algorithms as presented in [1]. 
However, the method for finding gains via an optimal 
control approach in [2] is time-consuming. The 
stability is not ensured for different loads.   

This study introduces two alternative 
methodologies for optimizing turbine governor 
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parameter design. The first is a model-based controller 
design approach, effective when accurate and 
comprehensive data on the turbine-governor system 
are available. The process begins with developing a 
mathematical model of the system using differential 
equations. Controllers are then designed based on 
established PID control principles, with closed-loop 
poles selected to meet specific performance criterias 
such as overshoot, rise time, and settling time. This 
method yields analytical expressions for controller 
parameters as functions of system operating conditions 
and desired closed-loop behavior, thereby eliminating 
the need for heuristic tuning. 

Simulation results indicate that the system 
experiences fluctuations in response to significant 
variations in input parameters, such as the water gross 
head, inaccurate estimation of the water time constant, 
or abrupt load changes. To address these phenomena, 
a novel approach involving the online calculation of 
PID controller parameters is proposed to satisfy the 
system's quality requirements [3]. The primary 
advantages of the proposed neural network-based 
method include its capacity for parallel processing and 
its ability to learn and approximate arbitrary nonlinear 
functions. This paper provides a comprehensive 
derivation of the neural network-based PID controller 
specifically designed for turbine power control 
applications. 
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The validation of the proposed controllers is 
conducted using a hardware-in-the-loop model 
implemented within MATLAB Real-Time Workshop. 
This design facilitates the simulation of a broad and 
significant range of operating conditions, including 
turbine startup, normal and emergency shutdown, no-
load generation, and parallel operation under short-
circuit scenarios. Furthermore, the integration of the 
excitation system with supplementary control loops 
such as Power System Stabilizer (PSS), under 
excitation,  and over excitation enables comprehensive 
performance evaluation and precise parameter 
optimization. Practical implementation examples from 
the Ban Ve Hydropower Plant are presented to 
demonstrate the efficacy of the proposed control 
algorithm. 

2. Modelling and Designing the PID Control System 

The mathematical model of the turbine governor is 
derived based on the principles of hydraulic flow. 
Water passes through pipes and control valves to drive 
the turbine, which is mechanically coupled to the 
generator rotor.  

As the turbine rotates, the generator produces 
electricity, and the output power is measured using 
appropriate sensors. The system compares the actual 
frequency with a reference value, and the frequency 
deviation (∆f) is used as the input to the control 
integrator. An illustration of the control system is 
provided in Fig. 1. 

 
a. Turbine governor control system 

 
b. The hydraulic turbine non-linear model 

Fig. 1. Model of turbine control system 

2.1 Hydraulic Turbine Model 

The hydro turbine is described by the water flow 
function and power function. In this paper, the model 
according to [4] is used:  

𝑈𝑈 = 𝐾𝐾𝑢𝑢𝐺𝐺√𝐻𝐻 (1) 

𝑃𝑃 = 𝐾𝐾𝑃𝑃𝐻𝐻𝐻𝐻 (2) 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −
𝑎𝑎𝑔𝑔
𝐿𝐿

(𝐻𝐻 −𝐻𝐻0) (3) 

𝑄𝑄 = 𝐴𝐴𝐴𝐴 (4) 
with U is water flow speed [m/s]; G is  ideal gate 
opening [%]; H is working water height [m]; H0 is 
initial water height [m]; Q is  water flow [m3/s]; A is 
area of penstock [m2]; L is length of penstock [m]; ag 
is gravitational const [m2/s]; t is time [s]. 

The models described thus far are inherently 
nonlinear, making them unsuitable for controller 
design using conventional linear methods. To facilitate 
linear controller synthesis, a linearized model is 
derived by approximating the system behavior near a 
specific operating point. In this context, Δ represents 
the deviation from the operating point, while the 
coefficients b  are functions of the operating point and 
correspond to the system variables involved in the 
linearization process. 

𝛥𝛥𝑈𝑈 = 𝑏𝑏11𝛥𝛥𝐻𝐻 + 𝑏𝑏12𝛥𝛥𝜔𝜔 + 𝑏𝑏13𝛥𝛥𝐺𝐺 
(5) 

𝛥𝛥𝑃𝑃𝑚𝑚 = 𝑏𝑏21𝛥𝛥𝐻𝐻 + 𝑏𝑏22𝛥𝛥𝜔𝜔 + 𝑏𝑏23𝛥𝛥𝐺𝐺 
The b1i coefficients are partial derivatives of the 

water flow function 

𝑏𝑏11 =
𝐺𝐺

2√𝐻𝐻
 

(6) 

𝑏𝑏12 = 0 

𝑏𝑏13 = √𝐻𝐻 

𝑏𝑏21 = (
3
2√

𝐻𝐻.𝐺𝐺 − 𝑈𝑈𝑁𝑁𝑁𝑁)𝐴𝐴𝑡𝑡 

𝑏𝑏22 = 0,5𝐺𝐺 

𝑏𝑏23 = 𝐴𝐴𝑡𝑡𝐻𝐻1,5 − 0,5(𝜔𝜔 − 1) 
Supposed the Δω  is relatively small in grid 

connecting state, the linear turbine model would be as 
follows: 

𝛥𝛥𝑃𝑃𝑚𝑚
𝛥𝛥𝐺𝐺

= 𝑏𝑏23
1 + (𝑏𝑏11 − 𝑏𝑏13𝑏𝑏221/𝑏𝑏223)𝑇𝑇𝑤𝑤𝑠𝑠

1 + 𝑏𝑏11𝑇𝑇𝑤𝑤𝑠𝑠
 (7) 

with  
𝑏𝑏𝑦𝑦ℎ = 𝑏𝑏13𝑏𝑏21 − 𝑏𝑏11𝑏𝑏23  
𝛥𝛥𝑈𝑈 = 𝑏𝑏11𝛥𝛥𝐻𝐻 + 𝑏𝑏13𝛥𝛥𝐺𝐺  
𝛥𝛥𝑃𝑃𝑚𝑚 = 𝑏𝑏21𝛥𝛥𝐻𝐻 + 𝑏𝑏23𝛥𝛥𝐺𝐺  

 
2.2. Power-Unit Rotor Dynamics Model 

Dynamics of a power unit in the turbine governing 
systems, in most cases, can be described by using only 
inertia moment of the power unit. Using Newton’s 
second law where torques are expressed as powers 
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divided by the rotation speed, one can derive the 
following  

𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑎𝑎𝑎𝑎(𝑆𝑆) =
𝛥𝛥𝜔𝜔𝑁𝑁

𝛥𝛥𝛥𝛥 − 𝛥𝛥𝑃𝑃𝐿𝐿
=

1
𝑇𝑇𝑚𝑚𝑠𝑠 + 𝐷𝐷𝑃𝑃

 (8) 

where PL is mechanical power on the turbine shaft (in 
per unit); P is base power (in watts); 𝜔𝜔𝐵𝐵 is angular 
velocity of the unit (in radians per second); Dp is inertia 
moment of the unit including all rotating parts;  
Tm is mechanical time constant of the unit (in seconds). 

2.3. Speed Governing 

The control structure of speed governing is show in 
Fig. 2. with the closed loop function: 

𝐺𝐺𝜔𝜔(𝑠𝑠) = 𝑠𝑠+(𝑇𝑇𝑎𝑎+𝑏𝑏11𝑇𝑇𝑤𝑤)𝑠𝑠2+𝑇𝑇𝑎𝑎𝑇𝑇𝑤𝑤𝑏𝑏11𝑠𝑠3

𝑏𝑏23𝐾𝐾𝑖𝑖+𝐴𝐴𝜔𝜔𝜔𝜔1𝑠𝑠+𝐴𝐴𝜔𝜔𝜔𝜔2𝑠𝑠2+𝐴𝐴𝜔𝜔𝜔𝜔3𝑠𝑠3+𝑏𝑏11𝑇𝑇𝑎𝑎𝑇𝑇𝑤𝑤𝑇𝑇𝑚𝑚𝑠𝑠4
     (9) 

 

 
Fig. 2. Speed governing system 

 
The controller of the speed governor when 

designed must ensure the quality of the system 
according to the National Technical Regulation on 
Electrical Engineering QCVN-2015/BCT and other 
technical requirements: 

- Static deviation of frequency in normal operating 
mode is not more than ±1%; 

- Maximum speed of the speed governor is not 
more than 50% of the rated speed; 

- Delay time of the controller's action is not more 
than 0.2s; 

The parameters of the controller are determined 
based on the desired polynomial, the rule for selecting 
parameter values for this polynomial: (𝑠𝑠2 + 2𝜉𝜉𝛽𝛽𝑛𝑛𝑠𝑠 +
𝛽𝛽𝑛𝑛2) and  the optimal coefficients of the desired 
polynomial are constructed according to the ITAE 
(Integral of Time multiplying the Absolute value of the 
Error) criterion by the experiment of Dorf & Bishop 
[2] with  

Table 1. Desired polynominals 

Order Desired polynominals 𝒅𝒅𝒌𝒌(𝒔𝒔) 

1 𝑑𝑑1(𝑠𝑠) = [𝑠𝑠 + 𝛽𝛽𝑛𝑛] 

2 𝑑𝑑2(𝑠𝑠) = [𝑠𝑠2 + 1,4𝛽𝛽𝑛𝑛𝑠𝑠 + 𝛽𝛽𝑛𝑛2] 

3 𝑑𝑑3(𝑠𝑠) = [𝑠𝑠3 + 1,75𝛽𝛽𝑛𝑛𝑠𝑠2 + 2,15𝛽𝛽𝑛𝑛2𝑠𝑠 + 𝛽𝛽𝑛𝑛3] 

 

The Kp, Ki, Kd of PID controller and 𝑐𝑐3 are a 
function of 𝑐𝑐0, 𝑐𝑐1, 𝑐𝑐2. In which: 

𝐾𝐾𝑃𝑃 = 𝑏𝑏22𝑏𝑏23+𝑏𝑏𝑦𝑦ℎ𝑇𝑇𝑎𝑎𝑇𝑇𝑚𝑚𝑇𝑇𝑤𝑤2𝑐𝑐0+𝑏𝑏23(𝑏𝑏11𝑇𝑇𝑎𝑎𝑇𝑇𝑚𝑚𝑇𝑇𝑤𝑤𝑐𝑐1−𝐷𝐷)

𝑏𝑏23
2   (11a)     

𝐾𝐾𝐼𝐼 =
𝑏𝑏11𝑇𝑇𝑎𝑎𝑇𝑇𝑚𝑚𝑇𝑇𝑤𝑤𝑐𝑐0

𝑏𝑏23
 (11b) 

𝑐𝑐3 = 𝑓𝑓(𝑐𝑐0, 𝑐𝑐1, 𝑐𝑐2) (11c) 

𝑝𝑝𝑘𝑘𝑘𝑘𝑘𝑘1 = 𝐷𝐷 − 𝑏𝑏11𝑇𝑇𝑎𝑎𝑇𝑇𝑚𝑚𝑇𝑇𝑤𝑤𝑐𝑐1 + 2𝑏𝑏112 𝑇𝑇𝑎𝑎𝑇𝑇𝑚𝑚𝑇𝑇𝑤𝑤2𝑐𝑐0  (11d)  

𝑝𝑝𝑘𝑘𝑘𝑘𝑘𝑘2 = 𝐷𝐷𝑇𝑇𝑎𝑎 + 𝑇𝑇𝑚𝑚 + 𝑏𝑏12𝑏𝑏21𝑇𝑇𝑤𝑤 − 𝑏𝑏11𝑇𝑇𝑎𝑎𝑇𝑇𝑚𝑚𝑇𝑇𝑤𝑤𝑐𝑐2
+ 𝑏𝑏112 𝑇𝑇𝑎𝑎𝑇𝑇𝑚𝑚𝑇𝑇𝑤𝑤2𝑐𝑐1
− 𝑏𝑏113 𝑇𝑇𝑎𝑎𝑇𝑇𝑚𝑚𝑇𝑇𝑤𝑤3𝑐𝑐0 

(11e)  

  
2.4. Simulation of the Designed PID Controller 

The turbine system’s parameters are shown in 
Table 2 

Table 2. Turbine parameters  

Names Symbol Values 

Generator rated power Pf 160 MW 
Stator rated voltage U1 15.75 kV 
Rated frequency f 50 Hz 
Rated speed nf 150 rpm 
Calculated water head Htt 66,5 m 
Maximum water flow 
through turbine Qmax 188 m3/s 

Allowable speed nTlt (225) rpm 
Penstock length Lp 179 m 
Pentstock cross-sectional 
area Ap 3,6 m2 

 

 
Fig. 3. Response of the speed loop with exact 
parameters 

 
The simulation results of the speed loop with the 

designed controller shown in equation [11] is 
presented in Fig. 3, in which: 
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- Transition time 15s,  Deceleration when loading is 
17%. 

- Overspeed when rejecting 100% load is 15%. 

- Steady state error  is 0. 

- Response is non-oscillating. 

The simulation is tested when the load is being 
suddenly changed at the time of 300s, and the water 
head is 20% differences, the response is in Fig. 4. 

These results lead to the conclusion that when 
system inputs and outputs remain stable, the PID 
controller is capable of meeting control quality 
requirements. However, in scenarios where the water 
head and electrical load vary significantly (up to 20%), 
the fixed-parameter PID controller fails to maintain a 
new equilibrium. Under such conditions, the system 
experiences pronounced fluctuations around the 
desired setpoint, indicating a loss of control 
effectiveness. 

 
Fig. 4. Speed response at load changed with 20% head 
difference 

 
3. Neural Network PID Controller 

The Adaptive Neural Network PID Controller 
(PID-NN) integrates the classical Proportional Integral 
Derivative (PID) control strategy with a neural 
network framework, leveraging the Brandt-Lin 
Algorithm to adaptively tune the controller 
parameters. This approach is particularly effective for 
controlling nonlinear or time-varying systems, such as 
turbine power systems, where traditional PID 
controllers may struggle due to fixed gains and 
complex dynamics. 

3.1. Brandt-Lin Algorithm Neural Network 

The Brandt-Lin algorithm provides a framework 
for adapting the connection weights of a neural 
network to optimize system performance. For a system 

with dynamics described by mathematical equations, 
the algorithm adjusts the weights to minimize a  
performance index, ensuring stable and predictable 
system behavior. 

Key Concept: The performance index 𝐸𝐸, which 
depends on system outputs (𝑦𝑦1, … ,𝑦𝑦𝑛𝑛) and control 
inputs (𝑢𝑢1, … ,𝑢𝑢𝑛𝑛), decreases over time when the 
weights are updated according to the adaptation rule. 
This rule ensures that the system converges to a stable 
state, provided the system’s Jacobian determinant is 
non-zero in the region of interest. 

If the system dynamics and performance index 
involve instantaneous functions, the adaptation rule 
simplifies to a multiplication operation, making the 
computation more straightforward. The simplified 
equations for weight adaptation are as follows: 

• Weight Update Rule: The connection weights are 
adjusted based on the adaptation coefficient and 
system dynamics. 

• Mathematical Representation: 

𝑤𝑤 = 𝑤𝑤 − 𝜂𝜂 ⋅
∂𝐸𝐸
∂𝑤𝑤

 

where 𝜂𝜂 is the adaptation coefficient, and ∂𝐸𝐸
∂𝑤𝑤

 represents 
the gradient of the performance index with respect to 
the weights. This approach is versatile and can be 
applied to various systems, including neural networks, 
as illustrated in the Fig. 5 diagram. 

 
Fig. 5. A simple neural network 

 
The weight adaptation becomes as shown in [7]: 

𝑤𝑤𝑠𝑠 = 𝑟𝑟𝑝𝑝𝑝𝑝𝑒𝑒𝑠𝑠(𝜙𝜙𝑝𝑝os𝑡𝑡𝑠𝑠𝜎𝜎(−𝑝𝑝𝑝𝑝os𝑡𝑡𝑠𝑠) + 𝛾𝛾𝑓𝑓𝑝𝑝os𝑡𝑡𝑠𝑠)  (12)     

 
3.2. Adaptive Neural Network Controller PID-NN 

The configuration of the neural network controller 
is further described in Fig. 6.   

Input Layer: Three neurons corresponding to the 
P, I, and D components of the error. Each neuron 
processes its input using an activation function   

Output Layer: One neuron that produces the 
control signal 𝑢𝑢(𝑡𝑡) using a linear activation function 
for direct control action. 
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Fig. 6. Neural network controller 

 
• Weights 

In a simplified structure,  the network may directly 
connect the three input neurons to the output 
neuron via weights 𝑤𝑤1,𝑤𝑤2,𝑤𝑤3, representing the 
proportional, integral, and derivative gains, 
respectively. 

• Mathematical Representation   

Let the inputs to the neural network be: 

𝑥𝑥1 = 𝑒𝑒(𝑡𝑡), 𝑥𝑥2 = ∫ 𝑒𝑒(𝑡𝑡) 𝑑𝑑𝑑𝑑, 𝑥𝑥3 = 𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

   (13) 

The input to the output neuron (membrane 
potential) is: 

𝑝𝑝out = 𝑤𝑤1𝑥𝑥1 + 𝑤𝑤2𝑥𝑥2 + 𝑤𝑤3𝑥𝑥3  (14) 

The output (control signal) is: 

𝑢𝑢(𝑡𝑡) = 𝑝𝑝out (linear activation) 

or, if a hidden layer is used: 

𝑝𝑝hidden,𝑖𝑖 = ∑ 𝑤𝑤𝑖𝑖𝑖𝑖3
𝑗𝑗=1 𝑥𝑥𝑗𝑗 , 𝑟𝑟hidden,𝑖𝑖 =

𝜎𝜎(𝑝𝑝hidden,𝑖𝑖), 𝑢𝑢(𝑡𝑡) = ∑ 𝑤𝑤out,𝑖𝑖𝑖𝑖 𝑟𝑟hidden,𝑖𝑖 (15) 

The error is defined as: 

𝐸𝐸 = 1
2

(𝑟𝑟(𝑡𝑡) − 𝑦𝑦(𝑡𝑡))2 = 1
2
𝑒𝑒(𝑡𝑡)2 (16) 

• Brandt-Lin Algorithm in PID-NN  

The Brandt-Lin Algorithm is used to train the 
neural network by adapting its weights to minimize the 
error 𝐸𝐸, the algorithm uses local computations at each 
neuron, making it suitable for real-time control in a 
turbine power systems. 

Adaptation Law, the weight update rule is: 

𝑤̇𝑤𝑠𝑠 = −𝛼𝛼𝑠𝑠
𝑑𝑑𝑑𝑑
𝑑𝑑𝑤𝑤𝑠𝑠

 (17) 

where 

• 𝑤𝑤𝑠𝑠 is the weight of synapse 𝑠𝑠; 

• 𝛼𝛼𝑠𝑠 is the adaptation coefficient (learning rate) 
for the synapse 𝑠𝑠; 

• 𝑑𝑑𝑑𝑑
𝑑𝑑𝑤𝑤𝑠𝑠

 is the total derivative of the error with 
respect to the weight; 

For the PID-NN, the weights correspond to the PID 
gains (𝑤𝑤1 ,𝑤𝑤2,𝑤𝑤3 for P, I, D terms). The error gradient 
is computed as: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑤𝑤𝑠𝑠

= ∂𝐸𝐸
∂𝑝𝑝out

⋅ ∂𝑝𝑝out
∂𝑤𝑤𝑠𝑠

 (18) 

where 

• ∂𝐸𝐸
∂𝑝𝑝out

= −(𝑟𝑟(𝑡𝑡) − 𝑦𝑦(𝑡𝑡)) ⋅ ∂𝑦𝑦
∂𝑢𝑢

, accounting for 
the plant’s response. 

• ∂𝑝𝑝out
∂𝑤𝑤𝑠𝑠

= 𝑥𝑥𝑠𝑠, the input associated with the 

weight (e.g., 𝑒𝑒(𝑡𝑡),∫ 𝑒𝑒(𝑡𝑡) 𝑑𝑑𝑑𝑑, 𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

). 

In the Brandt-Lin framework, the adaptation 
simplifies to:      𝑤̇𝑤𝑠𝑠 = 𝛼𝛼𝑠𝑠𝑥𝑥𝑠𝑠(𝜆𝜆out𝜙𝜙out𝜎𝜎′(𝑝𝑝out) + 𝑓𝑓out) 

where 

• 𝑥𝑥𝑠𝑠 is presynaptic input (P, I, or D term); 

• 𝑓𝑓out = 𝑟𝑟(𝑡𝑡) − 𝑦𝑦(𝑡𝑡) is feedback signal (error); 

• 𝜙𝜙out = ∑ 𝛼𝛼𝑠𝑠𝑠𝑠 𝑤𝑤𝑠𝑠𝑤̇𝑤𝑠𝑠 is implicit feedback from 
outgoing synapses; 

• 𝜎𝜎′(𝑝𝑝out) is derivative of the activation 
function (for linear output, 𝜎𝜎′ = 1); 

For a linear output neuron the adaptation simplifies 
further:   𝑤̇𝑤𝑠𝑠 = 𝛼𝛼𝑠𝑠𝑥𝑥𝑠𝑠(𝑟𝑟(𝑡𝑡) − 𝑦𝑦(𝑡𝑡)). 

This resembles gradient descent, adjusting weights 
proportionally to the error and input. 
• Application to PID-NN 

Weights as PID Gains: The weights w_1,w_2,w_3 
directly represent the proportional, integral, and 
derivative gains. The Brandt-Lin Algorithm tunes 
these weights online to optimize control performance. 

Adaptation Rate (g): The learning rate g (denoted 
as α_s in the algorithm) controls how quickly the 
weights adapt. A smaller g ensures stability but slows 
adaptation, while a larger g speeds up adaptation but 
risks instability. 

Training Process: The neural network learns by 
continuously updating weights based on the error e(t), 
allowing the controller to adapt to changes in the plant 
(e.g., turbine dynamics) or disturbances (e.g., load 
changes). 

3.3. Simulation of the NN-PID controller 

The simulation is implemented in the following 
cases:  

- Case 1 (T/H1): The water head is stable, the 
electric load changes suddenly. Assuming that the 
system is operating stably, then at t = 150 s the load 
capacity suddenly increases from 0.5 (pu) to 0.7 (pu), 
then at t = 300 s the load capacity decreases again to 
0.6 (pu);  
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- Case 2 (T/H2): The water head increases and the 
electric load changes. Assuming that the system is 
stable at the equilibrium point, then at t = 250 s, the 
water head of the system increases rapidly from 66.5 m 
to 70 m  

The comparison of between the quality of PID and 
NNC is described in Table 3 

Comparison of speed loop response when using 
PID controller and NNC controller as show in Fig. 7 
for T/H1 and Fig. 8 for T/H2 

Table 3. Quality parameters of PID and NNC 
controllers in speed loop 

Case Controller pt (s)  max (%)δ  n SS 

Case 1 
PID - 5 - - 

NNC 30 4.6 1 0.02 

Case 2 
PID - 6 - - 

NNC 30 5 1 0.2 

 

 
Fig. 7. Speed response in T/H1  

 

 
Fig. 8. Speed response in T/H2  

 
The simulation results clearly indicate that when 

the electrical load increases by 5% of the nominal 
value, the frequency deviation reduces after a brief 
transient period. With a conventional PID controller, 
the system takes approximately 50 seconds to settle 

and exhibits noticeable oscillations. In contrast, the 
PID-NN controller achieves a faster response with a 
transition time of 30 seconds and eliminates 
oscillations entirely. 

4. Experimental Results 

Experimental verification of the digital governor 
control system is made on the 160MW turbine of 
BanVe hydropower plant in Vietnam. Digital control 
system with PLC S7 1500 as shown in Fig. 9  is applied 
to meet the strict industrial requirement. The hardware, 
which integrates the main controller and the Human 
Machine Interface (HMI), is applied to develop a 
dynamic real-time system. The hardware consists of a 
redundant S7 1512 controller, a 12-inch HMI, 
interface, a Profibus interface, a 24 V DC power 
supply, 32 digital input/output channels, 4 channels 
analog input (16 bits resolution, 4-20 mA) is used. 

The experiment data has been shown in the Fig. 10 
to Fig. 13. The results have proved the effectiveness of 
proposed controllers. Due to the length limit of the 
paper, only the most convincing figures are presented.  

 

 
Fig. 9. The S7 1500 PLC turbine control system 

 

 
Fig. 10. Speed increases from 80% to 85% 
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Fig. 11.  Speed decreases from 85% to 80% 

 

 
Fig. 12.  Frequency changes suddenly from 50.5 Hz to 
50 Hz 

 

 
Fig. 13. Frequency changes suddenly from 50 Hz to 
49.5 Hz 

The experiments were conducted in accordance 
with Circular 31/2019/TT-BCT, using a 5% speed 
setpoint and a sudden 0.5 Hz frequency change to 
evaluate the rapid response of the turbine controller. 
As observed, all requirements were satisfied, with the 
error approaching zero in every test case. 

5. Conclusion 

The effectiveness of the proposed governor control 
system was verified through simulation tools, and the 
accuracy of the plant simulation model was confirmed 
via experimental validation. This study demonstrates 
that, with accurate turbine parameters, conventional 
PID control can meet system performance 
requirements. One of the key advantages of PID 
controllers is their simplicity in implementation and 
commissioning. 

Furthermore, an adaptive neural network approach 
using the Brandt-Lin algorithm was applied to train the 
neural network structure in the NN-PID controller for 
turbine-generator speed control, as illustrated in Fig. 5. 
With an adaptation rate of γ = 100, simulation results 
after approximately 30 seconds indicate significant 
improvements in the network's link weights (W) and 
error (E), highlighting the effectiveness of the training 
process. 

Simulation results show that the NN-PID controller 
delivers a superior response to power system load 
changes, achieving a 30 second transition time with no 
oscillations. In comparison, the traditional PID 
controller exhibits a longer 50 second transition time 
and noticeable oscillations.  

Despite these advantages, most hydropower plants 
currently continue to rely on conventional PID 
controllers. The NN-PID controller is proposed as a 
more effective tool for designing and implementing 
high-quality speed control systems for hydraulic 
turbines. 
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